Searching for "canvas"

Midpoint Reflection ID2ID

Midpoint Reflection

https://canvas.instructure.com/courses/1288387/assignments/8024238?module_item_id=16052093

While it may take time to do this reflection, it can have many important benefits: 1) research shows that reflecting on experiences creates an environment in which insights and creativity can flourish; 2) taking a moment to consider the positive experiences (and to learn from the challenging ones) generates positive emotions which can benefit everyone during highly stressful moments in the semester; and 3) your experiences in narrative form provide insights to the committee beyond what is possible through surveys. This helps us to tailor the program in the future.

Here are a few questions/topics you should consider in your reflection:

  1. How well is the program working for you so far?

I was not able to collaborate last year, but this year it has been perfect match with my ID2ID buddy Aura Lippincott. It is just marvelous to work with same-minded and driven person

  1. What have you accomplished so far?

We are well underway with one of our two projects – the VRrelax one the project each of us is teaming up with faculty and staff from our universities. We plan to roll out the test at the end of this month (October), do the research in November and compare notes and results in December. The project aims to establish if VR delivered by Oculus Go may have positive impact on stress reduction for students.

Our second project, the Open Learning one is also gathering speed; we intend to have a research topic determined by the end of the month, while we are gathering resources at the time being.

  1. What else do you need to do? Describe the progress you have made toward meeting your program goals.

Each of us is in a daily contact with faculty and staff, searching for the right people to build a team. By mid September, we were able to start forming the research questions with the team and establish responsibilities and deadlines. We keep track of the progress via Google Docs: https://docs.google.com/document/d/1kOgqC7vUaBtOEDaB6ZF-ayEyVw2yBmB0fHXWrrcFkB4/edit and https://docs.google.com/document/d/1huFe1bPE08ha9acDLTsDkCz0blaxQ2bKKSxg97woGIY/edit

  1. What obstacles have you faced that you did not anticipate?

I have difficulty to pinpoint obstacles, because with a determined ID2ID partner and team members, all obstacles start to seem minuscules. We had discussions about the video content of the VR session, or the frequency of the testing and some of these issues is impossible to reconcile for two teams on different campuses, but again, they do not seem crucial when the team is driven by conviction to finish the research

  1. What are your plans for working through them? What are your plans for the rest of the program? Many of you may have chosen to focus on one or more of the ELI Key Issues. If so, briefly summarize and reflect upon your discussions of these key issues.

In regard of the ELI Key issues
https://er.educause.edu/blogs/2018/1/presenting-the-eli-key-issues-for-2018

I see our work falling neatly under: digital and information literacy. The work through ID2ID seems as a intake of fresh air, since digital and information literacy is not considered in the stagnant 90-ish interpretation, as myopically imposed in the library where i work. Our project aims to assert digital literacy as understood by Educause.

To some degree, our work also falls under the ELI issue of “learning space design.” While we advocate for virtual learning spaces, as well as under the ELI issue “academic transformation and faculty development.” Both XR and open learning are ambitious trends, which inadvertently can meet resistance with their novelty and lack of track in former traditional methods of teaching and learning.

 

Student Device Preferences for Online Course Access and Multimedia Learning

below is the link and phone numbers for the September 21st webinar, “Student Device Preferences for Online Course Access and Multimedia Learning.”

Remember, you don’t have to register in advance. Simply join the presentation by clicking on the below link or dialing the relevant number. The webinar begins at 11am ET (UTC -5) on the 21st.

We’ll post a recording of the session here in Canvas after the fact.

Thank you. 

Join from a PC, Mac, iPad, iPhone or Android device:

    Please click this URL to join. https://arizona.zoom.us/j/506967668

ebooks Penn State

E-books provide student savings through Penn State partnership

August 13, 2018

https://news.psu.edu/story/531094/2018/08/13/academics/e-books-provide-student-savings-through-penn-state-partnership

Penn State, through a partnership between Penn State World Campus and the University Libraries, has made available more than 330 e-books for almost 300 courses offered through World Campus starting in the 2017-2018 academic year. The e-books are available to students through Canvas, the University’s learning management system, and are also searchable online in the University Libraries’ catalog.

The e-book licensing partnership between the Libraries and Penn State World Campus

The partnership is mutually beneficial as it helps the Libraries increase its collections strategically while also supporting Penn State’s strategic plan foundation of enabling educational access and affordability and its commitment to help students avoid costs by offering free and low-cost textbooks.”

+++++++++
more on ebooks in this IMS blog
https://blog.stcloudstate.edu/ims?s=ebooks

more on Penn State
https://blog.stcloudstate.edu/ims?s=penn+state

Collaborative Instructional Technology Support Model

Online Course | Designing a Collaborative Instructional Technology Support Model

Part 1: March 7, 2018 | 1:00–2:30 p.m. ET
Part 2: March 14, 2018 | 1:00–2:30 p.m. ET
Part 3: March 21, 2018 | 1:00–2:30 p.m. ET

Faculty need a variety of instructional technology support—instructional design, content development, technology, training, and assessment—to name a few. They don’t want to go to one place for help, find out they’re in the wrong place, and be sent somewhere else—digitally or physically. Staff don’t want to provide help in silos or duplicate what other units are doing.

So, how can academic service providers collaborate to offer the right instructional technology support services, in the right place, at the right time, in the right way? In this course, instructional technologists, instructional designers, librarians, and instructional technology staff will learn to use a tool called the Service Center Canvas that does just that.

Learning Objectives:

During this course, participants will:

  • Explore the factors that influence how instructional technology support services are offered in higher education
  • Answer critical questions about how your instructional technology support services should be delivered relative to broader trends and institutional goals
  • Experiment with ways to prototype new services and/or new ways of delivering them
  • Identify potential implementation obstacles and ways to address them

NOTE: Participants will be asked to complete assignments in between the course segments that support the learning objectives stated below and will receive feedback and constructive critique from course facilitators on how to improve and shape their work.

Course Facilitators

Elliot FelixElliot Felix, Founder and CEO, brightspot strategy

Felix founded and leads brightspot, a strategy consultancy that reimagines places, rethinks services, and redesigns organizations on university campuses so that people are better connected to a purpose, information, and each other. Felix is accomplished strategist, facilitator, and sense-maker who has helped transform over 70 colleges and universities.


 

Adam GriffAdam Griff, Director, brightspot strategy

Adam Griff is a director at brightspot. He helps universities rethink their space, reinvent their service offerings, and redesign their organization to improve the experiences of their faculty, students, and staff, connecting people and processes to create simple and intuitive answers to complex questions. He has led projects with a wide range of higher education institutions including University of Wisconsin–Madison, University of North Carolina at Chapel Hill, and University of California, Berkeley.

blockchain credentialing in higher ed

2 reasons why blockchain tech has big, tangible implications for higher ed

By Jami Morshed September 27th, 2017

What Is Blockchain?

blockchain is a database or digital ledger. The data in the ledger is arranged in batches known as blocks, with each block storing data about a specific transaction. The blocks are linked together using cryptographic validation to form an unbroken and unbreakable chain–hence the name blockchain. As it relates to bitcoin, the blocks are monetary units, and the chain includes information about all past transactions of that monetary unit.

Importantly, the database (i.e., the series of blocks) is duplicated thousands of times across a network of computers, meaning that it has no one central repository. This not only means that the records are truly public, but also that there is no centralized version of the data for a hacker to corrupt. In order to make changes to the ledger, consensus between all members of the group must be obtained, further adding to the system’s security.

1. Blockchain for the Future of Credentialing

With today’s technologies, graduates and prospective employers must go through a tedious process to obtain student transcripts or diplomas, and this complexity is compounded when these credentials are spread across multiple institutions. Not only that, but these transcripts can take days or weeks to produce and send, and usually require a small fee be paid to the institution.LinkedLinek

This could be a key enabler to facilitate student ownership of this data and would allow them to instantly produce secure and comprehensive credentials to any institute or employer requesting them, including information about a student’s performance on standardized tests, degree requirements, extracurricular activities, and other learning activities.

Blockchain could play a major role in Competency-Based Education (CBE) programs and micro-credentialing, which are becoming ever more popular across universities and internal business training programs.

various companies are currently working on such a system of record. One of the most well-known is called “BlockCert,” which is an open standard created by MIT Media Lab and which the institute hopes will help drive the adoption of blockchain credentialing.

imagine the role that LinkedIn or a similar platform could play in the distribution of such content. Beyond verification of university records, LinkedIn could become a platform for sharing verified work history and resumes as well, making the job application process far simpler

2. Blockchain’s Financial Implications and Student debt

how could blockchain influence student finances? For starters, financial aid and grants could be tied to student success. Instead of students and universities having to send over regular progress reports on a recipient’s performance, automatic updates to a student’s digital record would ensure that benchmarks were being met–and open up new opportunities for institutions looking to offer merit-based grants.

Electronic tuition payments and money transfers could also simplify the tuition process. This is an especially appealing option for international students, as bitcoin’s interchangeable nature and lack of special fees for international transfers makes it a simpler and more cost-effective payment method.

++++++++++++++++++++++++++++
more on credentialing in this IMS blog
https://blog.stcloudstate.edu/ims?s=credentialing

more on blockchain credentialing in this IMS blog
https://blog.stcloudstate.edu/ims/2016/10/03/blockchain-credentialing/

Maslow hierarchy for edtech

5 ways to apply Maslow’s Hierarchy of Needs to edtech for better outcomes

By Dave Saltmarsh September 26th, 2017
My Note: when stripped from the commercialized plug in for Apple, this article makes a good memorization exercise for pedagogues.

According to American psychologist Abraham Maslow, all humans have the same fundamental needs (food, clothing and shelter), and these needs must be met before an individual is motivated to look beyond these basic needs. This motivational theory is commonly referred to as Maslow’s hierarchy of needs.

  • Physiological (basic) needs: food, water, warmth, rest
  • Safety needs: security, safety
  • Love needs: intimate relationships, friends
  • Esteem needs: feeling of accomplishment
  • Self-actualization: achieving one’s full potential

Maslow’s hierarchy of needs can serve as an analogy for what is possible with instructionally-designed technology

1. Device Deployment = Basic Needs

Device deployment is the first basic need of any school looking to leverage education technology. If schools are unable to procure devices and if IT is unable to get these devices into the hands of students and educators, there is no moving forward.

2. Communication = Safety Needs

Beyond basic communications functions, apps must be made available and installed for an additional layer of connectivity. For example, learning management systems (LMS) enable communication beyond classroom walls and empower students with the learning resources they need while at home or in the community. However, how do we ensure access off-campus for those without ubiquitous internet connections

3. Productivity = Love Needs

Communication that encourages higher-level thinking and problem solving is where dramatic learning happens.

4. Transformation = Esteem and Self-Actualization Needs

IT and educators are pairing innovative teaching methods such as blended learning (a mix of technology and traditional learning) or flipped classrooms (teaching is done at home and exercises during class time) with education apps (productivity layer).

5. Let Mobile Device Management (MDM) Be Your Stepladder

+++++++++++++++++++++
more on digital literacy for EDAD in this IMS blog
https://blog.stcloudstate.edu/ims?s=digital+literacy+EDAD

measuring library outcomes and value

THE VALUE OF ACADEMIC LIBRARIES
A Comprehensive Research Review and Report. Megan Oakleaf

http://www.ala.org/acrl/sites/ala.org.acrl/files/content/issues/value/val_report.pdf

Librarians in universities, colleges, and community colleges can establish, assess, and link
academic library outcomes to institutional outcomes related to the following areas:
student enrollment, student retention and graduation rates, student success, student
achievement, student learning, student engagement, faculty research productivity,
faculty teaching, service, and overarching institutional quality.
Assessment management systems help higher education educators, including librarians, manage their outcomes, record and maintain data on each outcome, facilitate connections to
similar outcomes throughout an institution, and generate reports.
Assessment management systems are helpful for documenting progress toward
strategic/organizational goals, but their real strength lies in managing learning
outcomes assessments.
to determine the impact of library interactions on users, libraries can collect data on how individual users engage with library resources and services.
increase library impact on student enrollment.
p. 13-14improved student retention and graduation rates. High -impact practices include: first -year seminars and experiences, common intellectual experiences, learning communities, writing – intensive courses, collaborative assignments and projects, undergraduate research, Value of Academic Libraries diversity/global learning, service learning/community -based learning, internships, capstone courses and projects

p. 14

Libraries support students’ ability to do well in internships, secure job placements, earn salaries, gain acceptance to graduate/professional schools, and obtain marketable skills.
librarians can investigate correlations between student library interactions and their GPA well as conduct test item audits of major professional/educational tests to determine correlations between library services or resources and specific test items.
p. 15 Review course content, readings, reserves, and assignments.
Track and increase library contributions to faculty research productivity.
Continue to investigate library impact on faculty grant proposals and funding, a means of generating institutional income. Librarians contribute to faculty grant proposals in a number of ways.
Demonstrate and improve library support of faculty teaching.
p. 20 Internal Focus: ROI – lib value = perceived benefits / perceived costs
production of a commodity – value=quantity of commodity produced × price per unit of commodity
p. 21 External focus
a fourth definition of value focuses on library impact on users. It asks, “What is the library trying to achieve? How can librarians tell if they have made a difference?” In universities, colleges, and community colleges, libraries impact learning, teaching, research, and service. A main method for measuring impact is to “observe what the [users] are actually doing and what they are producing as a result”
A fifth definition of value is based on user perceptions of the library in relation to competing alternatives. A related definition is “desired value” or “what a [user] wants to have happen when interacting with a [library] and/or using a [library’s] product or service” (Flint, Woodruff and Fisher Gardial 2002) . Both “impact” and “competing alternatives” approaches to value require libraries to gain new understanding of their users’ goals as well as the results of their interactions with academic libraries.
p. 23 Increasingly, academic library value is linked to service, rather than products. Because information products are generally produced outside of libraries, library value is increasingly invested in service aspects and librarian expertise.
service delivery supported by librarian expertise is an important library value.
p. 25 methodology based only on literature? weak!
p. 26 review and analysis of the literature: language and literature are old (e.g. educational administrators vs ed leaders).
G government often sees higher education as unresponsive to these economic demands. Other stakeholder groups —students, pa rents, communities, employers, and graduate/professional schools —expect higher education to make impacts in ways that are not primarily financial.

p. 29

Because institutional missions vary (Keeling, et al. 2008, 86; Fraser, McClure and
Leahy 2002, 512), the methods by which academic libraries contribute value vary as
well. Consequently, each academic library must determine the unique ways in which they contribute to the mission of their institution and use that information to guide planning and decision making (Hernon and Altman, Assessing Service Quality 1998, 31) . For example, the University of Minnesota Libraries has rewritten their mission and vision to increase alignment with their overarching institution’s goals and emphasis on strategic engagement (Lougee 2009, allow institutional missions to guide library assessment
Assessment vs. Research
In community colleges, colleges, and universities, assessment is about defining the
purpose of higher education and determining the nature of quality (Astin 1987)
.
Academic libraries serve a number of purposes, often to the point of being
overextended.
Assessment “strives to know…what is” and then uses that information to change the
status quo (Keeling, et al. 2008, 28); in contrast, research is designed to test
hypotheses. Assessment focuses on observations of change; research is concerned with the degree of correlation or causation among variables (Keeling, et al. 2008, 35) . Assessment “virtually always occurs in a political context ,” while research attempts to be apolitical” (Upcraft and Schuh 2002, 19) .
 p. 31 Assessment seeks to document observations, but research seeks to prove or disprove ideas. Assessors have to complete assessment projects, even when there are significant design flaws (e.g., resource limitations, time limitations, organizational contexts, design limitations, or political contexts); whereas researchers can start over (Upcraft and Schuh 2002, 19) . Assessors cannot always attain “perfect” studies, but must make do with “good enough” (Upcraft and Schuh 2002, 18) . Of course, assessments should be well planned, be based on clear outcomes (Gorman 2009, 9- 10) , and use appropriate methods (Keeling, et al. 2008, 39) ; but they “must be comfortable with saying ‘after’ as well as ‘as a result of’…experiences” (Ke eling, et al. 2008, 35) .
Two multiple measure approaches are most significant for library assessment: 1) triangulation “where multiple methods are used to find areas of convergence of data from different methods with an aim of overcoming the biases or limitations of data gathered from any one particular method” (Keeling, et al. 2008, 53) and 2) complementary mixed methods , which “seek to use data from multiple methods to build upon each other by clarifying, enhancing, or illuminating findings between or among methods” (Keeling, et al. 2008, 53) .
p. 34 Academic libraries can help higher education institutions retain and graduate students, a keystone part of institutional missions (Mezick 2007, 561) , but the challenge lies in determining how libraries can contribute and then document their contribution
p. 35. Student Engagement:  In recent years, academic libraries have been transformed to provide “technology and content ubiquity” as well as individualized support
My Note: I read the “technology and content ubiquity” as digital literacy / metaliteracies, where basic technology instructional sessions (everything that IMS offers for years) is included, but this library still clenches to information literacy only.
National Survey of Student Engagement (NSSE) http://nsse.indiana.edu/
http://nsse.indiana.edu/2017_Institutional_Report/pdf/NSSE17%20Snapshot%20%28NSSEville%20State%29.pdf
p. 37 Student Learning
In the past, academic libraries functioned primarily as information repositories; now they are becoming learning enterprises (Bennett 2009, 194) . This shift requires academic librarians to embed library services and resources in the teaching and learning activities of their institutions (Lewis 2007) . In the new paradigm, librarians focus on information skills, not information access (Bundy 2004, 3); they think like educators, not service providers (Bennett 2009, 194) .
p. 38. For librarians, the main content area of student learning is information literacy; however, they are not alone in their interest in student inform ation literacy skills (Oakleaf, Are They Learning? 2011).
My note: Yep. it was. 20 years ago. Metaliteracies is now.
p. 41 surrogates for student learning in Table 3.
p. 42 strategic planning for learning:
According to Kantor, the university library “exists to benefit the students of the educational institution as individuals ” (Library as an Information Utility 1976 , 101) . In contrast, academic libraries tend to assess learning outcomes using groups of students
p. 45 Assessment Management Systems
Tk20
Each assessment management system has a slightly different set of capabilities. Some guide outcomes creation, some develop rubrics, some score student work, or support student portfolios. All manage, maintain, and report assessment data
p. 46 faculty teaching
However, as online collections grow and discovery tools evolve, that role has become less critical (Schonfeld and Housewright 2010; Housewright and Schonfeld, Ithaka’s 2006 Studies of Key Stakeholders 2008, 256) . Now, libraries serve as research consultants, project managers, technical support professionals, purchasers , and archivists (Housewright, Themes of Change 2009, 256; Case 2008) .
Librarians can count citations of faculty publications (Dominguez 2005)
.

+++++++++++++

Tenopir, C. (2012). Beyond usage: measuring library outcomes and value. Library Management33(1/2), 5-13.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dllf%26AN%3d70921798%26site%3dehost-live%26scope%3dsite

methods that can be used to measure the value of library products and services. (Oakleaf, 2010; Tenopir and King, 2007): three main categories

  1. Implicit value. Measuring usage through downloads or usage logs provide an implicit measure of value. It is assumed that because libraries are used, they are of value to the users. Usage of e-resources is relatively easy to measure on an ongoing basis and is especially useful in collection development decisions and comparison of specific journal titles or use across subject disciplines.

do not show purpose, satisfaction, or outcomes of use (or whether what is downloaded is actually read).

  1. Explicit methods of measuring value include qualitative interview techniques that ask faculty members, students, or others specifically about the value or outcomes attributed to their use of the library collections or services and surveys or interviews that focus on a specific (critical) incident of use.
  2. Derived values, such as Return on Investment (ROI), use multiple types of data collected on both the returns (benefits) and the library and user costs (investment) to explain value in monetary terms.

++++++++++++++++++
more on ROI in this IMS blog
https://blog.stcloudstate.edu/ims/2014/11/02/roi-of-social-media/

reimaging first year college experience

Welcome to the Re-Imagining the First Year of College Project George L. Mehaffy
Vice President for Academic Leadership and Change
http://www.aascu.org/RFY/MehaffySpeech.pdf
undertake innovations simultaneously in 4 “buckets”—1. Institutional Intentionality, 2. Curriculum, 3. Faculty and Staff, and 4. Students.

some examples of innovations in each area:

• Institutional Intentionality

* Administrative structures

* Budgeting

*Data and Data Analytics: Predictive analytics, use of data in scheduling and advising, etc.

* Collaborative, not individual. Creating opportunities for crowdsourcing, collective projects, etc.

* Creating a supporting environment for innovation * Building a culture of obligation

 

• Curriculum

* Personalization. Software that takes each student on a different journey

* Course Re-Design: Blended courses such as the ones we are working on. Interdisciplinary courses, gateway courses, etc.

* Pathways: Reduced choice, math alternatives, First Year Seminar, Orientation, Summer Bridge

* Degree maps

 

• Faculty/Staff:

* Incentives for teaching in the first year

* Research about first year outcomes

* Collaboration between academic affairs and student affairs

 

• Students

* Non-Cognitive Factors: belonging, mindset, etc.

* Advising: Professional, linked to data, intrusive, etc.

* Career Focus: purpose, ethnography of work, early field experiences

* Reduction in choices

++++++++++++++++++
more on first year college experience in this IMS blog
https://blog.stcloudstate.edu/ims?s=first+year

cognitive load theory

Cognitive load theory: Research that teachers really need to understand
AUGUST 2017 Centre for Education Statistics and Evaluation
https://www.cese.nsw.gov.au/images/stories/PDF/cognitive_load_theory_report_AA1.pdf
Cognitive load theory is built upon two commonly accepted ideas. The first is that there is a limit to how much new information the human brain can process at one time. The second is that there are no known limits to how much stored information can be processed at one time. The aim of cognitive load research is therefore to develop instructional techniques and recommendations that fit within the characteristics of working memory, in order to maximise learning.
Explicit instruction involves teachers clearly showing students what to do and how to do it, rather than having students discover or construct information for themselves
how working memory and long-term memory process and store information
Working memory is the memory system where small amounts of information are stored for a very short duration (RAM). Long-term memory is the memory system where large amounts of information are stored semi-permanently (hard drive)
Cognitive load theory assumes that knowledge is stored in long- term memory in the form of ‘schemas’ 2 . A schema organises elements of information according to how they will be used. According to schema theory, skilled performance is developed through building ever greater numbers of increasingly complex schemas by combining elements of lower level schemas into higher level schemas. There is no limit to how complex schemas can become. An important process in schema construction is automation, whereby information can be processed automatically with minimal conscious effort. Automaticity occurs after extensive practice
Schemas provide a number of important functions that are relevant to learning. First, they provide a system for organising and storing knowledge. Second, and crucially for cognitive load theory, they reduce working memory load. This is because, although there are a limited number of elements that can be held in working memory at one time, a schema constitutes only a single element in working memory. In this way, a high level schema – with potentially infinite informational complexity – can effectively bypass the limits of working memory

Types of cognitive load

Cognitive load theory identifies three different types of cognitive load: intrinsic, extraneous and germane load
Intrinsic cognitive load relates to the inherent difficulty of the subject matter being learnt.

subject matter that is difficult for a novice may be very easy for an expert.
Extraneous cognitive load relates to how the subject matter is taught.
extraneous load is the ‘bad’ type of cognitive load, because it does not directly contribute to learning. Cognitive load theorists consider that instructional design will be most effective when it minimises extraneous load in order to free up the capacity of working memory
Germane cognitive load refers to the load imposed on the working memory by the process of learning – that is, the process of transferring information into the long-term memory through schema construction
the approach of decreasing extraneous cognitive load while increasing germane cognitive load will only be effective if the total cognitive load remains within the limits of working memory
Explicit teaching

+++++++++++++
more on educational theories in this IMS blog
https://blog.stcloudstate.edu/ims?s=educational+theories

NMC Horizon Report 2017 K12

NMC/CoSN Horizon Report 2017 K–12 Edition

https://cdn.nmc.org/wp-content/uploads/2017-nmc-cosn-horizon-report-K12-advance.pdf
p. 16 Growing Focus on Measuring Learning
p. 18 Redesigning Learning Spaces
Biophilic Design for Schools : The innate tendency in human beings to focus on life and lifelike processes is biophilia

p. 20 Coding as a Literacy

 https://www.facebook.com/bracekids/
Best Coding Tools for High School http://go.nmc.org/bestco

p. 24

Significant Challenges Impeding Technology Adoption in K–12 Education
Improving Digital Literacy.
 Schools are charged with developing students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online etiquette and digital rights and responsibilities in blended and online learning settings. Due to the multitude of elements comprising digital literacy, it is a challenge for schools to implement a comprehensive and cohesive approach to embedding it in curricula.
Rethinking the Roles of Teachers.
Pre-service teacher training programs are also challenged to equip educators with digital and social–emotional competencies, such as the ability to analyze and use student data, amid other professional requirements to ensure classroom readiness.
p. 28 Improving Digital Literacy
Digital literacy spans across subjects and grades, taking a school-wide effort to embed it in curricula. This can ensure that students are empowered to adapt in a quickly changing world
Education Overview: Digital Literacy Has to Encompass More Than Social Use

What Web Literacy Skills are Missing from Learning Standards? Are current learning standards addressing the essential web literacy skills everyone should know?https://medium.com/read-write-participate/what-essential-web-skills-are-missing-from-current-learning-standards-66e1b6e99c72

 

web literacy;
alignment of stadards

The American Library Association (ALA) defines digital literacy as “the ability to use information and communication technologies to find, evaluate, create, and communicate or share information, requiring both cognitive and technical skills.” While the ALA’s definition does align to some of the skills in “Participate”, it does not specifically mention the skills related to the “Open Practice.”

The library community’s digital and information literacy standards do not specifically include the coding, revision and remixing of digital content as skills required for creating digital information. Most digital content created for the web is “dynamic,” rather than fixed, and coding and remixing skills are needed to create new content and refresh or repurpose existing content. Leaving out these critical skills ignores the fact that library professionals need to be able to build and contribute online content to the ever-changing Internet.

p. 30 Rethinking the Roles of Teachers

Teachers implementing new games and software learn alongside students, which requires
a degree of risk on the teacher’s part as they try new methods and learn what works
p. 32 Teaching Computational Thinking
p. 36 Sustaining Innovation through Leadership Changes
shift the role of teachers from depositors of knowledge to mentors working alongside students;
p. 38  Important Developments in Educational Technology for K–12 Education
Consumer technologies are tools created for recreational and professional purposes and were not designed, at least initially, for educational use — though they may serve well as learning aids and be quite adaptable for use in schools.
Drones > Real-Time Communication Tools > Robotics > Wearable Technology
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching and learning, whether inside or outside the classroom.
> Games and Gamification > Location Intelligence > Makerspaces > Preservation and Conservation Technologies
Enabling technologies are those technologies that have the potential to transform what we expect of our devices and tools. The link to learning in this category is less easy to make, but this group of technologies is where substantive technological innovation begins to be visible. Enabling technologies expand the reach of our tools, making them more capable and useful
Affective Computing > Analytics Technologies > Artificial Intelligence > Dynamic Spectrum and TV White Spaces > Electrovibration > Flexible Displays > Mesh Networks > Mobile Broadband > Natural User Interfaces > Near Field Communication > Next Generation Batteries > Open Hardware > Software-Defined Networking > Speech-to-Speech Translation > Virtual Assistants > Wireless Powe
Internet technologies include techniques and essential infrastructure that help to make the technologies underlying how we interact with the network more transparent, less obtrusive, and easier to use.
Bibliometrics and Citation Technologies > Blockchain > Digital Scholarship Technologies > Internet of Things > Syndication Tools
Learning technologies include both tools and resources developed expressly for the education sector, as well as pathways of development that may include tools adapted from other purposes that are matched with strategies to make them useful for learning.
Adaptive Learning Technologies > Microlearning Technologies > Mobile Learning > Online Learning > Virtual and Remote Laboratories
Social media technologies could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category.
Crowdsourcing > Online Identity > Social Networks > Virtual Worlds
Visualization technologies run the gamut from simple infographics to complex forms of visual data analysis
3D Printing > GIS/Mapping > Information Visualization > Mixed Reality > Virtual Reality
p. 46 Virtual Reality
p. 48 AI
p. 50 IoT

+++++++++++++++
more on NMC Horizon Reports in this IMS blog

https://blog.stcloudstate.edu/ims?s=new+media+horizon

1 2 3 4 5 9

Skip to toolbar