Searching for "gaming"

age for the first smart phone

https://www.kqed.org/mindshift/49742/deciding-at-what-age-to-give-a-kid-a-smartphone

Nov 21, 2017, Claire McInerny

We hear that smartphones can be addictive, that screen time can hurt learning, but can’t these minicomputers also teach kids about responsibility and put educational apps at their tiny fingertips?

safety

Common Sense Media, a nonprofit focused on kids and technology, says rather than considering the age of a child, focus on maturity. Some questions to consider are:

  • Are they responsible with their belongings?
  • Will they follow rules around phone use?
  • Would having easy access to friends benefit them for social reasons?
  • And do kids need to be in touch for safety reasons? If so, will an old-fashioned flip phone (like the one Sydney never charged) do the trick?

+++++++++++++++++

https://www.digitaltrends.com/mobile/right-age-for-smartphone-child/ 2016

While Pew Research from 2015 puts adult smartphone ownership in the U.S. at 72 percent, there’s some debate about smartphone ownership among children. The average age for a child to get their first smartphone is currently 10.3 years according to the recent Influence Central report, Kids & Tech: The Evolution of Today’s Digital Natives.

An average of 65 percent of children aged between 8 and 11 have their own smartphone in the U.K. according to a survey by Internet Matters. That survey also found that the majority of parents would like a minimum age for smartphone ownership in the U.K. to be set at age 10.

However, some kids are using smartphones from a very young age. One study by the American Academy of Pediatrics that focused on children in an urban, low-income, minority community suggested that almost all children (96.6 percent) use mobile devices and that 75 percent have their own mobile device by the age of four.

+++++++++++++
peer reviewed

Lauricella, A., Wartella, E., & Rideout, V. (2015). Young children’s screen time: The complex role of parent and child factors. Journal of Applied Developmental Psychology36, 11–17. https://doi.org/10.1016/j.appdev.2014.12.001

Wood, E., Petkovski, M., De Pasquale, D., Gottardo, A., Evans, M., & Savage, R. (2016). Parent Scaffolding of Young Children When Engaged with Mobile Technology. Frontiers in Psychology. Retrieved from http://discovery.ucl.ac.uk/10024286/1/Wood_Parent_Scaffolding_Young_Children.pdf

Rikuya Hosokawa, & Toshiki Katsura. (2018). Association between mobile technology use and child adjustment in early elementary school age. PLoS ONE, 13(7), e0199959. https://doi.org/10.1371/journal.pone.0199959

Percentage of moms whose children used device by age 2.(THE DATA PAGE)(Statistical data). (2011). Editor & Publisher, 144(10).

PERCENTAGE OF MOMS WHOSE CHILDREN USED DEVICE BY AGE 2

                          Gen Y moms   Gen X moms

Laptop                        34%          29%
Cell Phone                    34%          26%
Smart Phone                   33%          20%
Digital Camera                30%          18%
iPod                          34%          13%
Videogame System              13%           8%
Hand-held gaming device       13%          10%

Source: Frank N. Magid & Associates, Inc./Metacafe

E moms blogher and parenting 8 2, jkc from Elisa Camahort Page

 

+++++++++++++++++
more about the use of mobile devices in the classroom in this IMS blog entry
http://blog.stcloudstate.edu/ims/2017/04/03/use-of-laptops-in-the-classroom/

2019 Educause Horizon Report

2019 Horizon Report

Tuesday, April 23, 2019 https://library.educause.edu/resources/2019/4/2019-horizon-report

https://library.educause.edu/-/media/files/library/2019/4/2019horizonreport.pdf

p. 8 Modularized and Disaggregated Degrees

Only 2% of institutions have deployed digital microcredentials (including badging) institution-wide, but 29% are expanding or planning their use. —EDUCAUSE Strategic Technologies, 2019

p. 15 Increasing Demand for Digital Learning Experience and Instructional Design Expertise

A driving factor for mobile learning is the ownership of mobile devices, particularly the smartphone. In 2018, the Pew Research Center reported that 59% of adults globally own a smartphone, and research from the EDUCAUSE Center for Analysis and Research indicated that 95% of undergraduate students own smartphones. As mobile device ownership and usage have increased, mobile learning is no longer just focused on asynchronous interaction, content creation, and reference. More emphasis is emerging on content that is responsive instead of adaptive and on creating microlearning experiences that can sync across multiple devices and give learners the flexibility to learn on the device of their choice

p. 25 Mixed Reality

p. 36 Fail or Scale: AR and MR –
In 2016, the Horizon Expert Panel determined that augmented reality and virtual reality were two to three years from widespread adoption. By 2018, the notion of mixed reality was, at four to five years from adoption, even further out.

p. 38 Bryan Alexander: Gaming and Gamification (Fail or Scale)

++++++++++++++
more on the Horizon reports in this IMS blog
http://blog.stcloudstate.edu/ims?s=horizon+report

games by game theory

<blockquote class=”twitter-tweet” data-lang=”en”><p lang=”en” dir=”ltr”>Most important games from game theory:<br>5. Centipede<br>4. Chicken<br>3. Prisoners dilemma <br>2. Battle of the sexes<br>1. Ultimatum</p>&mdash; oliver beige (@oliverbeige) <a href=”https://twitter.com/oliverbeige/status/1120039217059516416?ref_src=twsrc%5Etfw”>April 21, 2019</a></blockquote>
<script async src=”https://platform.twitter.com/widgets.js&#8221; charset=”utf-8″></script>

+++++++++++++
more on games in this IMS blog
http://blog.stcloudstate.edu/ims?s=gaming

Device Implementation at K12

Fact or Myth?
Device Implementation Is Possible Without the Headache!
Presented by the Classcraft Learning Team

Eric Davis & Kinshasa Marshall @classcraftgame eric@classcraft.com kinshasa@classcraft.com

https://www.edweb.net/.5b97fbb8/   Gaming 03-28-19 Slides1-1qgto1x

! Tasks with motivational gamified mechanics → improvement in 21st-century learning skills, technical competencies,
independence, and personal accountability for devices and their readiness
! Student-led, independent, and sophisticated use of devices increased roughly 100%
! “Gamification as a motivational tool and platform for online delivery of learning activities and resources is a critical element of
integrating technology into schools”
! Students placed a greater value on their devices being present and ready to use in order to enjoy gamified content
! The use of gamification capitalized on the curiosity aspect being at the center of intrinsic motivation — encouraging students to
explore what their devices can do for them in general and what they are capable of given the task, some direction, and a
prospective reUward

Planning, care FOR and ABOUT the device

GBL XR DS for IM 554

Course title: IM 554 Developing Skills for Online Teaching and Learning

Topic for this week: Game-based learning, Virtual Reliability, and Augmented Reality
Audience: IM Graduate students working for K12 schools or in business

March 28, Adobe Connect. http://scsuconnect.stcloudstate.edu/im554_park/

Events worth mentioning (pls share if you would like to discuss details):

1. Where are we now compared to:

2018: https://blog.stcloudstate.edu/ims/2018/03/27/im-554-discussion-on-gbl-2018/

2017: http://blog.stcloudstate.edu/ims/2017/02/22/im554-discussion-gbl/

2. How did GBL change in the past year? Who is the leader in this research (country)? Is K12 the “playground” for GBL and DGBL?

China: Liao, C., Chen, C., & Shih, S. (2019). The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Computers & Education133, 43–55. https://doi.org/10.1016/j.compedu.2019.01.013

Finalnd: Brezovszky, B., Mcmullen, J., Veermans, K., Hannula-Sormunen, M., Rodríguez-Aflecht, G., Pongsakdi, N., … Lehtinen, E. (2019). Effects of a mathematics game-based learning environment on primary school students’ adaptive number knowledge. Computers & Education128, 63–74. https://doi.org/10.1016/j.compedu.2018.09.011

Tunesia: Denden, M., Tlili, A., Essalmi, F., & Jemni, M. (2018). Implicit modeling of learners’ personalities in a game-based learning environment using their gaming behaviors. Smart Learning Environments5(1), 1–19. https://doi.org/10.1186/s40561-018-0078-6

Pitarch, R. (2018). An Approach to Digital Game-based Learning: Video-games Principles and Applications in Foreign Language Learning. Journal of Language Teaching and Research9(6), 1147–1159. https://doi.org/10.17507/jltr.0906.04

3. DGBL vs Serous Games vs Gamification

4. BYOx. Still timely?

5. XR and its relation to ID (instructional design) and the gamification of education:
http://blog.stcloudstate.edu/ims/2018/10/16/eli-2018-key-issues-teaching-learning/

#7 is ID, #13 is emerging technologies.

What is VR, AR, MR. Immersive learning?
examples from SCSU:
https://web.stcloudstate.edu/pmiltenoff/bi/

Examples from other universities as presented at Nercomp 2019 workshop:

https://zoom.us/recording/share/YtDl7AA3Te_whtCnZZdv93EiNZbljU7yyzl7ibOEam-wIumekTziMw?startTime=1552927676000

min 29 from start: University of Connecticut (chapter 1)
min 58 from start: Dan Getz with Penn State (chapter 2)
hour 27 min from start: Randy Rode, Yale (chapter 3)

++++++++++++
last year plan for IM 554 https://blog.stcloudstate.edu/ims/2018/03/27/im-554-discussion-on-gbl-2018/

Literature on Digital Humanities

Burdick, A. (2012). Digital humanities . Cambridge, MA: MIT Press.

https://mnpals-scs.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma990078472690104318&context=L&vid=01MNPALS_SCS:SCS&search_scope=MyInst_and_CI&tab=Everything&lang=en

digital humanities is born f the encounter between traditional humanities and computational methods.

p. 5. From Humanism to Humanities
While the foundations of of humanistic inquiry and the liberal arts can be traced back in the west to the medieval trivium and quadrivium, the modern and human sciences are rooted in the Renaissance shift from a medieval, church dominated, theocratic world view to be human centered one period the gradual transformation of early humanism into the disciplines that make up the humanities today Was profoundly shaped by the editorial practices involved in the recovery of the corpus of works from classical antiquity

P. 6. The shift from humanism to the institution only sanctioned disciplinary practices and protocols that we associate with the humanities today is best described as a gradual process of subdivision and specialization.
P. 7. Text-based disciplines in studies (classics, literature, philosophy, the history of ideas) make up, from the very start, the core of both the humanities and the great books curricular instituted in the 1920s and 1930s.
P. 10. Transmedia modes of argumentation
In the 21st-century, we communicate in media significantly more varied, extensible, and multiplicative then linear text. From scalable databases to information visualizations, from video lectures to multi-user virtual platforms serious content and rigorous argumentation take shape across multiple platforms in media. The best digital humanities pedagogy and research projects train students both in “reading “and “writing “this emergent rhetoric and in understanding how the reshape and three model humanistic knowledge. This means developing critically informed literacy expensive enough to include graphic design visual narrative time based media, and the development of interfaces (Rather then the rote acceptance of them as off-the-shelf products).
P. 11. The visual becomes ever more fundamental to the digital humanities, in ways that compliment, enhance, and sometimes are in pension with the textual.
There is no either/or, no simple interchangeability between language and the visual, no strict sub ordination of the one to the other. Words are themselves visual but other kinds of visual constructs do different things. The question is how to use each to its best effect into device meaningful interpret wing links, to use Theodor Nelson’s ludic neologism.
P. 11. The suite of expressive forms now encompasses the use of sound, motion graphics, animation, screen capture, video, audio, and the appropriation and into remix sink of code it underlines game engines. This expanded range of communicative tools requires those who are engaged in digital humanities world to familiarize themselves with issues, discussions, and debates in design fields, especially communication and interaction design. Like their print predecessors, form at the convention center screen environments can become naturalized all too quickly, with the results that the thinking that informed they were designed goes unperceived.

p. 13.

For digital humanists, design is a creative practice harnessing cultural, social, economic, and technological constraints in order to bring systems and objects into the world. Design in dialogue with research is simply a picnic, but when used to pose in frame questions about knowledge, design becomes an intellectual method. Digital humanities is a production based in Denver in which theoretical issues get tested in the design of implementations and implementations or loci after your radical reflection and elaboration.
Did you thaw humanists have much to learn from communication and media design about how to juxtapose and integrate words and images create hire he is of reading, Forge pathways of understanding, deployed grades in templates to best effect, and develop navigational schemata that guide in produce meaningful interactions.
P. 15.  The field of digital digital humanities me see the emergence of polymaths who can “ do it all” : Who can research, write, shoot, edit, code, model, design, network, and dialogue with users. But there is also ample room for specialization and, particularly, for collaboration.
P. 16. Computational activities in digital humanities.
The foundational layer, computation, relies on principles that are, on the surface, at odds with humanistic methods.
P. 17. The second level involves processing in a way that conform to computational capacities, and this were explored in the first generation of digital scholarship and stylometrics, concordance development, and indexing.
P. 17.
Duration, analysis, editing, modeling.
Duration, analysis, editing, and modeling comprise fundamental activities at the core of digital humanities. Involving archives, collections, repositories, and other aggregations of materials, duration is the selection and organization of materials in an interpretive framework, argument, or exhibit.
P. 18. Analysis refers to the processing of text or data: statistical and quantitative methods of analysis have brought close readings of texts (stylometrics and genre analysis, correlation, comparisons of versions for alter attribution or usage patterns ) into dialogue with distant reading (The crunching cuff large quantities of information across the corpus of textual data or its metadata).
Edit think has been revived with the advent of digital media and the web and to continue to be an integral activity in textual as well as time based formats.
P. 18. Model link highlights the notion of content models- shapes of argument expressed in information structures in their design he digital project is always an expression of assumptions about knowledge: usually domain specific knowledge given an explicit form by the model in which it is designed.
P. 19.  Each of these areas of activity- cure ration, analysis, editing, and modeling is supported by the basic building blocks of digital activity. But they also depend upon networks and infrastructure that are cultural and institutional as well as technical. Servers, software, and systems administration are key elements of any project design.
P. 30. Digital media are not more “evolved” have them print media nor are books obsolete; but the multiplicity of media in the very processes of mediation entry mediation in the formation of cultural knowledge and humanistic inquiry required close attention. Tug link between distant and clothes, macro and micro, and surface in depth becomes the norm. Here, we focus on the importance of visualization to the digital humanities before moving on to other, though often related, genre and methods such as Locative investigation, thick mapping, animated archives, database documentaries, platform studies, and emerging practices like cultural analytics, data mining and humanities gaming.
P. 35. Fluid texture out what he refers to the mutability of texts in the variants and versions Whether these are produced through Authorial changes, anything, transcription, translation, or print production

Cultural Analytics, aggregation, and data mining.
The field of cultural Analytics has emerged over the past few years, utilizing tools of high-end computational analysis and data visualization today sect large-scale coach data sets. Cultural Analytic does Not analyze cultural artifacts, but operates on the level of digital models of this materials in aggregate. Again, the point is not to pit “close” hermeneutic reading against “distant” data mapping, but rather to appreciate the synergistic possibilities and tensions that exist between a hyper localized, deep analysis and a microcosmic view

p. 42.

Data mining is a term that covers a host of picnics for analyzing digital material by “parameterizing” some feature of information and extract in it. This means that any element of a file or collection of files that can be given explicit specifications,  or parameters, can be extracted from those files for analysis.
Understanding the rehtoric of graphics is another essential skill, therefore, in working at a skill where individual objects are lost in the mass of processed information and data. To date, much humanities data mining has merely involved counting. Much more sophisticated statistical methods and use of probability will be needed for humanists to absorb the lessons of the social sciences into their methods
P. 42. Visualization and data design
Currently, visualization in the humanities uses techniques drawn largely from the social sciences, Business applications, and the natural sciences, all of which require self-conscious criticality in their adoption. Such visual displays including graphs and charts, may present themselves is subjective or even unmediated views of reality, rather then is rhetorical constructs.

+++++++++++++++++++++++++++
Warwick, C., Terras, M., & Nyhan, J. (2012). Digital humanities in practice . London: Facet Publishing in association with UCL Centre for Digital Humanities.

https://mnpals-scs.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma990078423690104318&context=L&vid=01MNPALS_SCS:SCS&search_scope=MyInst_and_CI&tab=Everything&lang=en

 

game based learning

How Game-Based Learning Empowers Students for the Future

https://www.edsurge.com/news/2019-01-22-its-2019-so-why-do-21st-century-skills-still-matter

educators’ guide to game-based learning, packed with resources for gaming gurus and greenhorns alike.

How are schools and districts preparing students for future opportunities? What is the impact of game-based learning?

It’s 2019. So Why Do 21st-Century Skills Still Matter?

By Suzie Boss     Jan 22, 2019

21st-century trends such as makerspaces, flipped learning, genius hour, gamification, and more.

EdLeader21, a national network of Battelle for Kids.has developed a toolkit to guide districts and independent schools in developing their own “portrait of a graduate” as a visioning exercise. In some communities, global citizenship rises to the top of the wish list of desired outcomes. Others emphasize entrepreneurship, civic engagement, or traits like persistence or self-management.

ISTE Standards for Students highlight digital citizenship and computational thinking as key skills that will enable students to thrive as empowered learners. The U.S. Department of Education describes a globally competent student as one who can investigate the world, weigh perspectives, communicate effectively with diverse audiences, and take action.

Frameworks provide mental models, but “don’t usually help educators know what to do differently,” argues technology leadership expert Scott McLeod in his latest book, Harnessing Technology for Deeper Learning. He and co-author Julie Graber outline deliberate shifts that help teachers redesign traditional lessons to emphasize goals such as critical thinking, authenticity, and conceptual understanding.

1. Wondering how to teach and assess 21st-century competencies? The Buck Institute for Education offers a wide range of resources, including the book, PBL for 21st Century Success: Teaching Critical Thinking, Collaboration, Communication, and Creativity (Boss, 2013), and downloadable rubrics for each of the 4Cs.

2. For more strategies about harnessing technology for deeper learning,listen to the EdSurge podcast featuring edtech expert and author Scott McLeod.

3. Eager to see 21st-century learning in action? Getting Smart offers suggestions for using school visits as a springboard for professional learning, including a list of recommended sites. Bob Pearlman, a leader in 21st century learning, offers more recommendations.

++++++++++++++
more on game- based learning in this IMS blog
http://blog.stcloudstate.edu/ims?s=game+based

Serious Play Conference

Bryan Alexander’s Future Trends Forum with Guest Sue Bohle, Serious Play Conference

An interactive discussion on gaming in education
January 17, 2 – 3 PM (EST)

Sue Bohle, Executive Director, Producer, Serious Play Conference, for a lively discussion on gaming in education.

Sue is a leader in the space and has seen tremendous growth and potential of serious games in corporate training and eLearning. The interview has been edited for clarity and length.

++++++++
notes from the webinar:
i had issues connecting and the streams of the guest speaker (Sue) and Bryan will stall when each of them were talking.

examples for formally learning through games

I’d love to hear Sue chat about: Students as game authors, what do you do to encourage reflection on game events?

Dan LaSota:
Is there any intersection between “Minds on Fire” from Mark Carnes, https://reacting.barnard.edu and your conference?
Dan LaSota
To me “simulation” means some scenario that can be rapidly run again and again, with the user/player tweaking variables and seeing what happens. If it’s “fun” there is more of an intersection with games. If not so fun, it might be considered by most more of a model. Computers can and do help with the iteration process because they can reset to T=0 much quicker than human players. Although “role play” is also a kind of simulation.
Facebook group the Tribe:
Minecraft in education.
John Gould with Drexel: he is going now after the school boards about games in education
Noreen Barajas Horizon Project Director, Educause
AI book integrated in junior high Seattle Michelle Zimmerman, article in Forbes,
Keven Diel Lockhead expert on AI, military
gaming as a way to bypassing the metacognitive (thinking about thinking). Without teaching about learning. Number of libraries Nebraska State: games are developed by libraries.
Tobee Soultie gaming industry. National Intelligence Agency for first response and refurbished for teachers and bullying.
SueBohle@gmail.com

++++++
more on Future Trends in this IMS blog
http://blog.stcloudstate.edu/ims?s=future+trends

Hololens in academic library

Blurred Lines—between virtual reality games, research, and education

http://library.ifla.org/2133/

p. 5 a LibGuide was created that provided a better description of the available software for both the Microsoft Hololens and the HTC Vive and also discussed potential applications for the technology.

Both the HTC Vive and the Hololens were made bookable through the library’s LibCalendar booking system, streamlining the booking process and creating a better user experience.

When the decision was made to bring virtual and augmented reality into the McGill University Library, an important aspect of this project was to develop a collection of related software to be used alongside the technology. In building this software collection a priority was placed on acquiring software that could be demonstrated as having educational value, or that could potentially be used in relation to, or in support of, university courses.

For the Microsoft Hololens, all software was acquired through Microsoft’s Online Store. The store has a number of educationally relevant HoloLens apps available for purchase. The app ARchitect, for example, gives a basic sense of how augmented reality could be used for viewing new building designs. The app Robotics BIW allows user to simulate robotic functions. A select number of apps, such as Land of the Dinosaurs and Boulevard, provide applications for natural history and art. There were a select number of apps related to science, mathematics and medicine, and others with artistic applications. All of the HoloLens applications were free but, compared to what is available for virtual reality, the experiences were much smaller in size and scope.

For the HoloLens, a generic user account was created and shared with person who booked the HoloLens at the time of their booking. After logging into this account – which could sometimes prove to be a challenge because typing is done using the headset’s gesture controls – the user could select a floating tile which would reveal a list of available software. An unresolved problem was that users would then need to refer to the HoloLens LibGuide for a detailed description of the software, or else choose software based on name alone, and the names were not always helpful.

For the Microsoft HoloLens, the three most popular software programs were Land of the Dinosaurs, Palmyra and Insight Heart. Insight Heart allow users to view and manipulate a 3D rendering of a high-resolution human heart, Land of the Dinosaurs provided an augment reality experience featuring 3D renderings of dinosaurs, and Palmyra gave an augmented reality tour of the ancient city of Palmyra.

p. 7 Though many students had ideas for research projects that could make use of the technology, there was no available software that would have allowed them to use augmented reality in the way they wanted. There were no students interested in developing their own software to be used with the technology either.

p. 8 we found that the Microsoft HoloLens received significant use from our patrons, we would recommend the purchase of one only for libraries serving researchers and developers.

++++++++++++

Getting Real in the Library: A Case Study at the University of Florida

Samuel R. Putnam and Sara Russell GonzalezIssue 39, 2018-02-05

Getting Real in the Library: A Case Study at the University of Florida

As an alternative, Microsoft offers a Hololens with enterprise options geared toward multiple users for $5000.

The transition from mobile app development to VR/AR technology also reflected the increased investment in VR/AR by some of the largest technology companies in the world. In the past four years, Facebook purchased the virtual reality company Oculus, Apple released the ARKit for developing augmented reality applications on iOS devices, Google developed Google Cardboard as an affordable VR option, and Sony released Playstation VR to accompany their gaming platform, just to name a few notable examples. This increase of VR/AR development was mirrored by a rise in student interest and faculty research in using and creating new VR/AR content at UF.

+++++++++++

Arnhem, J.-P. van, Elliott, C., & Rose, M. (2018). Augmented and Virtual Reality in Libraries. Rowman & Littlefield.
https://books.google.com/books?id=PslaDwAAQBAJ&lpg=PA205&ots=HT7qTY-16o&dq=hololens%20academic%20library&lr&pg=PA214#v=onepage&q=hololens%20academic%20library&f=false
360 degree video in library instruction
+++++++++++++++
Hammady, R., & Ma, M. (2018). Designing Spatial UI as a Solution of the Narrow FOV of Microsoft HoloLens: Prototype of Virtual Museum Guide. In Proceedings of the 4th International AR & VR Conference 2018. Springer. Retrieved from https://eprints.staffs.ac.uk/4799/
‘HoloMuse’ that engage users with archaeological artefacts through gesture-based interactions (Pollalis, Fahnbulleh, Tynes, & Shaer, 2017). Another research utilised HoloLens to provide in-situ assistant for users (Blattgerste, Strenge, Renner, Pfeiffer, & Essig, 2017). HoloLens also used to provide magnification for low vision users by complementary finger-worn camera alongside with the HMD (Stearns, DeSouza, Yin, Findlater, & Froehlich, 2017). Even in the medical applications, HoloLens contributed in 3D visualisation purposes using AR techniques (Syed, Zakaria, & Lozanoff, 2017) and provide optimised measurements in medical surgeries(Pratt et al., 2018) (Adabi et al., 2017). Application of HoloLens extended to visualise prototype designs (DeLaOsa, 2017) and showed its potential in gaming industry (Volpe, 2015) (Alvarez, 2015) and engaging cultural visitors with gaming activities (Raptis, Fidas, & Avouris, 2017).
++++++++++++
van Arnhem, J.-P., & Spiller, J. M. (2014). Augmented Reality for Discovery and Instruction. Journal of Web Librarianship, 8(2), 214–230. https://doi.org/10.1080/19322909.2014.904208

+++++++++++

Evaluating the Microsoft HoloLens through an augmented reality assembly application
Proceedings Volume 10197, Degraded Environments: Sensing, Processing, and Display 2017; 101970V (2017) https://doi.org/10.1117/12.2262626
Event: SPIE Defense + Security, 2017, Anaheim, California, United States
To assess the HoloLens’ potential for delivering AR assembly instructions, the cross-platform Unity 3D game engine was used to build a proof of concept application. Features focused upon when building the prototype were: user interfaces, dynamic 3D assembly instructions, and spatially registered content placement. The research showed that while the HoloLens is a promising system, there are still areas that require improvement, such as tracking accuracy, before the device is ready for deployment in a factory assembly setting.
+++++++++++
Pollalis, C., Fahnbulleh, W., Tynes, J., & Shaer, O. (2017). HoloMuse: Enhancing Engagement with Archaeological Artifacts Through Gesture-Based Interaction with Holograms. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction (pp. 565–570). New York, NY, USA: ACM. https://doi.org/10.1145/3024969.3025094
https://www.researchgate.net/publication/315472858_HoloMuse_Enhancing_Engagement_with_Archaeological_Artifacts_through_Gesture-Based_Interaction_with_Holograms
++++++++++++++
Gračanin, D., Ciambrone, A., Tasooji, R., & Handosa, M. (2017). Mixed Library — Bridging Real and Virtual Libraries. In S. Lackey & J. Chen (Eds.), Virtual, Augmented and Mixed Reality (pp. 227–238). Springer International Publishing.
We use Microsoft HoloLens device to augment the user’s experience in the real library and to provide a rich set of affordances for embodied and social interactions.We describe a mixed reality based system, a prototype mixed library, that provides a variety of affordances to support embodied interactions and improve the user experience.

++++++++++++

Dourish, P. (n.d.). Where the Action Is. Retrieved November 23, 2018, from https://mitpress.mit.edu/books/where-action
embodied interactions
Computer science as an engineering discipline has been spectacularly successful. Yet it is also a philosophical enterprise in the way it represents the world and creates and manipulates models of reality, people, and action. In this book, Paul Dourish addresses the philosophical bases of human-computer interaction. He looks at how what he calls “embodied interaction”—an approach to interacting with software systems that emphasizes skilled, engaged practice rather than disembodied rationality—reflects the phenomenological approaches of Martin Heidegger, Ludwig Wittgenstein, and other twentieth-century philosophers. The phenomenological tradition emphasizes the primacy of natural practice over abstract cognition in everyday activity. Dourish shows how this perspective can shed light on the foundational underpinnings of current research on embodied interaction. He looks in particular at how tangible and social approaches to interaction are related, how they can be used to analyze and understand embodied interaction, and how they could affect the design of future interactive systems.

++++++++++

Pollalis, C., Fahnbulleh, W., Tynes, J., & Shaer, O. (2017). HoloMuse: Enhancing Engagement with Archaeological Artifacts Through Gesture-Based Interaction with Holograms. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction (pp. 565–570). New York, NY, USA: ACM. https://doi.org/10.1145/3024969.3025094
HoloMuse, an AR application for the HoloLens wearable device, which allows users to actively engage with archaeological artifacts from a museum collection
pick up, rotate, scale, and alter a hologram of an original archeological artifact using in-air gestures. Users can also curate their own exhibit or customize an existing one by selecting artifacts from a virtual gallery and placing them within the physical world so that they are viewable only using the device. We intend to study the impact of HoloMuse on learning and engagement with college-level art history and archeology students.
++++++++++++

Dugas, Z., & Kerne Andruld. (2007). Location-Aware Augmented Reality Gaming for Emergency Response Education: Concepts and Development. ResearchGate. Retrieved from https://www.researchgate.net/publication/242295040_Location-Aware_Augmented_Reality_Gaming_for_Emergency_Response_Education_Concepts_and_Development

+++++++++++

Library Spaces II: The IDEA Lab at the Grainger Engineering Library Information Center

https://prism.ucalgary.ca/bitstream/handle/1880/52190/DL5_mischo_IDEA_Lab2.pdf

++++++++++
more on Hololens in this IMS blog
http://blog.stcloudstate.edu/ims?s=hololens

1 2 3 4 5 12