Searching for "virtual reality"

can XR help students learn

Giving Classroom Experiences (Like VR) More … Dimension

https://www.insidehighered.com/digital-learning/article/2018/11/02/virtual-reality-other-3-d-tools-enhance-classroom-experiences

at a session on the umbrella concept of “mixed reality” (abbreviated XR) here Thursday, attendees had some questions for the panel’s VR/AR/XR evangelists: Can these tools help students learn? Can institutions with limited budgets pull off ambitious projects? Can skeptical faculty members be convinced to experiment with unfamiliar technology?

All four — one each from Florida International UniversityHamilton CollegeSyracuse University and Yale University — have just finished the first year of a joint research project commissioned by Educause and sponsored by Hewlett-Packard to investigate the potential for immersive technology to supplement and even transform classroom experiences.

Campus of the Future” report, written by Jeffrey Pomerantz

Yale has landed on a “hub model” for project development — instructors propose projects and partner with students with technological capabilities to tap into a centralized pool of equipment and funding. (My note: this is what I suggest in my Chapter 2 of Arnheim, Eliot & Rose (2012) Lib Guides)

Several panelists said they had already been getting started on mixed reality initiatives prior to the infusion of support from Educause and HP, which helped them settle on a direction

While 3-D printing might seem to lend itself more naturally to the hard sciences, Yale’s humanities departments have cottoned to the technology as a portal to answering tough philosophical questions.

institutions would be better served forgoing an early investment in hardware and instead gravitating toward free online products like UnityOrganon and You by Sharecare, all of which allow users to create 3-D experiences from their desktop computers.

+++++++++

Campus of the Future” report, written by Jeffrey Pomerantz

https://library.educause.edu/~/media/files/library/2018/8/ers1805.pdf?la=en

XR technologies encompassing 3D simulations, modeling, and production.

This project sought to identify

  • current innovative uses of these 3D technologies,
  • how these uses are currently impacting teaching and learning, and
  • what this information can tell us about possible future uses for these technologies in higher education.

p. 5 Extended reality (XR) technologies, which encompass virtual reality (VR) and augmented reality (AR), are already having a dramatic impact on pedagogy in higher education. XR is a general term that covers a wide range of technologies along a continuum, with the real world at one end and fully immersive simulations at the other.

p. 6The Campus of the Future project was an exploratory evaluation of 3D technologies for instruction and research in higher education: VR, AR, 3D scanning, and 3D printing. The project sought to identify interesting and novel uses of 3D technology

p. 7 HP would provide the hardware, and EDUCAUSE would provide the methodological expertise to conduct an evaluation research project investigating the potential uses of 3D technologies in higher education learning and research.

The institutions that participated in the Campus of the Future project were selected because they were already on the cutting edge of integrating 3D technology into pedagogy. These institutions were therefore not representative, nor were they intended to be representative, of the state of higher education in the United States. These institutions were selected precisely because they already had a set of use cases for 3D technology available for study

p. 9  At some institutions, the group participating in the project was an academic unit (e.g., the Newhouse School of Communications at Syracuse University; the Graduate School of Education at Harvard University). At these institutions, the 3D technology provided by HP was deployed for use more or less exclusively by students and faculty affiliated with the particular academic unit.

p. 10 definitions
there is not universal agreement on the definitions of these
terms or on the scope of these technologies. Also, all of these technologies
currently exist in an active marketplace and, as in many rapidly changing markets, there is a tendency for companies to invent neologisms around 3D technology.

A 3D scanner is not a single device but rather a combination of hardware and
software. There are generally two pieces of hardware: a laser scanner and a digital
camera. The laser scanner bounces laser beams off the surface of an object to
determine its shape and contours.

p. 11 definitions

Virtual reality means that the wearer is completely immersed in a computer
simulation. Several types of VR headsets are currently available, but all involve
a lightweight helmet with a display in front of the eyes (see figure 2). In some
cases, this display may simply be a smartphone (e.g., Google Cardboard); in other
cases, two displays—one for each eye—are integrated into the headset (e.g., HTC
Vive). Most commercially available VR rigs also include handheld controllers
that enable the user to interact with the simulation by moving the controllers
in space and clicking on finger triggers or buttons.

p. 12 definitions

Augmented reality provides an “overlay” of some type over the real world through
the use of a headset or even a smartphone.

In an active technology marketplace, there is a tendency for new terms to be
invented rapidly and for existing terms to be used loosely. This is currently
happening in the VR and AR market space. The HP VR rig and the HTC Vive
unit are marketed as being immersive, meaning that the user is fully immersed in
a simulation—virtual reality. Many currently available AR headsets, however, are
marketed not as AR but rather as MR (mixed reality). These MR headsets have a
display in front of the eyes as well as a pair of front-mounted cameras; they are
therefore capable of supporting both VR and AR functionality.

p. 13 Implementation

Technical difficulties.
Technical issues can generally be divided into two broad categories: hardware
problems and software problems. There is, of course, a common third category:
human error.

p. 15 the technology learning curve

The well-known diffusion of innovations theoretical framework articulates five
adopter categories: innovators, early adopters, early majority, late majority, and
laggards. Everett M. Rogers, Diffusion of Innovations, 5th ed. (New York: Simon and Schuster, 2003).

It is also likely that staff in the campus IT unit or center for teaching and learning already know who (at least some of) these individuals are, since such faculty members are likely to already have had contact with these campus units.
Students may of course also be innovators and early adopters, and in fact
several participating institutions found that some of the most creative uses of 3D technology arose from student projects

p. 30  Zeynep Tufekci, in her book Twitter and Tear Gas

definition: There is no necessary distinction between AR and VR; indeed, much research
on the subject is based on a conception of a “virtuality continuum” from entirely
real to entirely virtual, where AR lies somewhere between those ends of the
spectrum.  Paul Milgram and Fumio Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information Systems, vol. E77-D, no. 12 (1994); Steve Mann, “Through the Glass, Lightly,” IEEE Technology and Society Magazine 31, no. 3 (2012): 10–14.

For the future of 3D technology in higher education to be realized, that
technology must become as much a part of higher education as any technology:
the learning management system (LMS), the projector, the classroom. New
technologies and practices generally enter institutions of higher education as
initiatives. Several active learning classroom initiatives are currently under
way,36 for example, as well as a multi-institution open educational resources
(OER) degree initiative.37

p. 32 Storytelling

Some scholars have argued that all human communication
is based on storytelling;41 certainly advertisers have long recognized that
storytelling makes for effective persuasion,42 and a growing body of research
shows that narrative is effective for teaching even topics that are not generally
thought of as having a natural story, for example, in the sciences.43

p. 33 accessibility

The experience of Gallaudet University highlights one of the most important
areas for development in 3D technology: accessibility for users with disabilities.

p. 34 instructional design

For that to be the case, 3D technologies must be incorporated into the
instructional design process for building and redesigning courses. And for that
to be the case, it is necessary for faculty and instructional designers to be familiar
with the capabilities of 3D technologies. And for that to be the case, it may
not be necessary but would certainly be helpful for instructional designers to
collaborate closely with the staff in campus IT units who support and maintain
this hardware.

Every institution of higher
education has a slightly different organizational structure, of course, but these
two campus units are often siloed. This siloing may lead to considerable friction
in conducting the most basic organizational tasks, such as setting up meetings
and apportioning responsibilities for shared tasks. Nevertheless, IT units and
centers for teaching and learning are almost compelled to collaborate in order
to support faculty who want to integrate 3D technology into their teaching. It
is necessary to bring the instructional design expertise of a center for teaching
and learning to bear on integrating 3D technology into an instructor’s teaching (My note: and where does this place SCSU?) Therefore,
one of the most critical areas in which IT units and centers for teaching and
learning can collaborate is in assisting instructors to develop this integration
and to develop learning objects that use 3D technology. p. 35 For 3D technology to really gain traction in higher education, it will need to be easier for instructors to deploy without such a large support team.

p. 35 Sites such as Thingiverse, Sketchfab, and Google Poly are libraries of freely
available, user-created 3D models.

ClassVR is a tool that enables the simultaneous delivery of a simulation to
multiple headsets, though the simulation itself may still be single-user.

p. 37 data management:

An institutional repository is a collection of an institution’s intellectual output, often consisting of preprint journal articles and conference papers and the data sets behind them.49 An
institutional repository is often maintained by either the library or a partnership
between the library and the campus IT unit. An institutional repository therefore has the advantage of the long-term curatorial approach of librarianship combined with the systematic backup management of the IT unit. (My note: leaves me wonder where does this put SCSU)

Sharing data sets is critical for collaboration and increasingly the default for
scholarship. Data is as much a product of scholarship as publications, and there
is a growing sentiment among scholars that it should therefore be made public.50

++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+definition

Students Data Privacy

What Happens to Student Data Privacy When Chinese Firms Acquire U.S. Edtech Companies?

By Jenny Abamu     Apr 24, 2018

https://www.edsurge.com/news/2018-04-24-what-happens-to-student-data-privacy-when-chinese-firms-acquire-u-s-edtech-companies

Between the creation of a social rating system and street cameras with facial recognition capabilities, technology reports coming out of China have raised serious concerns for privacy advocates. These concerns are only heightened as Chinese investors turn their attention to the United States education technology space acquiring companies with millions of public school users.

A particularly notable deal this year centers on Edmodo, a cross between a social networking platform and a learning management system for schools that boasts having upwards of 90 million users. Net Dragon, a Chinese gaming company that is building a significant education division, bought Edmodo for a combination of cash and equity valued at $137.5 million earlier this month.

Edmodo began shifting to an advertising model last year, after years of struggling to generate revenue. This has left critics wondering why the Chinese firm chose to acquire Edmodo at such a price, some have gone as far as to call the move a data grab.

as data becomes a tool that governments such as Russia and China could use to influence voting systems or induce citizens into espionage, more legislators are turning their attention to the acquisitions of early-stage technology startups.

NetDragon officials, however, say they have no interest in these types of activities. Their main goal in acquiring United States edtech companies lies in building profitability, says Pep So, NetDragon’s Director of Corporate Development.

In 2015, the firm acquired the education technology platform, Promethean, a company that creates interactive displays for schools. NetDragon executives say that the Edmodo acquisition rounds out their education product portfolio—meaning the company will have tools for supporting multiple aspects of learning including; preparation, instructional delivery, homework, assignment grading, communication with parents students and teachers and a content marketplace.

NetDragon’s monetization plan for Edmodo focuses on building out content that gets sold via its platform. Similar to tools like TeachersPayTeachers, So hopes to see users putting up content on the platform’s marketplace, some free and others for a fee (including some virtual reality content), so that the community can buy, sell and review available educational tools.

As far as data privacy is concerned, So notes that NetDragon is still learning what it can and cannot do. He noted that the company will comply with Children’s Online Privacy Protection Act (COPPA), a federal regulation created in order to protect the privacy of children online, but says that the rules and regulations surrounding the law are confusing for all actors involved.

Historically, Chinese companies have faced trust and branding issues when moving into the United States market, and the reverse is also true for U.S. companies seeking to expand overseas. Companies have also struggled to learn the rules, regulations and operational procedures in place in other countries.

++++++++++++

Iran and Huawei top agenda as Pompeo meets Merkel for 45 minutes in Berlin

https://uk.finance.yahoo.com/news/pompeo-merkel-iran-huawei-agenda-110409835.html

++++++++++++

Merkel to Ratchet up Huawei Restrictions in Concession to Hawks

https://www.bloomberg.com/news/articles/2019-11-13/merkel-to-ratchet-up-huawei-restrictions-in-concession-to-hawks

+++++++++++++
more on data privacy in this IMS blog:
https://blog.stcloudstate.edu/ims?s=data+privacy

Oculus Rift and Irish students

How Irish Students Use Oculus Rift VR in the Classroom

https://medium.com/gen-z-pop/how-irish-students-use-oculus-rift-vr-in-the-classroom-f8ef64c1bfb9

Derek E. Baird Oct 11, 2017

Shifts in students’ learning style will prompt a shift to active construction of knowledge through mediated immersion.”-Chris Dede

The theory of constructivist-based learningaccording to Dr. Seymour Papert, “is grounded in the idea that people learn by actively constructing new knowledge, rather than having information ‘poured’ into their heads.”

Moreover, constructionism asserts that people learn with particular effectiveness when they are engaged in constructing personally meaningful artifacts (such as computer programs, animations, 3D modeling, creating spatial environments in virtual reality or building robots).”

Technologies like virtual reality, especially for Gen Z students’, provides avenues that allow them to engage in a social, collaborative, and active learning environment.

Virtual reality, especially when combined with powerful storytelling, allows the student to participate in the story, develop empathy to experiences outside their current realm of understanding and allows them to be fully immersed in their own exploration and learning.

+++++++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

Kinesiology and XR

Resources on Kinesiology and Virtual, Augmented and Mixed Reality:

Home – Landing Page

Lee, S.-H., Yeh, S.-C., Chan, R.-C., Chen, S., Yang, G., & Zheng, L.-R. (2016). Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation. BioMed Research International2016, 1–10. https://doi.org/10.1155/2016/7075464

Dvorkin, A. Y., Shahar, M., & Weiss, P. L. (2006). Reaching within Video-Capture Virtual Reality: Using Virtual Reality as a Motor Control Paradigm. CyberPsychology & Behavior9(2), 133–136. https://doi.org/10.1089/cpb.2006.9.133

Zeng, N., Pope, Z., Lee, J. E., & Gao, Z. (2018). Virtual Reality Exercise for Anxiety and Depression: A Preliminary Review of Current Research in an Emerging Field. Journal of Clinical Medicine, 7(3), 1-N.PAG. https://doi.org/10.3390/jcm7030042
Huang, F. C., Gillespie, R. B., & Kuo, A. D. (2007). Visual and Haptic Feedback Contribute to Tuning and Online Control During Object Manipulation. Journal of Motor Behavior39(3), 179–193. Retrieved from http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3daph%26AN%3d25289578%26site%3dehost-live%26scope%3dsite
Kramer, M., Honold, M., Hohl, K., Bockholt, U., Rettig, A., Elbel, M., & Dehner, C. (2009). Reliability of a new virtual reality test to measure cervicocephalic kinaesthesia. Journal of Electromyography & Kinesiology19(5), e353–e361. https://doi.org/10.1016/j.jelekin.2008.05.005
Cortes, N., Blount, E., Ringleb, S., & Onate, J. A. (2011). Soccer-specific video simulation for improving movement assessment. Sports Biomechanics10(1), 22–34. https://doi.org/10.1080/14763141.2010.547591
Córdova-Guarachi, J., Aracena-Pizarro, D., & Corrales-Muñoz, J. (2016). Sistema de monitoreo para pacientes con tratamientos de tendinosis del tendón rotuliano utilizando Kinect. INGENIARE – Revista Chilena de Ingeniería24(2), 249–262. Retrieved from http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3daph%26AN%3d114708773%26site%3dehost-live%26scope%3dsite

 

VR AR learning materials

New Book Helps Teachers Unlock Secrets of Virtual and Augmented Reality With Lessons, Apps, and Strategies for the Classroom

New Book Helps Teachers Unlock Secrets of Virtual and Augmented Reality With Lessons, Apps, and Strategies for the Classroom

the International Society for Technology in Education to publish a book, titled Learning Transported: Augmented, Virtual and Mixed Reality for All Classrooms, to offer practical insights, lesson plans, and classroom examples so educators can make the most of these experiential worlds.

Definition

Augmented reality superimposes a digital layer on the world around us, often activated by scanning a trigger image or via GPS (think Pokemon Go!). Virtual reality takes users away from the real world, fully immersing students in a digital experience that replaces reality. Mixed reality takes augmented a step further by allowing the digital and real worlds to interact and the digital components to change based on the user’s environment.

Virtual Shapes

DEVICES: iOS, Android, Chromebook, PC, COURSE: Geometry, GRADES: 2-5, 60 minutes

Storytelling

DEVICES: iOS, Android, COURSE: English Language Arts, Speaking and Listening, GRADES: K-1

Augmented and Virtual Reality with EON

DEVICES: iOS, Android, COURSE: Earth and Space Science, GRADE: 4, 45 minutes

Scavenger Hunting as a Classroom Activity

The app offers teachers a unique way to create a scavenger hunt by designing AR messages and leaving them in specific places for students to “discover.”

Waypoint App

The Waypoint App also allows for creation of educational scavenger hunts using augmented reality. Educators can easily add questions that address lesson objectives, set specific locations where the questions are hidden, and then have students hunt for questions by following the map. The hunt is easily shared with students on a variety of platforms, including text messaging and email.

Breakout EDU

Breakout EDU has become a popular game in education. Driven by creativity, teamwork, and problem-solving, the game provides a fun learning experience as it challenges students to compete in solving puzzles. The game centers on a series of questions; each solved question unlocks the next part of the activity. Students work in groups, competing against other groups to open all the locks first.

first VR optometry lab

University of Waterloo to have first virtual reality optometry lab in Canada

FRIDAY, SEPTEMBER 28, 2018 https://uwaterloo.ca/news/news/university-waterloo-have-first-virtual-reality-optometry-lab

A new virtual reality (VR) training lab at the University of Waterloo’s School of  Optometry and Vision Science, will help Canada’s next generation of optometrists learn how to diagnose vision problems and eye diseases more quickly and accurately.

The new lab, funded through an $800,000 investment by national eye care provider FYidoctors, At a total cost of $1.5 million, the FYidoctors Simulation Lab is the first of its kind in Canada and will ensure the School remains at the forefront in optometric education in North America.

Dr. Al Ulsifer, CEO and Chairman of FYidoctors and  Waterloo alumnus, said that this investment isn’t just an investment in the University, but a stake in the future generation of optometrists.

The Equipment:

The lab will initially include 5 Eyesi® Binocular Indirect Ophthalmoscopes (BIO) are state of the art augmented reality simulator for training of retinal examinations and provides a highly realistic and dynamic 3D simulation of the anatomical structures of the eye and ophthalmoscope optics.

For more detailed information visit:  https://www.vrmagic.com/simulators/feature-pages/indirect/

Phase two of the lab, to be unveiled at a later date, will include the addition of the Eyesi® Slit Lamp simulators.  This technology will allow students to practice basic handling of the device and skills required to conduct a corneal exam, retinal exam and Gonioscopy & Tonometry.

 

++++++++++++
more on AR Augmented Reality in this IMS blog
https://blog.stcloudstate.edu/ims?s=augmented+reality

multi-user reference support experiences

https://www.emeraldinsight.com/eprint/AU2Q4SJGYQG5YTQ5A9RU/full

Hahn, J. (2018). Virtual reality learning environments | Development of multi-user reference support experiences | Information and Learning Science | Ahead of Print. EmeraldInsight. Retrieved from https://www.emeraldinsight.com/eprint/AU2Q4SJGYQG5YTQ5A9RU/full
case study: an undergraduate senior projects computer science course collaboration whose aim was to develop textual browsing experiences, among other library reference functionality, within the HTC Vive virtual reality (VR) headset. In this case study, readers are introduced to applied uses of VR in service to library-based learning through the research and development of a VR reading room app with multi-user support. Within the VR reading room prototype, users are able to collaboratively explore the digital collections of HathiTrust, highlight text for further searching and discovery and receive consultative research support from a reference specialist through VR.
Library staff met with the project team weekly over the 16 weeks of both semesters to first scope out the functionality of the system and vet requirements.
The library research team further hypothesized that incorporating reference-like support in the VR environment can support library learning. There is ample evidence in the library literature which underscores the importance of reference interactions as learning and instructional experiences for university students
Educational benefits to immersive worlds include offering a deeper presence in engagement with rare or non-accessible artifacts. Sequeira and Morgado (2013, p. 2) describe their Virtual Archeology project as using “a blend of techniques and methods employed by historians and archaeologists using computer models for visualizing cultural artefacts and heritage sites”.
The higher-end graphics cards include devices such as the NVIDIA GeForceTM GTX 1060 or AMD RadeonTM RX 480, equivalent or better. The desktop system that was built for this project used the GeForce GTX 1070, which was slightly above the required minimum specifications.

Collaboration: Library as client.

Specific to this course collaboration, computer science students in their final year of study are given the option of several client projects on which to work. The Undergraduate Library has been a collaborator with senior computer science course projects for several years, beginning in 2012-2013 with mobile application design and chat reference software re-engineering (Hahn, 2015). (My note: Mark Gill, this is where and how Mehdi Mekni, you and I can collaborate)

The hurdles the students had the most trouble with was code integration – e.g. combining various individual software parts towards the end of the semester. The students also were challenged by the public HathiTrust APIs, as the system was developed to call the HathiTrust APIs from within the Unity programming environment and developing API calls in C#. This was a novel use of the HathiTrust search APIs for the students and a new area for the research team as well.

There are alternatives to Unity C# programming, notably WebVR, an open source specification for VR programming on the open web.

A-Frame has seen maturation as a platform agnostic and device agnostic software programming environment. The WebVR webpage notes that the specification supports HTC Vive, Oculus Rift, Samsung Gear VR, Google Daydream and Google Cardboard (WebVR Rocks, 2018). Open web platforms are consistent with library values and educational goals of sharing work that can be foundational in implementing VR learning experience both in VR environments and shareable on the web, too.

++++++++++++++
more on VR in libraries in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+library

embed AR VR in learning

How AR and VR Can Make Students Laugh and Cry Out Loud—and Embed Them in Their Learning

By Wendy McMahon     Aug 28, 2018

https://www.edsurge.com/news/2018-08-28-how-ar-and-vr-can-make-students-laugh-and-cry-out-loud-and-embed-them-in-their-learning

40 virtual reality headsets with haptic handsets for them to manipulate in the VR/AR space, and I connected them to content from New York Times VR and WITHIN. The content placed students in settings such as on the ground in a refugee crisis or in the midst of the Millions March in New York City.

At the beginning of every class, they would go into this virtual space and engage with the content instead of just reading it. They’d respond to me about what it was like to be immersed in the experience.

The content from the WITHIN app provided one of the more visceral experiences for students.

Extraordinary Stories in Virtual Reality https://www.with.in/?cid=3&csid=CQEpOXQ&pid=0

At the end of the course, for example, students met with a shark tank-type group—investors from the community, business, and industry folks—and pitched them business ideas that would utilize VR to provide a solution to problems that were local, regional, national or even global in scope.

Were you able to measure this success?

The way that I measured it was completion. How many of my students actually got through my class successfully? It was over 85%. My research from the two classes where I used VR and this approach shows students were engaged, and ultimately more successful in my classes.

zSpace  https://info.zspace.com/2018-vived-allied-health-promo

Also:

Intro To Haptic Technology

Haptics provide a critical role in making our devices more interactive.

https://www.iotforall.com/intro-to-haptic-technology-tachammer-haptic-actuator/

1. Eccentric Rotating Mass (ERM)

2. Linear Resonant Actuator (LRA)

Apple Taptic Engine

3. Piezoelectric Actuators

4. Forced Impact (Accelerated Ram)

 

+++++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

 

Digital Literacy for SPED 405

Digital Literacy for SPED 405. Behavior Theories and Practices in Special Education.

Instructor Mark Markell. mamarkell@stcloudstate.edu Mondays, 5:30 – 8:20 PM. SOE A235

Preliminary Plan for Monday, Sept 10, 5:45 PM to 8 PM

Introduction – who are the students in this class. About myself: http://web.stcloudstate.edu/pmiltenoff/faculty Contact info, “embedded” librarian idea – I am available to help during the semester with research and papers

about 40 min: Intro to the library: http://web.stcloudstate.edu/pmiltenoff/bi/
15 min for a Virtual Reality tours of the Library + quiz on how well they learned the library:
http://bit.ly/VRlib
and 360 degree video on BYOD:
Play a scavenger hunt IN THE LIBRARY: http://bit.ly/learnlib
The VR (virtual reality) and AR (augmented reality) component; why is it important?
why is this technology brought up to a SPED class?
https://blog.stcloudstate.edu/ims/2015/11/18/immersive-journalism/
autism: https://blog.stcloudstate.edu/ims/2018/09/10/sound-and-brain/
Social emotional learning
https://blog.stcloudstate.edu/ims/2018/05/31/vr-ar-sel-empathy/
(transition to the next topic – digital literacy)

about 50 min:

  1. Digital Literacy

How important is technology in our life? Profession?

https://blog.stcloudstate.edu/ims/2018/08/20/employee-evolution/

Do you think technology overlaps with the broad field of special education? How?
How do you define technology? What falls under “technology?”

What is “digital literacy?” Do we need to be literate in that sense? How does it differ from technology literacy?
https://blog.stcloudstate.edu/ims?s=digital+literacy

Additional readings on “digital literacy”
https://blog.stcloudstate.edu/ims/2017/08/23/nmc-digital-literacy/

Digital Citizenship: https://blog.stcloudstate.edu/ims/2015/10/19/digital-citizenship-info/
Play Kahoot: https://play.kahoot.it/#/k/e844253f-b5dd-4a91-b096-b6ff777e6dd7
Privacy and surveillance: how does these two issues affect your students? Does it affect them more? if so, how?  https://blog.stcloudstate.edu/ims/2018/08/21/ai-tracks-students-writings/

Social Media:
http://web.stcloudstate.edu/pmiltenoff/lib290/. if you want to survey the class, here is the FB group page: https://www.facebook.com/groups/LIB290/

Is Social Media part of digital literacy? Why? How SM can help us become more literate?

Digital Storytelling:
http://web.stcloudstate.edu/pmiltenoff/lib490/

How is digital storytelling essential in digital literacy?

about 50 min:

  1. Fake News and Research

Syllabus: Teaching Media Manipulation: https://datasociety.net/pubs/oh/DataAndSociety_Syllabus-MediaManipulationAndDisinformationOnline.pdf

#FakeNews is a very timely and controversial issue. in 2-3 min choose your best source on this issue. 1. Mind the prevalence of resources in the 21st century 2. Mind the necessity to evaluate a) the veracity of your courses b) the quality of your sources (the fact that they are “true” does not mean that they are the best). Be prepared to name your source and defend its quality.
How do you determine your sources? How do you decide the reliability of your sources? Are you sure you can distinguish “good” from “bad?”
Compare this entry https://en.wikipedia.org/wiki/List_of_fake_news_websites
to this entry: https://docs.google.com/document/d/10eA5-mCZLSS4MQY5QGb5ewC3VAL6pLkT53V_81ZyitM/preview to understand the scope

Do you know any fact checking sites? Can you identify spot sponsored content? Do you understand syndication? What do you understand under “media literacy,” “news literacy,” “information literacy.”  https://blog.stcloudstate.edu/ims/2017/03/28/fake-news-resources/

Why do we need to explore the “fake news” phenomenon? Do you find it relevant to your professional development?

Let’s watch another video and play this Kahoot: https://play.kahoot.it/#/k/21379a63-b67c-4897-a2cd-66e7d1c83027

So, how do we do academic research? Let’s play another Kahoot: https://play.kahoot.it/#/k/5e09bb66-4d87-44a5-af21-c8f3d7ce23de
If you to structure this Kahoot, what are the questions, you will ask? What are the main steps in achieving successful research for your paper?

  • Research using social media

what is social media (examples). why is called SM? why is so popular? what makes it so popular?

use SM tools for your research and education:

– Determining your topic. How to?
Digg http://digg.com/, Reddit https://www.reddit.com/ , Quora https://www.quora.com
Facebook, Twitter – hashtags (class assignment 2-3 min to search)
LinkedIn Groups
YouTube and Slideshare (class assignment 2-3 min to search)
Flickr, Instagram, Pinterest for visual aids (like YouTube they are media repositories)

Academia.com (https://www.academia.edu/Academia.edu, a paper-sharing social network that has been informally dubbed “Facebook for academics,” https://www.academia.edu/31942069_Facebook_for_Academics_The_Convergence_of_Self-Branding_and_Social_Media_Logic_on_Academia.edu

ResearchGate: https://www.researchgate.net/

– collecting and managing your resources:
Delicious https://del.icio.us/
Diigo: https://www.diigo.com/
Evernote: evernote.com OneNote (Microsoft)

blogs and wikis for collecting data and collaborating

– Managing and sharing your information:
Refworks,
Zotero https://www.zotero.org/,
Mendeley, https://www.mendeley.com/

– Testing your work against your peers (globally):

Wikipedia:
First step:Using Wikipedia.Second step: Contributing to Wikipedia (editing a page). Third step: Contributing to Wikipedia (creating a page)  https://www.evernote.com/shard/s101/sh/ef743d1a-4516-47fe-bc5b-408f29a9dcb9/52d79bfa20ee087900764eb6a407ec86

– presenting your information


please use this form to cast your feedback. Please feel free to fill out only the relevant questions:
http://bit.ly/imseval

1 16 17 18 19 20 36