Posts Tagged ‘AI’

deep learning revolution

Sejnowski, T. J. (2018). The Deep Learning Revolution. Cambridge, MA: The MIT Press.

How deep learning―from Google Translate to driverless cars to personal cognitive assistants―is changing our lives and transforming every sector of the economy.

The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.

Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

A pioneering scientist explains ‘deep learning’

Artificial intelligence meets human intelligence

neural networks

Buzzwords like “deep learning” and “neural networks” are everywhere, but so much of the popular understanding is misguided, says Terrence Sejnowski, a computational neuroscientist at the Salk Institute for Biological Studies.

Sejnowski, a pioneer in the study of learning algorithms, is the author of The Deep Learning Revolution (out next week from MIT Press). He argues that the hype about killer AI or robots making us obsolete ignores exciting possibilities happening in the fields of computer science and neuroscience, and what can happen when artificial intelligence meets human intelligence.

Machine learning is a very large field and goes way back. Originally, people were calling it “pattern recognition,” but the algorithms became much broader and much more sophisticated mathematically. Within machine learning are neural networks inspired by the brain, and then deep learning. Deep learning algorithms have a particular architecture with many layers that flow through the network. So basically, deep learning is one part of machine learning and machine learning is one part of AI.

December 2012 at the NIPS meeting, which is the biggest AI conference. There, [computer scientist] Geoff Hinton and two of his graduate students showed you could take a very large dataset called ImageNet, with 10,000 categories and 10 million images, and reduce the classification error by 20 percent using deep learning.Traditionally on that dataset, error decreases by less than 1 percent in one year. In one year, 20 years of research was bypassed. That really opened the floodgates.

The inspiration for deep learning really comes from neuroscience.

AlphaGo, the program that beat the Go champion included not just a model of the cortex, but also a model of a part of the brain called the basal ganglia, which is important for making a sequence of decisions to meet a goal. There’s an algorithm there called temporal differences, developed back in the ‘80s by Richard Sutton, that, when coupled with deep learning, is capable of very sophisticated plays that no human has ever seen before.

there’s a convergence occurring between AI and human intelligence. As we learn more and more about how the brain works, that’s going to reflect back in AI. But at the same time, they’re actually creating a whole theory of learning that can be applied to understanding the brain and allowing us to analyze the thousands of neurons and how their activities are coming out. So there’s this feedback loop between neuroscience and AI

+++++++++++
deep learning revolution
http://blog.stcloudstate.edu/ims?s=deep+learning

Inclusive Design of Artificial Intelligence

EASI Free Webinar: Inclusive Design of Artificial Intelligence Thursday

October 25
Artificial Intelligence (AI) and accessibility: will it enhance or
impede accessibility for users with disabilities?
Artificial intelligence used to be all about the distance future, but it
has now become mainstream. It is already impacting us in ways we may not
recognize. It is impacting us today already. It is involved in search
engines. It is involved in the collecting of big data and analyzing it.
It is involved in all the arguments about the way social media is being
used to effect, or try to effect, our thinking and our politics. How
else might it play a role in the future of accessibility?
The webinar presenter: Jutta Treviranus at University of Toronto will
explore these questions in the webinar on Thursday, October 25 at 11
Pacific, noon Mountain, 1 central or 2 Eastern You can register now but
registration closes Wed. Oct. 24 at midnight Eastern.
You can register now on the web at https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Feasi.cc&data=01%7C01%7Cpmiltenoff%40STCLOUDSTATE.EDU%7C4afdbee13881489312d308d6383f541b%7C5e40e2ed600b4eeaa9851d0c9dcca629%7C0&sdata=O7nOVG8dbkDX7lf%2FR6nWJi4f6qyHklGKfc%2FaB8p4r5o%3D&reserved=0and look for the link
for webinars.
Those who register should get directions for joining sent late wednesday
or Early on Thursday.

+++++++++++
more on AI in this IMS blog
http://blog.stcloudstate.edu/ims?s=artificial+intelligence

AI and ethics

Live Facebook discussion at SCSU VizLab on ethics and technology:

Join our discussion on #technology and #ethics. share your opinions, suggestions, ideas

Posted by InforMedia Services on Thursday, November 1, 2018

Heard on Marketplace this morning (Oct. 22, 2018): ethics of artificial intelligence with John Havens of the Institute of Electrical and Electronics Engineers, which has developed a new ethics certification process for AI: https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ec_bios.pdf

Ethics and AI

***** The student club, the Philosophical Society, has now been recognized by SCSU as a student organization ***

https://ed.ted.com/lessons/the-ethical-dilemma-of-self-driving-cars-patrick-lin

Could it be the case that a random decision is still better then predetermined one designed to minimize harm?

similar ethical considerations are raised also:

in this sitcom

https://www.theatlantic.com/sponsored/hpe-2018/the-ethics-of-ai/1865/ (full movie)

This TED talk:

http://blog.stcloudstate.edu/ims/2017/09/19/social-media-algorithms/

http://blog.stcloudstate.edu/ims/2018/10/02/social-media-monopoly/

 

 

+++++++++++++++++++
IoT (Internet of Things), Industry 4.0, Big Data, BlockChain,

+++++++++++++++++++
IoT (Internet of Things), Industry 4.0, Big Data, BlockChain, Privacy, Security, Surveilance

http://blog.stcloudstate.edu/ims?s=internet+of+things

peer-reviewed literature;

Keyword search: ethic* + Internet of Things = 31

Baldini, G., Botterman, M., Neisse, R., & Tallacchini, M. (2018). Ethical Design in the Internet of Things. Science & Engineering Ethics24(3), 905–925. https://doi-org.libproxy.stcloudstate.edu/10.1007/s11948-016-9754-5

Berman, F., & Cerf, V. G. (2017). Social and Ethical Behavior in the Internet of Things. Communications of the ACM60(2), 6–7. https://doi-org.libproxy.stcloudstate.edu/10.1145/3036698

Murdock, G. (2018). Media Materialties: For A Moral Economy of Machines. Journal of Communication68(2), 359–368. https://doi-org.libproxy.stcloudstate.edu/10.1093/joc/jqx023

Carrier, J. G. (2018). Moral economy: What’s in a name. Anthropological Theory18(1), 18–35. https://doi-org.libproxy.stcloudstate.edu/10.1177/1463499617735259

Kernaghan, K. (2014). Digital dilemmas: Values, ethics and information technology. Canadian Public Administration57(2), 295–317. https://doi-org.libproxy.stcloudstate.edu/10.1111/capa.12069

Koucheryavy, Y., Kirichek, R., Glushakov, R., & Pirmagomedov, R. (2017). Quo vadis, humanity? Ethics on the last mile toward cybernetic organism. Russian Journal of Communication9(3), 287–293. https://doi-org.libproxy.stcloudstate.edu/10.1080/19409419.2017.1376561

Keyword search: ethic+ + autonomous vehicles = 46

Cerf, V. G. (2017). A Brittle and Fragile Future. Communications of the ACM60(7), 7. https://doi-org.libproxy.stcloudstate.edu/10.1145/3102112

Fleetwood, J. (2017). Public Health, Ethics, and Autonomous Vehicles. American Journal of Public Health107(4), 632–537. https://doi-org.libproxy.stcloudstate.edu/10.2105/AJPH.2016.303628

HARRIS, J. (2018). Who Owns My Autonomous Vehicle? Ethics and Responsibility in Artificial and Human Intelligence. Cambridge Quarterly of Healthcare Ethics27(4), 599–609. https://doi-org.libproxy.stcloudstate.edu/10.1017/S0963180118000038

Keeling, G. (2018). Legal Necessity, Pareto Efficiency & Justified Killing in Autonomous Vehicle Collisions. Ethical Theory & Moral Practice21(2), 413–427. https://doi-org.libproxy.stcloudstate.edu/10.1007/s10677-018-9887-5

Hevelke, A., & Nida-Rümelin, J. (2015). Responsibility for Crashes of Autonomous Vehicles: An Ethical Analysis. Science & Engineering Ethics21(3), 619–630. https://doi-org.libproxy.stcloudstate.edu/10.1007/s11948-014-9565-5

Getha-Taylor, H. (2017). The Problem with Automated Ethics. Public Integrity19(4), 299–300. https://doi-org.libproxy.stcloudstate.edu/10.1080/10999922.2016.1250575

Keyword search: ethic* + artificial intelligence = 349

Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics into Artificial Intelligence. Journal of Ethics21(4), 403–418. https://doi-org.libproxy.stcloudstate.edu/10.1007/s10892-017-9252-2

Köse, U. (2018). Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on Machine Ethics and Artificial Intelligence Safety. BRAIN: Broad Research in Artificial Intelligence & Neuroscience9(2), 184–197. Retrieved from http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3daph%26AN%3d129943455%26site%3dehost-live%26scope%3dsite

++++++++++++++++
http://www.cts.umn.edu/events/conference/2018

2018 CTS Transportation Research Conference

Keynote presentations will explore the future of driving and the evolution and potential of automated vehicle technologies.

+++++++++++++++++++
http://blog.stcloudstate.edu/ims/2016/02/26/philosophy-and-technology/

+++++++++++++++++++
more on AI in this IMS blog
http://blog.stcloudstate.edu/ims/2018/09/07/limbic-thought-artificial-intelligence/

AI and autonomous cars as ALA discussion topic
http://blog.stcloudstate.edu/ims/2018/01/11/ai-autonomous-cars-libraries/

and privacy concerns
http://blog.stcloudstate.edu/ims/2018/09/14/ai-for-education/

the call of the German scientists on ethics and AI
http://blog.stcloudstate.edu/ims/2018/09/01/ethics-and-ai/

AI in the race for world dominance
http://blog.stcloudstate.edu/ims/2018/04/21/ai-china-education/

AI for Education

The Promise (and Pitfalls) of AI for Education

Artificial intelligence could have a profound impact on learning, but it also raises key questions.

By Dennis Pierce, Alice Hathaway 08/29/18

https://thejournal.com/articles/2018/08/29/the-promise-of-ai-for-education.aspx

Artificial intelligence (AI) and machine learning are no longer fantastical prospects seen only in science fiction. Products like Amazon Echo and Siri have brought AI into many homes,

Kelly Calhoun Williams, an education analyst for the technology research firm Gartner Inc., cautions there is a clear gap between the promise of AI and the reality of AI.

Artificial intelligence is a broad term used to describe any technology that emulates human intelligence, such as by understanding complex information, drawing its own conclusions and engaging in natural dialog with people.

Machine learning is a subset of AI in which the software can learn or adapt like a human can. Essentially, it analyzes huge amounts of data and looks for patterns in order to classify information or make predictions. The addition of a feedback loop allows the software to “learn” as it goes by modifying its approach based on whether the conclusions it draws are right or wrong.

AI can process far more information than a human can, and it can perform tasks much faster and with more accuracy. Some curriculum software developers have begun harnessing these capabilities to create programs that can adapt to each student’s unique circumstances.

For instance, a Seattle-based nonprofit company called Enlearn has developed an adaptive learning platform that uses machine learning technology to create highly individualized learning paths that can accelerate learning for every student. (My note: about learning and technology, Alfie Kohn in http://blog.stcloudstate.edu/ims/2018/09/11/educational-technology/

GoGuardian, a Los Angeles company, uses machine learning technology to improve the accuracy of its cloud-based Internet filtering and monitoring software for Chromebooks. (My note: that smells Big Brother).Instead of blocking students’ access to questionable material based on a website’s address or domain name, GoGuardian’s software uses AI to analyze the actual content of a page in real time to determine whether it’s appropriate for students. (my note: privacy)

serious privacy concerns. It requires an increased focus not only on data quality and accuracy, but also on the responsible stewardship of this information. “School leaders need to get ready for AI from a policy standpoint,” Calhoun Williams said. For instance: What steps will administrators take to secure student data and ensure the privacy of this information?

++++++++++++
more on AI in education in this IMS blog
http://blog.stcloudstate.edu/ims?s=artifical+intelligence

Limbic thought and artificial intelligence

Limbic thought and artificial intelligence

September 5, 2018  Siddharth (Sid) Pai

https://www.linkedin.com/pulse/limbic-thought-artificial-intelligence-siddharth-sid-pai/

An AI programme “catastrophically forgets” the learnings from its first set of data and would have to be retrained from scratch with new data. The website futurism.com says a completely new set of algorithms would have to be written for a programme that has mastered face recognition, if it is now also expected to recognize emotions. Data on emotions would have to be manually relabelled and then fed into this completely different algorithm for the altered programme to have any use. The original facial recognition programme would have “catastrophically forgotten” the things it learnt about facial recognition as it takes on new code for recognizing emotions. According to the website, this is because computer programmes cannot understand the underlying logic that they have been coded with.
Irina Higgins, a senior researcher at Google DeepMind, has recently announced that she and her team have begun to crack the code on “catastrophic forgetting”.
As far as I am concerned, this limbic thinking is “catastrophic thinking” which is the only true antipode to AI’s “catastrophic forgetting”. It will be eons before AI thinks with a limbic brain, let alone has consciousness.
++++++++++++++++++

Stephen Hawking warns artificial intelligence could end mankind

https://www.bbc.com/news/technology-30290540
++++++++++++++++++++
thank you Sarnath Ramnat (sarnath@stcloudstate.edu) for the finding

An AI Wake-Up Call From Ancient Greece

  https://www.project-syndicate.org/commentary/artificial-intelligence-pandoras-box-by-adrienne-mayor-2018-10

++++++++++++++++++++
more on AI in this IMS blog
http://blog.stcloudstate.edu/ims?s=artifical+intelligence

coding ethics unpredictability

Franken-algorithms: the deadly consequences of unpredictable code

by  Thu 30 Aug 2018 

https://www.theguardian.com/technology/2018/aug/29/coding-algorithms-frankenalgos-program-danger

Between the “dumb” fixed algorithms and true AI lies the problematic halfway house we’ve already entered with scarcely a thought and almost no debate, much less agreement as to aims, ethics, safety, best practice. If the algorithms around us are not yet intelligent, meaning able to independently say “that calculation/course of action doesn’t look right: I’ll do it again”, they are nonetheless starting to learn from their environments. And once an algorithm is learning, we no longer know to any degree of certainty what its rules and parameters are. At which point we can’t be certain of how it will interact with other algorithms, the physical world, or us. Where the “dumb” fixed algorithms – complex, opaque and inured to real time monitoring as they can be – are in principle predictable and interrogable, these ones are not. After a time in the wild, we no longer know what they are: they have the potential to become erratic. We might be tempted to call these “frankenalgos” – though Mary Shelley couldn’t have made this up.

Twenty years ago, George Dyson anticipated much of what is happening today in his classic book Darwin Among the Machines. The problem, he tells me, is that we’re building systems that are beyond our intellectual means to control. We believe that if a system is deterministic (acting according to fixed rules, this being the definition of an algorithm) it is predictable – and that what is predictable can be controlled. Both assumptions turn out to be wrong.“It’s proceeding on its own, in little bits and pieces,” he says. “What I was obsessed with 20 years ago that has completely taken over the world today are multicellular, metazoan digital organisms, the same way we see in biology, where you have all these pieces of code running on people’s iPhones, and collectively it acts like one multicellular organism.“There’s this old law called Ashby’s law that says a control system has to be as complex as the system it’s controlling, and we’re running into that at full speed now, with this huge push to build self-driving cars where the software has to have a complete model of everything, and almost by definition we’re not going to understand it. Because any model that we understand is gonna do the thing like run into a fire truck ’cause we forgot to put in the fire truck.”

Walsh believes this makes it more, not less, important that the public learn about programming, because the more alienated we become from it, the more it seems like magic beyond our ability to affect. When shown the definition of “algorithm” given earlier in this piece, he found it incomplete, commenting: “I would suggest the problem is that algorithm now means any large, complex decision making software system and the larger environment in which it is embedded, which makes them even more unpredictable.” A chilling thought indeed. Accordingly, he believes ethics to be the new frontier in tech, foreseeing “a golden age for philosophy” – a view with which Eugene Spafford of Purdue University, a cybersecurity expert, concurs. Where there are choices to be made, that’s where ethics comes in.

our existing system of tort law, which requires proof of intention or negligence, will need to be rethought. A dog is not held legally responsible for biting you; its owner might be, but only if the dog’s action is thought foreseeable.

model-based programming, in which machines do most of the coding work and are able to test as they go.

As we wait for a technological answer to the problem of soaring algorithmic entanglement, there are precautions we can take. Paul Wilmott, a British expert in quantitative analysis and vocal critic of high frequency trading on the stock market, wryly suggests “learning to shoot, make jam and knit

The venerable Association for Computing Machinery has updated its code of ethics along the lines of medicine’s Hippocratic oath, to instruct computing professionals to do no harm and consider the wider impacts of their work.

+++++++++++
more on coding in this IMS blog
http://blog.stcloudstate.edu/ims?s=coding

NMC Horizon Report 2017 K12

NMC/CoSN Horizon Report 2017 K–12 Edition

https://cdn.nmc.org/wp-content/uploads/2017-nmc-cosn-horizon-report-K12-advance.pdf
p. 16 Growing Focus on Measuring Learning
p. 18 Redesigning Learning Spaces
Biophilic Design for Schools : The innate tendency in human beings to focus on life and lifelike processes is biophilia

p. 20 Coding as a Literacy

 https://www.facebook.com/bracekids/
Best Coding Tools for High School http://go.nmc.org/bestco

p. 24

Significant Challenges Impeding Technology Adoption in K–12 Education
Improving Digital Literacy.
 Schools are charged with developing students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online etiquette and digital rights and responsibilities in blended and online learning settings. Due to the multitude of elements comprising digital literacy, it is a challenge for schools to implement a comprehensive and cohesive approach to embedding it in curricula.
Rethinking the Roles of Teachers.
Pre-service teacher training programs are also challenged to equip educators with digital and social–emotional competencies, such as the ability to analyze and use student data, amid other professional requirements to ensure classroom readiness.
p. 28 Improving Digital Literacy
Digital literacy spans across subjects and grades, taking a school-wide effort to embed it in curricula. This can ensure that students are empowered to adapt in a quickly changing world
Education Overview: Digital Literacy Has to Encompass More Than Social Use

What Web Literacy Skills are Missing from Learning Standards? Are current learning standards addressing the essential web literacy skills everyone should know?https://medium.com/read-write-participate/what-essential-web-skills-are-missing-from-current-learning-standards-66e1b6e99c72

 

web literacy;
alignment of stadards

The American Library Association (ALA) defines digital literacy as “the ability to use information and communication technologies to find, evaluate, create, and communicate or share information, requiring both cognitive and technical skills.” While the ALA’s definition does align to some of the skills in “Participate”, it does not specifically mention the skills related to the “Open Practice.”

The library community’s digital and information literacy standards do not specifically include the coding, revision and remixing of digital content as skills required for creating digital information. Most digital content created for the web is “dynamic,” rather than fixed, and coding and remixing skills are needed to create new content and refresh or repurpose existing content. Leaving out these critical skills ignores the fact that library professionals need to be able to build and contribute online content to the ever-changing Internet.

p. 30 Rethinking the Roles of Teachers

Teachers implementing new games and software learn alongside students, which requires
a degree of risk on the teacher’s part as they try new methods and learn what works
p. 32 Teaching Computational Thinking
p. 36 Sustaining Innovation through Leadership Changes
shift the role of teachers from depositors of knowledge to mentors working alongside students;
p. 38  Important Developments in Educational Technology for K–12 Education
Consumer technologies are tools created for recreational and professional purposes and were not designed, at least initially, for educational use — though they may serve well as learning aids and be quite adaptable for use in schools.
Drones > Real-Time Communication Tools > Robotics > Wearable Technology
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching and learning, whether inside or outside the classroom.
> Games and Gamification > Location Intelligence > Makerspaces > Preservation and Conservation Technologies
Enabling technologies are those technologies that have the potential to transform what we expect of our devices and tools. The link to learning in this category is less easy to make, but this group of technologies is where substantive technological innovation begins to be visible. Enabling technologies expand the reach of our tools, making them more capable and useful
Affective Computing > Analytics Technologies > Artificial Intelligence > Dynamic Spectrum and TV White Spaces > Electrovibration > Flexible Displays > Mesh Networks > Mobile Broadband > Natural User Interfaces > Near Field Communication > Next Generation Batteries > Open Hardware > Software-Defined Networking > Speech-to-Speech Translation > Virtual Assistants > Wireless Powe
Internet technologies include techniques and essential infrastructure that help to make the technologies underlying how we interact with the network more transparent, less obtrusive, and easier to use.
Bibliometrics and Citation Technologies > Blockchain > Digital Scholarship Technologies > Internet of Things > Syndication Tools
Learning technologies include both tools and resources developed expressly for the education sector, as well as pathways of development that may include tools adapted from other purposes that are matched with strategies to make them useful for learning.
Adaptive Learning Technologies > Microlearning Technologies > Mobile Learning > Online Learning > Virtual and Remote Laboratories
Social media technologies could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category.
Crowdsourcing > Online Identity > Social Networks > Virtual Worlds
Visualization technologies run the gamut from simple infographics to complex forms of visual data analysis
3D Printing > GIS/Mapping > Information Visualization > Mixed Reality > Virtual Reality
p. 46 Virtual Reality
p. 48 AI
p. 50 IoT

+++++++++++++++
more on NMC Horizon Reports in this IMS blog

http://blog.stcloudstate.edu/ims?s=new+media+horizon

disruptive technologies higher ed

The top 5 disruptive technologies in higher ed

By Leigh M. and Thomas Goldrick June 5th, 2017
The Internet of Things (IoT), augmented reality, and advancements in online learning have changed the way universities reach prospective students, engage with their current student body, and provide them the resources they need.
Online Learning
Despite online learning’s successes, many still believe that it lacks the interaction of its in-person counterpart. However, innovations in pedagogical strategy and technology are helping make it much more engaging.

Competency-based Education

Competency-based education (CBE) recognizes that all students enter a program with different skills and proficiencies and that each moves at a different rate. We now possess the technology to better measure these differences and design adaptive learning programs accordingly. These programs aim to increase student engagement, as time is spent expanding on what the students already know rather than having them relearn familiar material.

The Internet of Things

The Internet of Things has opened up a whole new world of possibilities in higher education. The increased connectivity between devices and “everyday things” means better data tracking and analytics, and improved communication between student, professor, and institution, often without ever saying a word. IoT is making it easier for students to learn when, how, and where they want, while providing professors support to create a more flexible and connected learning environment.

Virtual/Augmented Reality

Virtual and augmented reality technologies have begun to take Higher Ed into the realm of what used to be considered science fiction.

More often than not, they require significant planning and investment into the infrastructure needed to support them.

Artificial Intelligence

an A.I. professor’s assistant or an online learning platform that adapts to each student’s specific needs. Having artificial intelligence that learns and improves as it aids in the learning process could have a far-reaching effect on higher education both online and in-person.

+++++++++++++++++++++
more on disruptive technologies in this IMS blog
https://blog.stcloudstate.edu/ims?s=disruptive+technologies

AI

The Deep Mind of Dennis Hassabis

In the race to recruit the best AI talent, Google scored a coup by getting the team led by a former video game guru and chess prodigy

https://medium.com/backchannel/the-deep-mind-of-demis-hassabis-156112890d8a

the only path to developing really powerful AI would be to use this unstructured information. It’s also called unsupervised learning— you just give it data and it learns by itself what to do with it, what the structure is, what the insights are.

One of the people you work with at Google is Geoff Hinton, a pioneer of neural networks. Has his work been crucial to yours?

Sure. He had this big paper in 2006 that rejuvenated this whole area. And he introduced this idea of deep neural networks—Deep Learning. The other big thing that we have here is reinforcement learning, which we think is equally important. A lot of what Deep Mind has done so far is combining those two promising areas of research together in a really fundamental way. And that’s resulted in the Atari game player, which really is the first demonstration of an agent that goes from pixels to action, as we call it.