Posts Tagged ‘AR’

AR and PokemonGo

GOTTACATCHEMALL:EXPLORING POKEMON GO IN SEARCH OF LEARNING ENHANCEMENT OBJECTS
Annamaria Cacchione, Emma Procter-Legg and Sobah Abbas Petersen
Universidad Complutense de Madrid, Facultad de Filologia, Av.da Complutense sn, 28040 Madrid, Spain Independent; Abingdon, Oxon, UK SINTEF Technology and Society, Trondheim, Norway
https://www.academia.edu/30254871/_GOTTACATCHEMALL_EXPLORING_POKEMON_GO_IN_SEARCH_OF_LEARNING_ENHANCEMENT_OBJECTS
KEYWORDS
Pokemon Go, MALL, Learning, Augmented Reality, Gamification, Situated learning
ABSTRACT
The Augmented Reality Game, Pokemon Go, took the world by storm in the summer of 2016. City landscapes were decorated with amusing, colourful objects called Pokemon, and the holiday activities were enhanced by catching these wonderful creatures. In light of this, it is inevitable for mobile language learning researchers to reflect on the impact oft his game on learning and how it may be leveraged to enhance the design of mobile and ubiquitous technologies for mobile and situated language learning. This paper analyses the game Pokemon Go and the players’ experiences accordingto a framework developed for evaluating mobile language learning and discusses how Pokemon Go can help to meetsome of the challenges faced by earlier research activities.
A comparison between PG and Geocashing will illustrate the evolution of the concept of location-based games a concept that is very close to that of situated learning that we have explored in several previous works. 
Pokémon Go is a free, location-based augmented reality game developed for mobile devices. Players useGPS on their mobile device to locate, capture, battle, and train virtual creatures (a.k.a. Pokémon), whichappear on screen overlaying the image seen through the device’s camera. This makes it seem like thePokemon are in the same real-world location as the player
“Put simply, augmented reality is a technology that overlays computer generated visuals over the real worldthrough a device camera bringing your surroundings to life and interacting with sensors such as location and heart rate to provide additional information” (Ramirez, 2014).
Apply the evaluation framework developed in 2015 for mobile learning applications(Cacchione, Procter-Legg, Petersen, & Winter, 2015). The framework is composed of a set offactors of different nature neuroscientific, technological, organisational and pedagogical and aim to provide a comprehensive account  of what plays a major role in ensuring effective learning via mobile devices

immersive learning

VR and AR: Learners as Creators and World Builders of Our Immersive Future

Friday, December 15, 2017https://er.educause.edu/blogs/2017/12/vr-and-ar-learners-as-creators-and-world-builders-of-our-immersive-future

By creating engaging 360° tours, students are not only learning these new tools for themselves but are also helping local organizations see the possibility of VR for marketing and public relations.

some key takeaways from the projects that we have seen:

  • Let the students lead: In all of these projects, students are taking the initiative. The institutions are providing the technology, the space, organizational vision, and in some cases, academic credit. At NYU Tandon, students organized the entire conference, doing publicity, registration, catering, and scheduling (see figure 4). They brought in a diverse group of speakers from academic, tech, and startup backgrounds. The event included TED-style spotlights, talks, workshops, and demos.
  • Don’t compromise on space: Brown University’s Granoff Center for the Creative Arts is designed to encourage cross-discipline collaboration. The Tandon event used the main auditorium and the flagship NYU MakerSpace. Space influences behavior and is crucial in driving collaboration and active participation. In addition, to produce VR and AR/MR experiences students need access to high-end technology and, in some cases, motion-capture studios and 360° cameras.
  • Create opportunities for social impact: Many of these programs are open to the local community or have been designed to have an impact outside higher education. At Emporia State, students are using VR and 360° video to help local businesses. The Gaspee Affair VR experience at Brown University will become a resource for teaching middle and high school students.
  • Showcase student work: So often in education, the work students do in a course is only seen by others in the same class. Like the example at Texas A&M, all of these experiences have a connection with their campus or larger community. VR and AR engender a level of excitement that gets students engaged with each other and encourage peer learning. It’s worth it to seek out opportunities to bring this work to community events.

+++++++++
more on VR in education in this IMS blog

http://blog.stcloudstate.edu/ims?s=virtual+reality+education

VR and students with special needs

Bibliography on virtual reality and students with physical and cognitive disabilities

Jeffs, T. L. (2009). Virtual Reality and Special Needs. Themes In Science And Technology Education2(1-2), 253-268.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ1131319%26site%3dehost-live%26scope%3dsite

Lahav, O., Sharkey, P., & Merrick, J. (2014). Virtual and augmented reality environments for people with special needs. International Journal Of Child Health And Human Development7(4), 337-338.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2015-10704-001%26site%3dehost-live%26scope%3dsite

Cai, Y., Chiew, R., Nay, Z. T., Indhumathi, C., & Huang, L. (2017). Design and development of VR learning environments for children with ASD. Interactive Learning Environments25(8), 1098-1109. doi:10.1080/10494820.2017.1282877

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d125723945%26site%3dehost-live%26scope%3dsite

Passig, D. (2011). The Impact of Immersive Virtual Reality on Educators’ Awareness of the Cognitive Experiences of Pupils with Dyslexia. Teachers College Record113(1), 181-204.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ913420%26site%3dehost-live%26scope%3dsite

Ke, F., & Im, T. (2013). Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism. Journal Of Educational Research106(6), 441-461. doi:10.1080/00220671.2013.832999

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d90465242%26site%3dehost-live%26scope%3dsite

Collins, J., Hoermann, S., & Regenbrecht, H. (2016). Comparing a finger dexterity assessment in virtual, video-mediated, and unmediated reality. International Journal Of Child Health And Human Development9(3), 333-341.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-009%26site%3dehost-live%26scope%3dsite

Epure, P., Gheorghe, C., Nissen, T., Toader, L. O., Macovei, A. N., Nielsen, S. M., & … Brooks, E. P. (2016). Effect of the Oculus Rift head mounted display on postural stability. International Journal Of Child Health And Human Development9(3), 343-350.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-010%26site%3dehost-live%26scope%3dsite

Sánchez, J., & Espinoza, M. (2016). Usability and redesign of a university entrance test based on audio for learners who are blind. International Journal Of Child Health And Human Development9(3), 379-387.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-014%26site%3dehost-live%26scope%3dsite

Rizzo, A. A., Bowerly, T., Shahabi, C., Buckwalter, J. G., Klimchuk, D., & Mitura, R. (2004). Diagnosing Attention Disorders in a Virtual Classroom. Computer (00189162)37(6), 87-89.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d13425208%26site%3dehost-live%26scope%3dsite

Eden, S. (2008). The effect of 3D virtual reality on sequential time perception among deaf and hard-of-hearing children. European Journal Of Special Needs Education23(4), 349-363. doi:10.1080/08856250802387315

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d34716698%26site%3dehost-live%26scope%3dsite

Eden, S., & Bezer, M. (2011). Three-dimensions vs. two-dimensions intervention programs: the effect on the mediation level and behavioural aspects of children with intellectual disability. European Journal Of Special Needs Education26(3), 337-353. doi:10.1080/08856257.2011.593827

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d65025967%26site%3dehost-live%26scope%3dsite

Lorenzo, G., Lledó, A., Roig, R., Lorenzo, A., & Pomares, J. (2016). New Educational Challenges and Innovations: Students with Disability in Immersive Learning Environments. In Virtual Learning. InTech. https://doi.org/10.5772/65219

https://www.intechopen.com/books/virtual-learning/new-educational-challenges-and-innovations-students-with-disability-in-immersive-learning-environmen

+++++++++++++
more on virtual reality in this IMS blog
http://blog.stcloudstate.edu/ims?s=virtual+reality

VR headset future

VR’s future depends on you buying a dorky headset

Oculus, the VR company that Mark Zuckerberg bought for more than $2 billion, has a problem: It’s struggling to convince people to buy its gear.

https://www.cnet.com/news/vr-virtual-reality-future-depends-on-you-buying-a-dorky-headset-oculus-zuckerberg-playstation-vive/

Oculus Connect, starting Wednesday in San Jose, California. Facebook’s Oculus VR division promises discussions on how health care, movies and video games are adapting to this still nascent technology. One panel will explore how the disability community can benefit from VR gear and presentations.

Facebook chief competitors, Sony and HTC, followed suit. The PlayStation VR dropped to $400 from $500, and the Vive dropped to $599 from $799 all in the past three months.

Survios made Raw Data more widely available for Oculus, Vive and PlayStation VR. Survios is also looking beyond VR for customers, redesigning Raw Data to work in arcades as well.

Over the summer, Apple and Google announced new technologies called ARKit and ARCore, respectively, that are designed to help iPhones and iPads or any device powered by Google’s Android software marry computer-generated images with the real world.

A $2.99 app, Star Guide AR, highlights stars and constellations in the sky once you point your phone at them. Another, Ikea Place, previews furniture in your home with a tap. Walk around your living room and you can see the furniture you placed while looking through the screen on your phone. So far, both are available only for the iPhone.

App developers I spoke with say they’re excited by augmented reality and believe it may help spur people to buy VR systems as well.

Microsoft’s focusing on both AR and VR. In an October update to its Windows 10 software for PCs, the company is partnering with device makers like Lenovo, Dell, HP, Acer and Samsung to create headsets based on its designs. They’ll sell for as little as $300 each when they begin hitting store shelves Oct. 17.

++++++++++++
more on virtual reality in this IMS blog
http://blog.stcloudstate.edu/ims?s=virtual+reality

VR and AR doubles each year

Report: VR and AR to Double Each Year Through 2021

By Joshua Bolkan  08/07/17

https://thejournal.com/articles/2017/08/07/report-vr-and-ar-to-double-each-year-through-2021.aspx

a new forecast from International Data Corp. (IDC).

Canada will see the fastest growth, with a CAGR of 145.2 percent over the forecast period. Other leaders in terms of growth include Central and Eastern Europe at 133.5 percent, Western Europe at 121.2 percent and the U.S. at 120.5 percent.

+++++++++++++++

Leslie Fisher Thinks Augmented Reality First, Then VR in the Classroom

An interview with the former Apple K–12 systems engineer, who will participate in multiple sessions during ISTE.

By Richard Chang 05/12/17

https://thejournal.com/Articles/2017/05/12/Leslie-Fisher-Presents-at-Ed-Tech-Conferences-for-a-Living.aspx

THE Journal: What do you think about virtual reality (VR) and augmented reality (AR) in the classroom? Is the cost point for VR prohibitive?

In virtual reality, one of my favorite apps is CoSpaces. It allows anyone to design a 3D space, and then interact with it in virtual reality.

Virtual reality can be quite affordable with Google Cardboard. We can get into basic interaction in VR with Cardboard. There are 40 or 50 VR apps where you can simply use Cardboard and explore. Google Street View allows you to do virtual viewing of many different locations. That technology augments what the teacher is doing.

Most kids can’t afford to buy their own Oculus headset. That price point is quite a bit higher. But we don’t need to have 30 kids using Oculus all of the time. Two or three might work

+++++++++++++++
more on VR and AR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

VR and ER tech developments

A New World: VR and AR Tech Developments

Authors: by Emory Craig and Maya Georgieva Monday, July 17, 2017

http://er.educause.edu/blogs/2017/7/a-new-world-vr-and-ar-tech-developments

device available on campus

We’re now seeing a move toward mid-range, standalone VR headsets with everything built into the device. Some include their own processors, while others, like the forthcoming Microsoft headset, will work with current desktops. Microsoft’s device claims to do both VR and a modified version of mixed reality

The low end of the VR spectrum has been dominated by Google Cardboard, with over 10 million distributed

headsets

Augmented Reality

AR burst into the public’s consciousness with the Pokemon Go craze in 2016. And Snap (formerly Snapchat) expanded the range of their social media platform with the release of Spectacles, their wearable glasses and World Lens filters that add digital objects to your environment. A second version of Spectacles may include far more extensive AR capabilities.

At Facebook’s spring F8 conference, Mark Zuckerberg made the case that our mobile cameras will be the first popular AR platform. Apple just announced ARKit for iOS at their June WWDC developers conference.

Mixed Reality

Meta Glasses has been developing its own mixed reality unit that offers a wider field of view than the 40° of HoloLens. And Intel’s Project Alloy promises a “Merged Reality” headset prototype combining both VR and AR by the end of this year.

Kickstarter Projects

Aryzon which is creating a Google Cardboard-like device for simple AR experiences. Another is the NOLO Project, which offers an HTC Vive-like experience with full freedom of movement using only a plastic headset and your phone.

++++++++++++++++++
Google Glass 2.0
http://www.telegraph.co.uk/technology/2017/07/19/google-brings-back-much-maligned-google-glass-headset/

https://motherboard.vice.com/en_us/article/nevkgb/google-glass-adopters-on-glass-enterprise

https://www.wired.com/story/google-glass-2-is-here/

+++++++++++++++++++++

Top 5 Vendors in Global AR Education Market

https://thejournal.com/articles/2017/07/14/report-top-5-vendors-in-global-ar-education-market.aspx

Market research firm Technavio has identified the top five vendors in the global augmented reality (AR) in education market. The companies are EON Reality, DAQRI, GAMOOZ, Magic Leap and QuiverVision, according to a newly published report.

+++++++++++++++
more on VR in this IMS blog
http://blog.stcloudstate.edu/ims?s=virtual+reality

disruptive technologies higher ed

The top 5 disruptive technologies in higher ed

By Leigh M. and Thomas Goldrick June 5th, 2017
The Internet of Things (IoT), augmented reality, and advancements in online learning have changed the way universities reach prospective students, engage with their current student body, and provide them the resources they need.
Online Learning
Despite online learning’s successes, many still believe that it lacks the interaction of its in-person counterpart. However, innovations in pedagogical strategy and technology are helping make it much more engaging.

Competency-based Education

Competency-based education (CBE) recognizes that all students enter a program with different skills and proficiencies and that each moves at a different rate. We now possess the technology to better measure these differences and design adaptive learning programs accordingly. These programs aim to increase student engagement, as time is spent expanding on what the students already know rather than having them relearn familiar material.

The Internet of Things

The Internet of Things has opened up a whole new world of possibilities in higher education. The increased connectivity between devices and “everyday things” means better data tracking and analytics, and improved communication between student, professor, and institution, often without ever saying a word. IoT is making it easier for students to learn when, how, and where they want, while providing professors support to create a more flexible and connected learning environment.

Virtual/Augmented Reality

Virtual and augmented reality technologies have begun to take Higher Ed into the realm of what used to be considered science fiction.

More often than not, they require significant planning and investment into the infrastructure needed to support them.

Artificial Intelligence

an A.I. professor’s assistant or an online learning platform that adapts to each student’s specific needs. Having artificial intelligence that learns and improves as it aids in the learning process could have a far-reaching effect on higher education both online and in-person.

+++++++++++++++++++++
more on disruptive technologies in this IMS blog
https://blog.stcloudstate.edu/ims?s=disruptive+technologies

1 2 3