Posts Tagged ‘big data in education’

Facial Recognition issues

Chinese Facial Recognition Will Take over the World in 2019

Michael K. Spencer Jan 14, 2018
https://medium.com/futuresin/chinese-facial-recognition-will-take-over-the-world-in-2019-520754a7f966
The best facial recognition startups are in China, by a long-shot. As their software is less biased, global adoption is occurring via their software. This is evidenced in 2019 by the New York Police department in NYC for example, according to the South China Morning Post.
The mass surveillance state of data harvesting in real-time is coming. Facebook already rates and profiles us.

The Tech Wars come down to an AI-War

Whether the NYC police angle is true or not (it’s being hotly disputed), Facebook and Google are thinking along lines that follow the whims of the Chinese Government.

SenseTime and Megvii won’t just be worth $5 Billion, they will be worth many times that in the future. This is because a facial recognition data-harvesting of everything is the future of consumerism and capitalism, and in some places, the central tenet of social order (think Asia).

China has already ‘won’ the trade-war, because its winning the race to innovation. America doesn’t regulate Amazon, Microsoft, Google or Facebook properly, that stunts innovation and ethics in technology where the West is now forced to copy China just to keep up.

+++++++++++++
more about facial recognition in schools
http://blog.stcloudstate.edu/ims/2019/02/02/facial-recognition-technology-in-schools/

Data Use and School Leaders

Five Questions About Data Use for School Leaders

https://blogs.edweek.org/edweek/rick_hess_straight_up/2018/08/five_questions_about_data_use_for_school_leaders.html

Anna Egalite, assistant professor of leadership and policy at NC State. Previously, Anna taught elementary school and did a postdoc at Harvard. She’ll be writing about education-leadership research—what we know, where we have good intuitions, and where we’re still very much in the dark. 

It’s back-to-school time and education reporters are highlighting stories about how school leaders are “leaning on data” to promote student learning, making administrative decisions that are “supported by a data-driven process,” and drawing on their experience in “data-driven instruction.”

++++++++++++++
more on data use and ed leaders in this IMS blog
http://blog.stcloudstate.edu/ims?s=data+ed+leaders

blockchain and higher ed

Blockchain in brief: Six ways it can transform higher education

by Danielle Yardy

https://www.eab.com/blogs/it-forum-perspectives/2018/01/blockchain-higher-education-uses

1. Using a blockchain for automatic recognition and transfer of credits

The decline in first-time, first-year student enrollments is having a real financial impact on a number of institutions across the United States and focusing on transfer students (a pool of prospects twice as large) has become an important strategy for many. But credit articulation presents a real challenge for institutions bringing in students from community colleges. While setting standardized articulation requirements across the nation presents a high hurdle, blockchain-supported initiatives may hold great promise for university and city education systems looking to streamline educational mobility in their communities.

2. Blockchains for tracking intellectual property and rewarding use and re-use of that property

If researchers were able to publish openly and accurately assess the use of their resources, the access-prohibitive costs of academic book and journal publications could be circumvented, whether for research- or teaching-oriented outputs. Accurately tracking the sharing of knowledge without restrictions has transformative potential for open-education models.

3. Using verified sovereign identities for student identification within educational organizations

The data footprint of higher education institutions is enormous. With FERPA regulations as well as local and international requirements for the storage and distribution of Personally Identifiable Information (PII), maintaining this data in various institutional silos magnifies the risk associated with a data breach. Using sovereign identities to limit the proliferation of personal data promotes better data hygiene and data lifecycle management and could realize significant efficiency gains at the institutional level.

Best practices to become data-driven 

4. Using a blockchain as a lifelong learning passport

Educational institutions and private businesses partner with online course delivery giants to extend the reach of their educational services and priorities. Traditional educational routes are increasingly less normal and in this expanding world of providers, the need for verifiable credentials from a number of sources is growing. Producing a form of digitally “verifiable CVs” would limit credential fraud, and significantly reduce organizational workload in credential verification.

5. Using blockchains to permanently secure certificates

The open source solution Blockcerts already enables signed certificates to be posted to a blockchain and supports the verification of those certificates by third parties.

When an institution issues official transcripts, obtaining copies can be expensive and burdensome for graduates. But student-owned digital transcripts put the power of secure verification in the hands of learners, eliminating the need for lengthy and costly transcripts to further their professional or educational pursuits. An early mover, Central New Mexico Community College, debuted digital diplomas on the blockchain in December of 2017.

6. Using blockchains to verify multi-step accreditation

As different accreditors recognize different forms of credentials and a growing diversity of educational providers issue credentials, checking the ‘pedigree’ of a qualification can be laborious. Turning a certification verification process from a multi-stage research effort into a single-click process will automate many thousands of labor hours for organizations and institutions

++++++++++
more on blockchain and higher ed in this IMS blog
http://blog.stcloudstate.edu/ims?s=blockchain+education

Borgman data

book reviews:
https://bobmorris.biz/big-data-little-data-no-data-a-book-review-by-bob-morris
“The challenge is to make data discoverable, usable, assessable, intelligible, and interpretable, and do so for extended periods of time…To restate the premise of this book, the value of data lies in their use. Unless stakeholders can agree on what to keep and why, and invest in the invisible work necessary to sustain knowledge infrastructures, big data and little data alike will become no data.”
http://www.cjc-online.ca/index.php/journal/article/view/3152/3337
he premise that data are not natural objects with their own essence, Borgman rather explores the different values assigned to them, as well as their many variations according to place, time, and the context in which they are collected. It is specifically through six “provocations” that she offers a deep engagement with different aspects of the knowledge industry. These include the reproducibility, sharing, and reuse of data; the transmission and publication of knowledge; the stability of scholarly knowledge, despite its increasing proliferation of forms and modes; the very porosity of the borders between different areas of knowledge; the costs, benefits, risks, and responsibilities related to knowledge infrastructure; and finally, investment in the sustainable acquisition and exploitation of data for scientific research.
beyond the six provocations, there is a larger question concerning the legitimacy, continuity, and durability of all scientific research—hence the urgent need for further reflection, initiated eloquently by Borgman, on the fact that “despite the media hyperbole, having the right data is usually better than having more data”
o Data management (Pages xviii-xix)
o Data definition (4-5 and 18-29)
p. 5 big data and little data are only awkwardly analogous to big science and little science. Modern science, or big science inDerek J. de Solla Price  (https://en.wikipedia.org/wiki/Big_Science) is characterized by international, collaborative efforts and by the invisible colleges of researchers who know each other and who exchange information on a formal and informal basis. Little science is the three hundred years of independent, smaller-scale work to develop theory and method for understanding research problems. Little science is typified by heterogeneous methods, heterogeneous data and by local control and analysis.
p. 8 The Long Tail
a popular way of characterizing the availability and use of data in research areas or in economic sectors. https://en.wikipedia.org/wiki/Long_tail

o Provocations (13-15)
o Digital data collections (21-26)
o Knowledge infrastructures (32-35)
o Open access to research (39-42)
o Open technologies (45-47)
o Metadata (65-70 and 79-80)
o Common resources in astronomy (71-76)
o Ethics (77-79)
o Research Methods and data practices, and, Sensor-networked science and technology (84-85 and 106-113)
o Knowledge infrastructures (94-100)
o COMPLETE survey (102-106)
o Internet surveys (128-143)
o Internet survey (128-143)
o Twitter (130-133, 138-141, and 157-158(
o Pisa Clark/CLAROS project (179-185)
o Collecting Data, Analyzing Data, and Publishing Findings (181-184)
o Buddhist studies 186-200)
o Data citation (241-268)
o Negotiating authorship credit (253-256)
o Personal names (258-261)
o Citation metrics (266-209)
o Access to data (279-283)

++++++++++++++++
more on big data in education in this IMS blog
http://blog.stcloudstate.edu/ims?s=big+data

IT issues in 2018

EDUCAUSE: The top 10 IT issues in 2018

BY MERIS STANSBURY November 6th, 2017 https://www.ecampusnews.com/campus-administration/educause-top-10-issues-2018/

Security once again tops the list of EDUCAUSE’s Top 10 IT Issues in higher education. A focus on student success and programming becomes prominent.

 the 2017 issues here.

The Top 10 IT issues for 2018

1. Information security: Developing a risk-based security strategy that keeps pace with security threats and challenges.

2. Student success: Managing the system implementations and integrations that support multiple student success initiatives.

3. Institution-wide IT strategy: Repositioning or reinforcing the role of IT leadership as an integral strategic partner of institutional leadership in achieving institutions missions.

4. Data-enabled institutional culture: Using BI and analytics to inform the broad conversation and answer big questions.

5. Student-centered institution: Understanding and advancing technology’s role in defining the student experience on campus (from applicants to alumni).

6. Higher education affordability: Balancing and rightsizing IT priorities and budget to support IT-enabled institutional efficiencies and innovations in the context if institutional funding realities.

7. IT staffing and organizational models: Ensuring adequate staffing capacity and staff retention in the face of retirements, new sourcing models, growing external competition, rising salaries, and the demands of technology initiatives on both IT and non-IT staff.

8. (tie) Data management and governance: Implementing effective institutional data governance practices.

9. (tie) Digital integrations: Ensuring system interoperability, scalability, and extensibility, as well as data integrity, standards, and governance, across multiple applications and platforms.

10. Change leadership: Helping institutional constituents (including the IT staff) adapt to the increasing pace of technology change.

++++++++++++
more on EdUCause in this IMS blog
http://blog.stcloudstate.edu/ims?s=educause

IRDL proposal

Applications for the 2018 Institute will be accepted between December 1, 2017 and January 27, 2018. Scholars accepted to the program will be notified in early March 2018.

Title:

Learning to Harness Big Data in an Academic Library

Abstract (200)

Research on Big Data per se, as well as on the importance and organization of the process of Big Data collection and analysis, is well underway. The complexity of the process comprising “Big Data,” however, deprives organizations of ubiquitous “blue print.” The planning, structuring, administration and execution of the process of adopting Big Data in an organization, being that a corporate one or an educational one, remains an elusive one. No less elusive is the adoption of the Big Data practices among libraries themselves. Seeking the commonalities and differences in the adoption of Big Data practices among libraries may be a suitable start to help libraries transition to the adoption of Big Data and restructuring organizational and daily activities based on Big Data decisions.
Introduction to the problem. Limitations

The redefinition of humanities scholarship has received major attention in higher education. The advent of digital humanities challenges aspects of academic librarianship. Data literacy is a critical need for digital humanities in academia. The March 2016 Library Juice Academy Webinar led by John Russel exemplifies the efforts to help librarians become versed in obtaining programming skills, and respectively, handling data. Those are first steps on a rather long path of building a robust infrastructure to collect, analyze, and interpret data intelligently, so it can be utilized to restructure daily and strategic activities. Since the phenomenon of Big Data is young, there is a lack of blueprints on the organization of such infrastructure. A collection and sharing of best practices is an efficient approach to establishing a feasible plan for setting a library infrastructure for collection, analysis, and implementation of Big Data.
Limitations. This research can only organize the results from the responses of librarians and research into how libraries present themselves to the world in this arena. It may be able to make some rudimentary recommendations. However, based on each library’s specific goals and tasks, further research and work will be needed.

 

 

Research Literature

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”
– Dan Ariely, 2013  https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Big Data is becoming an omnipresent term. It is widespread among different disciplines in academia (De Mauro, Greco, & Grimaldi, 2016). This leads to “inconsistency in meanings and necessity for formal definitions” (De Mauro et al, 2016, p. 122). Similarly, to De Mauro et al (2016), Hashem, Yaqoob, Anuar, Mokhtar, Gani and Ullah Khan (2015) seek standardization of definitions. The main connected “themes” of this phenomenon must be identified and the connections to Library Science must be sought. A prerequisite for a comprehensive definition is the identification of Big Data methods. Bughin, Chui, Manyika (2011), Chen et al. (2012) and De Mauro et al (2015) single out the methods to complete the process of building a comprehensive definition.

In conjunction with identifying the methods, volume, velocity, and variety, as defined by Laney (2001), are the three properties of Big Data accepted across the literature. Daniel (2015) defines three stages in big data: collection, analysis, and visualization. According to Daniel, (2015), Big Data in higher education “connotes the interpretation of a wide range of administrative and operational data” (p. 910) and according to Hilbert (2013), as cited in Daniel (2015), Big Data “delivers a cost-effective prospect to improve decision making” (p. 911).

The importance of understanding the process of Big Data analytics is well understood in academic libraries. An example of such “administrative and operational” use for cost-effective improvement of decision making are the Finch & Flenner (2016) and Eaton (2017) case studies of the use of data visualization to assess an academic library collection and restructure the acquisition process. Sugimoto, Ding & Thelwall (2012) call for the discussion of Big Data for libraries. According to the 2017 NMC Horizon Report “Big Data has become a major focus of academic and research libraries due to the rapid evolution of data mining technologies and the proliferation of data sources like mobile devices and social media” (Adams, Becker, et al., 2017, p. 38).

Power (2014) elaborates on the complexity of Big Data in regard to decision-making and offers ideas for organizations on building a system to deal with Big Data. As explained by Boyd and Crawford (2012) and cited in De Mauro et al (2016), there is a danger of a new digital divide among organizations with different access and ability to process data. Moreover, Big Data impacts current organizational entities in their ability to reconsider their structure and organization. The complexity of institutions’ performance under the impact of Big Data is further complicated by the change of human behavior, because, arguably, Big Data affects human behavior itself (Schroeder, 2014).

De Mauro et al (2015) touch on the impact of Dig Data on libraries. The reorganization of academic libraries considering Big Data and the handling of Big Data by libraries is in a close conjunction with the reorganization of the entire campus and the handling of Big Data by the educational institution. In additional to the disruption posed by the Big Data phenomenon, higher education is facing global changes of economic, technological, social, and educational character. Daniel (2015) uses a chart to illustrate the complexity of these global trends. Parallel to the Big Data developments in America and Asia, the European Union is offering access to an EU open data portal (https://data.europa.eu/euodp/home ). Moreover, the Association of European Research Libraries expects under the H2020 program to increase “the digitization of cultural heritage, digital preservation, research data sharing, open access policies and the interoperability of research infrastructures” (Reilly, 2013).

The challenges posed by Big Data to human and social behavior (Schroeder, 2014) are no less significant to the impact of Big Data on learning. Cohen, Dolan, Dunlap, Hellerstein, & Welton (2009) propose a road map for “more conservative organizations” (p. 1492) to overcome their reservations and/or inability to handle Big Data and adopt a practical approach to the complexity of Big Data. Two Chinese researchers assert deep learning as the “set of machine learning techniques that learn multiple levels of representation in deep architectures (Chen & Lin, 2014, p. 515). Deep learning requires “new ways of thinking and transformative solutions (Chen & Lin, 2014, p. 523). Another pair of researchers from China present a broad overview of the various societal, business and administrative applications of Big Data, including a detailed account and definitions of the processes and tools accompanying Big Data analytics.  The American counterparts of these Chinese researchers are of the same opinion when it comes to “think about the core principles and concepts that underline the techniques, and also the systematic thinking” (Provost and Fawcett, 2013, p. 58). De Mauro, Greco, and Grimaldi (2016), similarly to Provost and Fawcett (2013) draw attention to the urgent necessity to train new types of specialists to work with such data. As early as 2012, Davenport and Patil (2012), as cited in Mauro et al (2016), envisioned hybrid specialists able to manage both technological knowledge and academic research. Similarly, Provost and Fawcett (2013) mention the efforts of “academic institutions scrambling to put together programs to train data scientists” (p. 51). Further, Asomoah, Sharda, Zadeh & Kalgotra (2017) share a specific plan on the design and delivery of a big data analytics course. At the same time, librarians working with data acknowledge the shortcomings in the profession, since librarians “are practitioners first and generally do not view usability as a primary job responsibility, usually lack the depth of research skills needed to carry out a fully valid” data-based research (Emanuel, 2013, p. 207).

Borgman (2015) devotes an entire book to data and scholarly research and goes beyond the already well-established facts regarding the importance of Big Data, the implications of Big Data and the technical, societal, and educational impact and complications posed by Big Data. Borgman elucidates the importance of knowledge infrastructure and the necessity to understand the importance and complexity of building such infrastructure, in order to be able to take advantage of Big Data. In a similar fashion, a team of Chinese scholars draws attention to the complexity of data mining and Big Data and the necessity to approach the issue in an organized fashion (Wu, Xhu, Wu, Ding, 2014).

Bruns (2013) shifts the conversation from the “macro” architecture of Big Data, as focused by Borgman (2015) and Wu et al (2014) and ponders over the influx and unprecedented opportunities for humanities in academia with the advent of Big Data. Does the seemingly ubiquitous omnipresence of Big Data mean for humanities a “railroading” into “scientificity”? How will research and publishing change with the advent of Big Data across academic disciplines?

Reyes (2015) shares her “skinny” approach to Big Data in education. She presents a comprehensive structure for educational institutions to shift “traditional” analytics to “learner-centered” analytics (p. 75) and identifies the participants in the Big Data process in the organization. The model is applicable for library use.

Being a new and unchartered territory, Big Data and Big Data analytics can pose ethical issues. Willis (2013) focusses on Big Data application in education, namely the ethical questions for higher education administrators and the expectations of Big Data analytics to predict students’ success.  Daries, Reich, Waldo, Young, and Whittinghill (2014) discuss rather similar issues regarding the balance between data and student privacy regulations. The privacy issues accompanying data are also discussed by Tene and Polonetsky, (2013).

Privacy issues are habitually connected to security and surveillance issues. Andrejevic and Gates (2014) point out in a decision making “generated by data mining, the focus is not on particular individuals but on aggregate outcomes” (p. 195). Van Dijck (2014) goes into further details regarding the perils posed by metadata and data to the society, in particular to the privacy of citizens. Bail (2014) addresses the same issue regarding the impact of Big Data on societal issues, but underlines the leading roles of cultural sociologists and their theories for the correct application of Big Data.

Library organizations have been traditional proponents of core democratic values such as protection of privacy and elucidation of related ethical questions (Miltenoff & Hauptman, 2005). In recent books about Big Data and libraries, ethical issues are important part of the discussion (Weiss, 2018). Library blogs also discuss these issues (Harper & Oltmann, 2017). An academic library’s role is to educate its patrons about those values. Sugimoto et al (2012) reflect on the need for discussion about Big Data in Library and Information Science. They clearly draw attention to the library “tradition of organizing, managing, retrieving, collecting, describing, and preserving information” (p.1) as well as library and information science being “a historically interdisciplinary and collaborative field, absorbing the knowledge of multiple domains and bringing the tools, techniques, and theories” (p. 1). Sugimoto et al (2012) sought a wide discussion among the library profession regarding the implications of Big Data on the profession, no differently from the activities in other fields (e.g., Wixom, Ariyachandra, Douglas, Goul, Gupta, Iyer, Kulkami, Mooney, Phillips-Wren, Turetken, 2014). A current Andrew Mellon Foundation grant for Visualizing Digital Scholarship in Libraries seeks an opportunity to view “both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets (Hwangbo, 2014).

The importance of the library with its traditional roles, as described by Sugimoto et al (2012) may continue, considering the Big Data platform proposed by Wu, Wu, Khabsa, Williams, Chen, Huang, Tuarob, Choudhury, Ororbia, Mitra, & Giles (2014). Such platforms will continue to emerge and be improved, with librarians as the ultimate drivers of such platforms and as the mediators between the patrons and the data generated by such platforms.

Every library needs to find its place in the large organization and in society in regard to this very new and very powerful phenomenon called Big Data. Libraries might not have the trained staff to become a leader in the process of organizing and building the complex mechanism of this new knowledge architecture, but librarians must educate and train themselves to be worthy participants in this new establishment.

 

Method

 

The study will be cleared by the SCSU IRB.
The survey will collect responses from library population and it readiness to use and use of Big Data.  Send survey URL to (academic?) libraries around the world.

Data will be processed through SPSS. Open ended results will be processed manually. The preliminary research design presupposes a mixed method approach.

The study will include the use of closed-ended survey response questions and open-ended questions.  The first part of the study (close ended, quantitative questions) will be completed online through online survey. Participants will be asked to complete the survey using a link they receive through e-mail.

Mixed methods research was defined by Johnson and Onwuegbuzie (2004) as “the class of research where the researcher mixes or combines quantitative and qualitative research techniques, methods, approaches, concepts, or language into a single study” (Johnson & Onwuegbuzie, 2004 , p. 17).  Quantitative and qualitative methods can be combined, if used to complement each other because the methods can measure different aspects of the research questions (Sale, Lohfeld, & Brazil, 2002).

 

Sampling design

 

  • Online survey of 10-15 question, with 3-5 demographic and the rest regarding the use of tools.
  • 1-2 open-ended questions at the end of the survey to probe for follow-up mixed method approach (an opportunity for qualitative study)
  • data analysis techniques: survey results will be exported to SPSS and analyzed accordingly. The final survey design will determine the appropriate statistical approach.

 

Project Schedule

 

Complete literature review and identify areas of interest – two months

Prepare and test instrument (survey) – month

IRB and other details – month

Generate a list of potential libraries to distribute survey – month

Contact libraries. Follow up and contact again, if necessary (low turnaround) – month

Collect, analyze data – two months

Write out data findings – month

Complete manuscript – month

Proofreading and other details – month

 

Significance of the work 

While it has been widely acknowledged that Big Data (and its handling) is changing higher education (http://blog.stcloudstate.edu/ims?s=big+data) as well as academic libraries (http://blog.stcloudstate.edu/ims/2016/03/29/analytics-in-education/), it remains nebulous how Big Data is handled in the academic library and, respectively, how it is related to the handling of Big Data on campus. Moreover, the visualization of Big Data between units on campus remains in progress, along with any policymaking based on the analysis of such data (hence the need for comprehensive visualization).

 

This research will aim to gain an understanding on: a. how librarians are handling Big Data; b. how are they relating their Big Data output to the campus output of Big Data and c. how librarians in particular and campus administration in general are tuning their practices based on the analysis.

Based on the survey returns (if there is a statistically significant return), this research might consider juxtaposing the practices from academic libraries, to practices from special libraries (especially corporate libraries), public and school libraries.

 

 

References:

 

Adams Becker, S., Cummins M, Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., … Wolfson, N. (2017). NMC Horizon Report: 2017 Library Edition.

Andrejevic, M., & Gates, K. (2014). Big Data Surveillance: Introduction. Surveillance & Society, 12(2), 185–196.

Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125

Bail, C. A. (2014). The cultural environment: measuring culture with big data. Theory and Society, 43(3–4), 465–482. https://doi.org/10.1007/s11186-014-9216-5

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press.

Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and academic scholarship. First Monday, 18(10). Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/4879

Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.

Chen, X. W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514–525. https://doi.org/10.1109/ACCESS.2014.2325029

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proc. VLDB Endow., 2(2), 1481–1492. https://doi.org/10.14778/1687553.1687576

Daniel, B. (2015). Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. https://doi.org/10.1111/bjet.12230

Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., … Chuang, I. (2014). Privacy, Anonymity, and Big Data in the Social Sciences. Commun. ACM, 57(9), 56–63. https://doi.org/10.1145/2643132

De Mauro, A. D., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644(1), 97–104. https://doi.org/10.1063/1.4907823

Dumbill, E. (2012). Making Sense of Big Data. Big Data, 1(1), 1–2. https://doi.org/10.1089/big.2012.1503

Eaton, M. (2017). Seeing Library Data: A Prototype Data Visualization Application for Librarians. Publications and Research. Retrieved from http://academicworks.cuny.edu/kb_pubs/115

Emanuel, J. (2013). Usability testing in libraries: methods, limitations, and implications. OCLC Systems & Services: International Digital Library Perspectives, 29(4), 204–217. https://doi.org/10.1108/OCLC-02-2013-0009

Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261. https://doi.org/10.1177/2043820613513121

Harper, L., & Oltmann, S. (2017, April 2). Big Data’s Impact on Privacy for Librarians and Information Professionals. Retrieved November 7, 2017, from https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47(Supplement C), 98–115. https://doi.org/10.1016/j.is.2014.07.006

Hwangbo, H. (2014, October 22). The future of collaboration: Large-scale visualization. Retrieved November 7, 2017, from http://usblogs.pwc.com/emerging-technology/the-future-of-collaboration-large-scale-visualization/

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and Variety.

Miltenoff, P., & Hauptman, R. (2005). Ethical dilemmas in libraries: an international perspective. The Electronic Library, 23(6), 664–670. https://doi.org/10.1108/02640470510635746

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015

Power, D. J. (2014). Using ‘Big Data’ for analytics and decision support. Journal of Decision Systems, 23(2), 222–228. https://doi.org/10.1080/12460125.2014.888848

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508

Reilly, S. (2013, December 12). What does Horizon 2020 mean for research libraries? Retrieved November 7, 2017, from http://libereurope.eu/blog/2013/12/12/what-does-horizon-2020-mean-for-research-libraries/

Reyes, J. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80. https://doi.org/10.1007/s11528-015-0842-1

Schroeder, R. (2014). Big Data and the brave new world of social media research. Big Data & Society, 1(2), 2053951714563194. https://doi.org/10.1177/2053951714563194

Sugimoto, C. R., Ding, Y., & Thelwall, M. (2012). Library and information science in the big data era: Funding, projects, and future [a panel proposal]. Proceedings of the American Society for Information Science and Technology, 49(1), 1–3. https://doi.org/10.1002/meet.14504901187

Tene, O., & Polonetsky, J. (2012). Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of Technology and Intellectual Property, 11, [xxvii]-274.

van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society; Newcastle upon Tyne, 12(2), 197–208.

Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010

Weiss, A. (2018). Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals. Rowman & Littlefield Publishers. Retrieved from https://rowman.com/ISBN/9781538103227/Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals

West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 4, 1–0.

Willis, J. (2013). Ethics, Big Data, and Analytics: A Model for Application. Educause Review Online. Retrieved from https://docs.lib.purdue.edu/idcpubs/1

Wixom, B., Ariyachandra, T., Douglas, D. E., Goul, M., Gupta, B., Iyer, L. S., … Turetken, O. (2014). The current state of business intelligence in academia: The arrival of big data. CAIS, 34, 1.

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Wu, Z., Wu, J., Khabsa, M., Williams, K., Chen, H. H., Huang, W., … Giles, C. L. (2014). Towards building a scholarly big data platform: Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital Libraries (pp. 117–126). https://doi.org/10.1109/JCDL.2014.6970157

 

+++++++++++++++++
more on big data





data visualization for librarians

Eaton, M. E. (2017). Seeing Seeing Library Data: A Prototype Data Visualization Application for Librarians. Journal of Web Librarianship, 11(1), 69–78. Retrieved from http://academicworks.cuny.edu/kb_pubs

Visualization can increase the power of data, by showing the “patterns, trends and exceptions”

Librarians can benefit when they visually leverage data in support of library projects.

Nathan Yau suggests that exploratory learning is a significant benefit of data visualization initiatives (2013). We can learn about our libraries by tinkering with data. In addition, handling data can also challenge librarians to improve their technical skills. Visualization projects allow librarians to not only learn about their libraries, but to also learn programming and data science skills.

The classic voice on data visualization theory is Edward Tufte. In Envisioning Information, Tufte unequivocally advocates for multi-dimensionality in visualizations. He praises some incredibly complex paper-based visualizations (1990). This discussion suggests that the principles of data visualization are strongly contested. Although Yau’s even-handed approach and Cairo’s willingness to find common ground are laudable, their positions are not authoritative or the only approach to data visualization.

a web application that visualizes the library’s holdings of books and e-books according to certain facets and keywords. Users can visualize whatever topics they want, by selecting keywords and facets that interest them.

Primo X-Services API. JSON, Flask, a very flexible Python web micro-framework. In addition to creating the visualization, SeeCollections also makes this data available on the web. JavaScript is the front-end technology that ultimately presents data to the SeeCollections user. JavaScript is a cornerstone of contemporary web development; a great deal of today’s interactive web content relies upon it. Many popular code libraries have been written for JavaScript. This project draws upon jQuery, Bootstrap and d3.js.

To give SeeCollections a unified visual theme, I have used Bootstrap. Bootstrap is most commonly used to make webpages responsive to different devices

D3.js facilitates the binding of data to the content of a web page, which allows manipulation of the web content based on the underlying data.

 

analytics on demand

Free Webinar: Driving Decisions With Data

with Analytics On Demand, you can add value to your library’s existing data and unlock key insights about your community.

Monday, July 24, 2017 12 p.m. Central

Tune in to this free 60-minute webcast Joining us for this webinar are:

  • Jason Kucsma, deputy director, Toledo Lucas County (Ohio) Public Library
  • Liz Bondie, education sales consultant, Gale, a Cengage company

++++++++++++++
more on data analytics in this IMS blog
http://blog.stcloudstate.edu/ims?s=analytics

big data in ed

New Report Examines Use of Big Data in Ed

By Dian Schaffhauser  05/17/17

https://campustechnology.com/articles/2017/05/17/new-report-examines-use-of-big-data-in-ed.aspx

new report from the National Academy of Education “Big Data in Education,” summarizes the findings of a recent workshop held by the academy

three federal laws: Family Educational Rights and Privacy Act (FERPA), the Children’s Online Privacy Protection Act (COPPA) and the Protection of Pupil Rights Amendment (PPRA).

over the last four years, 49 states and the District of Columbia have introduced 410 bills related to student data privacy, and 36 states have passed 85 new education data privacy laws. Also, since 2014, 19 states have passed laws that in some way address the work done by researchers.

researchers need to get better at communicating about their projects, especially with non-researchers.

One approach to follow in gaining trust “from parents, advocates and teachers” uses the acronym CUPS:

  • Collection: What data is collected by whom and from whom;
  • Use: How the data will be used and what the purpose of the research is;
  • Protection: What forms of data security protection are in place and how access will be limited; and
  • Sharing: How and with whom the results of the data work will be shared.

Second, researchers must pin down how to share data without making it vulnerable to theft.

Third, researchers should build partnerships of trust and “mutual interest” pertaining to their work with data. Those alliances may involve education technology developers, education agencies both local and state, and data privacy stakeholders.

Along with the summary report, the results of the workshop are being maintained on a page within the Academy’s website here.

+++++++++++++++++
more on big data in education in this IMS blog
http://blog.stcloudstate.edu/ims?s=big+data

big data and student academic performance

Researchers use an app to predict GPA based on smartphone use

http://www.engadget.com/2015/05/26/researchers-predict-gpa-with-an-app/

Dartmouth College and the University of Texas at Austin have developed an app that tracks smartphone activity to compute a grade point average that’s within 0.17 of a point.

More on Big Data in education in this blog:

http://blog.stcloudstate.edu/ims/2015/03/30/big-data-and-education/