Posts Tagged ‘Machine Learning’

In the Age of AI

In The Age Of A.I. (2019) — This just aired last night and it’s absolutely fantastic. It presents a great look at AI, and it also talks about automation, wealth inequality, data-mining and surveillance. from Documentaries

13 min 40 sec = Wechat

14 min 60 sec = data is the new oil and China is the new Saudi Arabia

18 min 30 sec = social credit and facial recognition

more on deep learning in this IMS blog

AI Ethics, Policy and Governance

more on ethics in this IMS blog


NLP – natural language processing; ACL – Association for Computational Linguistics (ACL 2019)

Major trends in NLP: a review of 20 years of ACL research

Janna Lipenkova, July 23, 2019

The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)

 Data: working around the bottlenecks

large data is inherently noisy. \In general, the more “democratic” the production channel, the dirtier the data – which means that more effort has to be spent on its cleaning. For example, data from social media will require a longer cleaning pipeline. Among others, you will need to deal with extravagancies of self-expression like smileys and irregular punctuation, which are normally absent in more formal settings such as scientific papers or legal contracts.

The other major challenge is the labeled data bottleneck

crowd-sourcing and Training Data as a Service (TDaaS). On the other hand, a range of automatic workarounds for the creation of annotated datasets have also been suggested in the machine learning community.

Algorithms: a chain of disruptions in Deep Learning

Neural Networks are the workhorse of Deep Learning (cf. Goldberg and Hirst (2017) for an introduction of the basic architectures in the NLP context). Convolutional Neural Networks have seen an increase in the past years, whereas the popularity of the traditional Recurrent Neural Network (RNN) is dropping. This is due, on the one hand, to the availability of more efficient RNN-based architectures such as LSTM and GRU. On the other hand, a new and pretty disruptive mechanism for sequential processing – attention – has been introduced in the sequence-to-sequence (seq2seq) model by Sutskever et al. (2014).

Consolidating various NLP tasks

the three “global” NLP development curves – syntax, semantics and context awareness
the third curve – the awareness of a larger context – has already become one of the main drivers behind new Deep Learning algorithms.

A note on multilingual research

Think of different languages as different lenses through which we view the same world – they share many properties, a fact that is fully accommodated by modern learning algorithms with their increasing power for abstraction and generalization.

Spurred by the global AI hype, the NLP field is exploding with new approaches and disruptive improvements. There is a shift towards modeling meaning and context dependence, probably the most universal and challenging fact of human language. The generalisation power of modern algorithms allows for efficient scaling across different tasks, languages and datasets, thus significantly speeding up the ROI cycle of NLP developments and allowing for a flexible and efficient integration of NLP into individual business scenarios.

AI deep learning

Machine learning for sensors

June 3, 2019

Researchers at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS have developed AIfES, an artificial intelligence (AI) concept for microcontrollers and sensors that contains a completely configurable artificial neural network. AIfES is a platform-independent machine learning library which can be used to realize self-learning microelectronics requiring no connection to a cloud or to high-performance computers. The sensor-related AI system recognizes handwriting and gestures, enabling for example gesture control of input when the library is running on a wearable.

a machine learning library programmed in C that can run on microcontrollers, but also on other platforms such as PCs, Raspberry PI and Android.

more about machine learning in this IMS blog

Machine Learning and the Cloud Rescue IT

How Machine Learning and the Cloud Can Rescue IT From the Plumbing Business


By Andrew Barbour     Feb 19, 2019

Many educational institutions maintain their own data centers.  “We need to minimize the amount of work we do to keep systems up and running, and spend more energy innovating on things that matter to people.”

what’s the difference between machine learning (ML) and artificial intelligence (AI)?

Jeff Olson: That’s actually the setup for a joke going around the data science community. The punchline? If it’s written in Python or R, it’s machine learning. If it’s written in PowerPoint, it’s AI.
machine learning is in practical use in a lot of places, whereas AI conjures up all these fantastic thoughts in people.

What is serverless architecture, and why are you excited about it?

Instead of having a machine running all the time, you just run the code necessary to do what you want—there is no persisting server or container. There is only this fleeting moment when the code is being executed. It’s called Function as a Service, and AWS pioneered it with a service called AWS Lambda. It allows an organization to scale up without planning ahead.

How do you think machine learning and Function as a Service will impact higher education in general?

The radical nature of this innovation will make a lot of systems that were built five or 10 years ago obsolete. Once an organization comes to grips with Function as a Service (FaaS) as a concept, it’s a pretty simple step for that institution to stop doing its own plumbing. FaaS will help accelerate innovation in education because of the API economy.

If the campus IT department will no longer be taking care of the plumbing, what will its role be?

I think IT will be curating the inter-operation of services, some developed locally but most purchased from the API economy.

As a result, you write far less code and have fewer security risks, so you can innovate faster. A succinct machine-learning algorithm with fewer than 500 lines of code can now replace an application that might have required millions of lines of code. Second, it scales. If you happen to have a gigantic spike in traffic, it deals with it effortlessly. If you have very little traffic, you incur a negligible cost.

more on machine learning in this IMS blog

ELI webinar AI and teaching

ELI Webinar | How AI and Machine Learning Shape the Future of Teaching

1/23/2019 Wed
12:00 PM – 1:00 PM
Centennial Hall – 100
Lecture Room
Anyone interested in
new methods for teaching


  • Explore what is meant by AI and how it relates to machine learning and data science
  • Identify relevant uses of AI and machine learning to advance education
  • Explore opportunities for using AI and machine learning to transform teaching
  • Understand how technology can shape open educational materials

Kyle Bowen, Director, Teaching and Learning with Technology

Jennifer Sparrow, Senior Director of Teaching and Learning With Tech,

Malcolm Brown, Director, Educause, Learning Initiative

more in this IMB blog on Jennifer Sparrow and digital fluency:


Feb 5, 2018 webinar notes

creating a jazz band of one: ThoughSourus

Eureka: machine learning tool, brainstorming engine. give it an initial idea and it returns similar ideas. Like Google: refine the idea, so the machine can understand it better. create a collection of ideas to translate into course design or others.


influencers and microinfluencers, pre- and doing the execution

place to start explore and generate content.

a machine can construct a book with the help of a person. bionic book. machine and person working hand in hand. provide keywords and phrases from lecture notes, presentation materials. from there recommendations and suggestions based on own experience; then identify included and excluded content. then instructor can construct.

Design may be the least interesting part of the book for the faculty.

multiple choice quiz may be the least interesting part, and faculty might want to do much deeper assessment.

use these machine learning techniques to build assessment. how to more effectively. inquizitive is the machine learning


students engagements and similar prompts

presence in the classroom: pre-service teachers class. how to immerse them and practice classroom management skills

First class: marriage btw VR and use of AI – an environment headset: an algorithm reacts how teachers are interacting with the virtual kids. series of variables, oppty to interact with present behavior. classroom management skills. simulations and environments otherwise impossible to create. apps for these type of interactions

facilitation, reflection and research

AI for more human experience, allow more time for the faculty to be more human, more free time to contemplate.

Jason: Won’t the use of AI still reduce the amount of faculty needed?

Christina Dumeng: @Jason–I think it will most likely increase the amount of students per instructor.

Andrew Cole (UW-Whitewater): I wonder if instead of reducing faculty, these types of platforms (e.g., analytic capabilities) might require instructors to also become experts in the various technology platforms.

Dirk Morrison: Also wonder what the implications of AI for informal, self-directed learning?

Kate Borowske: The context that you’re presenting this in, as “your own jazz band,” is brilliant. These tools presented as a “partner” in the “band” seems as though it might be less threatening to faculty. Sort of gamifies parts of course design…?

Dirk Morrison: Move from teacher-centric to student-centric? Recommender systems, AI-based tutoring?

Andrew Cole (UW-Whitewater): The course with the bot TA must have been 100-level right? It would be interesting to see if those results replicate in 300, 400 level courses

Recording available here

shaping the future of AI

Shaping the Future of A.I.

Daniel Burrus

Way back in 1983, I identified A.I. as one of 20 exponential technologies that would increasingly drive economic growth for decades to come.

Artificial intelligence applies to computing systems designed to perform tasks usually reserved for human intelligence using logic, if-then rules, decision trees and machine learning to recognize patterns from vast amounts of data, provide insights, predict outcomes and make complex decisions. A.I. can be applied to pattern recognition, object classification, language translation, data translation, logistical modeling and predictive modeling, to name a few. It’s important to understand that all A.I. relies on vast amounts of quality data and advanced analytics technology. The quality of the data used will determine the reliability of the A.I. output.

Machine learning is a subset of A.I. that utilizes advanced statistical techniques to enable computing systems to improve at tasks with experience over time. Chatbots like Amazon’s Alexa, Apple’s Siri, or any of the others from companies like Google and Microsoft all get better every year thanks to all of the use we give them and the machine learning that takes place in the background.

Deep learning is a subset of machine learning that uses advanced algorithms to enable an A.I. system to train itself to perform tasks by exposing multi-layered neural networks to vast amounts of data, then using what has been learned to recognize new patterns contained in the data. Learning can be Human Supervised LearningUnsupervised Learningand/or Reinforcement Learning like Google used with DeepMind to learn how to beat humans at the complex game Go. Reinforcement learning will drive some of the biggest breakthroughs.

Autonomous computing uses advanced A.I. tools such as deep learning to enable systems to be self-governing and capable of acting according to situational data without human command. A.I. autonomy includes perception, high-speed analytics, machine-to-machine communications and movement. For example, autonomous vehicles use all of these in real time to successfully pilot a vehicle without a human driver.

Augmented thinking: Over the next five years and beyond, A.I. will become increasingly embedded at the chip level into objects, processes, products and services, and humans will augment their personal problem-solving and decision-making abilities with the insights A.I. provides to get to a better answer faster.

Technology is not good or evil, it is how we as humans apply it. Since we can’t stop the increasing power of A.I., I want us to direct its future, putting it to the best possible use for humans. 

more on AI in this IMS blog

more on deep learning in this IMS blog

deep learning revolution

Sejnowski, T. J. (2018). The Deep Learning Revolution. Cambridge, MA: The MIT Press.

How deep learning―from Google Translate to driverless cars to personal cognitive assistants―is changing our lives and transforming every sector of the economy.

The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.

Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

A pioneering scientist explains ‘deep learning’

Artificial intelligence meets human intelligence

neural networks

Buzzwords like “deep learning” and “neural networks” are everywhere, but so much of the popular understanding is misguided, says Terrence Sejnowski, a computational neuroscientist at the Salk Institute for Biological Studies.

Sejnowski, a pioneer in the study of learning algorithms, is the author of The Deep Learning Revolution (out next week from MIT Press). He argues that the hype about killer AI or robots making us obsolete ignores exciting possibilities happening in the fields of computer science and neuroscience, and what can happen when artificial intelligence meets human intelligence.

Machine learning is a very large field and goes way back. Originally, people were calling it “pattern recognition,” but the algorithms became much broader and much more sophisticated mathematically. Within machine learning are neural networks inspired by the brain, and then deep learning. Deep learning algorithms have a particular architecture with many layers that flow through the network. So basically, deep learning is one part of machine learning and machine learning is one part of AI.

December 2012 at the NIPS meeting, which is the biggest AI conference. There, [computer scientist] Geoff Hinton and two of his graduate students showed you could take a very large dataset called ImageNet, with 10,000 categories and 10 million images, and reduce the classification error by 20 percent using deep learning.Traditionally on that dataset, error decreases by less than 1 percent in one year. In one year, 20 years of research was bypassed. That really opened the floodgates.

The inspiration for deep learning really comes from neuroscience.

AlphaGo, the program that beat the Go champion included not just a model of the cortex, but also a model of a part of the brain called the basal ganglia, which is important for making a sequence of decisions to meet a goal. There’s an algorithm there called temporal differences, developed back in the ‘80s by Richard Sutton, that, when coupled with deep learning, is capable of very sophisticated plays that no human has ever seen before.

there’s a convergence occurring between AI and human intelligence. As we learn more and more about how the brain works, that’s going to reflect back in AI. But at the same time, they’re actually creating a whole theory of learning that can be applied to understanding the brain and allowing us to analyze the thousands of neurons and how their activities are coming out. So there’s this feedback loop between neuroscience and AI

deep learning revolution

1 2