Searching for "IoT"

IoT and libraries

The Internet of Things (IoT) and Libraries

The Internet of Things (IoT) and Libraries

breakdown of IoT functionality, from Deloitte. They give 5 general types of services that IoT “things” can do:

  1. Internal state: Heartbeat- and ping-like broadcasts of health, potentially including diagnostics and additional status reporting (for example, battery level, CPU/memory utilization, strength of network signal, up-time or software/platform version).
  2. Location: Communication of physical location via GPS, GSM, triangulation or proximity techniques
  3. Physical attributes: Monitoring the world surrounding the device, including altitude, orientation, temperature, humidity, radiation, air quality, noise and vibration
  4. Functional attributes: Higher-level intelligence rooted in the device’s purpose for describing business process or workload attributes
  5. Actuation services: Ability to remotely trigger, change or stop physical properties or actions on the device.

Examples of IoT in action

There are some pretty well-known IoT products that some of you already use, including:

  • Nest Thermostat (and others). These allow you to control your AC from your phone, anywhere that you can connect to the Internet.
  • Smart lights: Same concept, but for lights. You can turn lights on/off from your phone. Phillips Hue is an example of this
  • Bluetooth Trackers – Tile (https://www.thetileapp.com/) is an example of a Bluetooth Tracker. Put one on that thing you always lose (i.e., car keys). The next time you lose those keys, you can find them again via an app on your phone.
  • Smart Home appliances – things like Google Home, Amazon Echo, and Apple HomeKit.
  • Smart power switches – Belkin’s Wemo Insight Wi-Fi Smart Plug is an example. They let you turn the plug (and therefore anything connected to it) on and off, set schedules for the plug, monitor energy consumption and use, etc. You can also connect it to Amazon Alexa and Google Home for hands-free voice control
  • Health and exercise trackers – Fitbits “fit” into this category, too.

How does IoT affect libraries?

Here are some ways libraries are already incorporating IoT technology into their libraries:

  • Smart Building Technology: As libraries retrofit their buildings with newer technology (or build new buildings/branches), they are starting to see more IoT-based technology. For example, some libraries can can adjust heating, cooling and lights from a smartphone app. Some newer building monitoring and security systems can be monitored via mobile apps.
  • RFID: RFID technology (sensors in books) is a type of IoT technology, and has been around for awhile.
  • Beacon Technology: There are at least two library-focused companies experimenting with Beacon technology (Capira Technologies and Bluubeam).
  • People counters: Check out Jason Griffey’s Measure the Future project. Here’s what he says about Measure the Future: “Imagine having a Google-Analytics-style dashboard for your library building: number of visits, what patrons browsed, what parts of the library were busy during which parts of the day, and more. Measure the Future is working to make that happen by using open-hardware based sensors that can collect data about building usage that is now invisible. Making these invisible occurrences explicit will allow librarians to make strategic decisions that create more efficient and effective experiences for their patrons.”
  • Library classes! Libraries are also teaching classes about the Internet of Things. These include classes focused on introducing patrons to IoT technology, and classes that focus on an aspect of IoT, like a class on making things with Arduinos or how to use your new Fitbit.

++++++++
more on IoT in this IMS blog
http://blog.stcloudstate.edu/ims?s=internet+of+things

proposal for Arduino library counter: http://blog.stcloudstate.edu/ims/2017/11/18/service-based-learning-library-counter/

industry 4.0 and IOT

The Internet of Things will power the Fourth Industrial Revolution. Here’s how

https://medium.com/world-economic-forum/the-internet-of-things-will-power-the-fourth-industrial-revolution-heres-how-39932f03df1

By 2020 more than 50 billion things, ranging from cranes to coffee machines, will be connected to the internet. That means a lot of data will be created — too much data, in fact, to be manageable or to be kept forever affordably.

One by-product of more devices creating more data is that they are speaking lots of different programming languages. Machines are still using languages from the 1970s and 80s as well as the new languages of today. In short, applications need to have data translated for them — by an IoT babelfish, if you will — before they can make sense of the information.

Then there are analytics and data storage.

security becomes even more important as there is little human interaction in the flow of data from device to datacentre — so called machine-to-machine communication.

 

+++++++++++++++++++
more on IOT in this IMS blog
http://blog.stcloudstate.edu/ims?s=iot

more on industry 4.0 in this IMS blog
http://blog.stcloudstate.edu/ims?s=industrial+revolution

IoT

Survey: IoT Overtakes Mobile as Security Threat

By Rhea Kelly 06/05/17

https://campustechnology.com/articles/2017/06/05/survey-iot-overtakes-mobile-as-security-threat.aspx

a report from ISACA, a nonprofit association focused on knowledge and practices for information systems. The 2017 State of Cyber Security Study surveyed IT security leaders around the globe on security issues, the emerging threat landscape, workforce challenges and more.

  • 53 percent of survey respondents reported a year-over-year increase in cyber attacks;
  • 62 percent experienced ransomware in 2016, but only 53 percent have a formal process in place to address a ransomware attack;
  • 78 percent reported malicious attacks aimed at impairing an organization’s operations or user data;
  • Only 31 percent said they routinely test their security controls, while 13 percent never test them; and
  • 16 percent do not have an incident response plan.
  • 65 percent of organizations now employ a chief information security officers, up from 50 percent in 2016, yet still struggle to fill open cyber security positions;
  • 48 percent of respondents don’t feel comfortable with their staff’s ability to address complex cyber security issues;
  • More than half say cyber security professionals “lack an ability to understand the business”;
  • One in four organizations allot less than $1,000 per cyber security team member for training; and
  • About half of the organizations surveyed will see an increase in their cyber security budget, down from 61 percent in 2016.

++++++++++++++++++++++++++

IoT to Represent More Than Half of Connected Device Landscape by 2021

By Sri Ravipati 06/09/17

https://campustechnology.com/articles/2017/06/09/iot-to-represent-more-than-half-of-connected-device-landscape-by-2021.aspx

20121 prediction for data in North America

analysis comes from Cisco’s recent Visual Networking Index for the 2016-2021 forecast period.

  • IP video traffic will increase from 73 percent of all internet consumer traffic in 2016 to 82 percent in 2021 (with live streaming accounting for 13 percent);
  • Virtual and augmented reality traffic is expected to increase 20-fold during the forecast period at a compound annual growth rate of 82 percent; and
  • Internet video surveillance traffic is anticipated to grow during the forecast period, comprising 3.4 percent of all internet traffic.

To learn more, view the full report.

+++++++++++++++++++++++++++

5 ways to use the Internet of Things in higher ed

By Danielle R. June 14th, 2017
 1. Labeling and Finding
 campus’ buildings were able to transmit interactive map data to a student finding their way around for the first time
2. Booking and Availability
3. Preparation
4. Intervention
As FitBit and other personal wearables become better at tracking various health markers, these markers can be put to use tracking individual patterns in the student body.
 The University of Southern California is currently researching the impact that analyzing IoT-gathered data can have on student performance, but the IoT can be used to prevent more than just academic difficulties.
the privacy concerns such use might raise; as universities implement systems that integrate wearables, they will encounter this hurdle and have to implement policies to address it.
5. Research
Laboratories are often required to be completely controlled spaces with considerations made for climate, light, and sometimes even biometric data inside the lab.

+++++++++++++++++++++
http://blog.stcloudstate.edu/ims?s=internet+of+things
http://blog.stcloudstate.edu/ims?s=iot 

VR, AR and IoT beyond Second Life

VR, AR, and the Internet of Things: Life Beyond Second Life

https://campustechnology.com/Articles/2016/12/06/Life-Beyond-Second-Life-VR-AR-IoT.aspx

But it gets even more interesting when virtual and augmented reality meet the Internet of Things

when Second Life began, there was a lot of interest, but the toolset was limited — just because of the timeframe, not that the toolset wasn’t a good one for that period. But, things matured. I think it was, in particular, the ability to work in HD that improved things a lot. Then came the ability to bring in datasets — creating dashboards and ways for people to access other data that they could bring into the virtual reality experiment. I think those two things were real forces for change.

A dashboard could pop up, and you could select among several tools, and you could get a feed from somewhere on the Internet — maybe a video or a presentation. And you can use these things as you move through this hyper reality: The datasets you select can be manipulated and be part of the entire experience.

So, the hyper reality experience became deeper, richer with tools and data via the IoT; and with HD it became more real.

We can’t deny the fact that curriculum and the way we teach is becoming unbundled. Some things are going to happen online and in the virtual space, and other things will happen in the classroom. And the expense of education is going to drive how we operate. Virtual reality tools, augmented reality tools, and visualization tools can offer experiences that can be mass-produced and sent out to lots of students, machine to machine, at a lower cost. Virtual field trips and other kinds of virtual learning experiences will become much more commonplace in the next 5 years.

 

+++++++++++++++++++++
more on VR in this IMS blog
http://blog.stcloudstate.edu/ims?s=VR

IoT hack

My note:
I listened to the report in my car yesterday. It is another sober reminder for being proactive rather then reactive (or punitive). We must work toward digital literacy and go beyond that comfortably numb stage of information literacy.

An Experiment Shows How Quickly The Internet Of Things Can Be Hacked

http://www.npr.org/sections/alltechconsidered/2016/11/01/500253637/an-experiment-shows-how-quickly-the-internet-of-things-can-be-hacked

We have basic security in place in modern devices that screen out the most obvious attacks. Really getting phished, if you will, is more of a problem where you are tricked in surrendering your password or username to a common service. If you plug in your webcam into your router or to your Wi-Fi, you’re relatively safe.

I think the biggest security concern for folks at home would be if their router actually is old, it might have an easily guessed password that someone could gain control. Most modern devices don’t have that problem, but that certainly is a concern for older devices.


+++++++++++
more on cybersecurity in this blog:
http://blog.stcloudstate.edu/ims?s=cybersecurity

IoT for Product Managers

Internet of Things: A Primer for Product Managers

https://medium.com/@delizalde/internet-of-things-a-primer-for-product-managers-5b6bef0a8b9b#.aitrbiy0h

The first step to becoming an IoT Product Manager is to understand the 5 layers of the IoT technology stack.

5 layers of IoT

1. Devices

Devices constitute the “things” in the Internet of Things. They act as the interface between the real and digital worlds.

2. Embedded software

Embedded software is the part that turns a device into a “smart device”. This part of the IoT technology stack enables the concept of “software-defined hardware”, meaning that a particular hardware device can serve multiple applications depending on the embedded software it is running.

Embedded Operating System

The complexity of your IoT solution will determine the type of embedded Operating System (OS) you need. Some of the key considerations include whether your application needs a real-time OS, the type of I/O support you need, and whether you need support for the full TCP/IP stack.

Common examples of embedded OS include Linux, Brillo (scaled-down Android), Windows Embedded, and VxWorks, to name a few.

Embedded Applications

This is the application(s) that run on top of the embedded OS and provide the functionality that’s specific to your IoT solution.

3. Communications

Communications refers to all the different ways your device will exchange information with the rest of the world. This includes both physical networks and the protocols you will use.

4. Cloud Platform

The cloud platform is the backbone of your IoT solution. If you are familiar with managing SaaS offerings, then you are well aware of everything that is entailed here. Your infrastructure will serve as the platform for these key areas:

Data Collection and Management

Your smart devices will stream information to the cloud. As you define the requirements of your solution, you need to have a good idea of the type and amount of data you’ll be collecting on a daily, monthly, and yearly basis.

Analytics

Analytics are one of they key components of any IoT solution. By analytics, I’m referring to the ability to crunch data, find patterns, perform forecasts, integrate machine learning, etc. It is the ability to find insights from your data and not the data alone that makes your solution valuable.

Cloud APIs

The Internet of Things is all about connecting devices and sharing data. This is usually done by exposing APIs at either the Cloud level or the device level. Cloud APIs allow your customers and partners to either interact with your devices or to exchange data. Remember that opening an API is not a technical decision, it’s a business decision.

Related post: The Business of APIs: What Product Managers Need to Plan For

5. Applications

This is the part of the stack that is most easily understood by Product teams and Executives. Your end-user applications are the part of the system that your customer will see and interact with. These applications will most likely be Web-based, and depending on your user needs, you might need separate apps for desktop, mobile, and even wearables.

The Bottom Line

As the Internet of Things continues to grow, the world will need an army of IoT-savvy Product Managers. And those Product Managers will need to understand each layer of the stack, and how they all fit together into a complete IoT solution.

++++++++++++++

more on Internet of Things in this blog:

http://blog.stcloudstate.edu/ims?s=internet+of+things

NISO Webinar IoT

Wednesday, October 19, 2016
1:00 p.m. – 2:30 p.m. (Eastern Time)

About the Webinar

As the cost of sensors and the connectivity necessary to support those sensors has decreased, this has given rise to a network of interconnected devices.  This network is often described as the Internet of Things and it is providing a variety of information management challenges.  For the library and publishing communities, the internet of things presents opportunities and challenges around data gathering, organization and processing of the tremendous amounts of data which the internet of things is generating.  How will these data be incorporated into traditional publication, archiving and resource management systems?  Additionally, how will the internet of things impact resource management within our community?   In what ways will interconnected resources provide a better user experience for patrons and readers?  This session will introduce concepts and potential implications of the internet of things on the information management community.  It will also explore applications related to managing resources in a library environment that are being developed and implemented.

Education in the Internet of Things
Bryan Alexander, Consultant;

How will the Internet of Things shape education? We can explore this question by assessing current developments, looking for future trends in the first initial projects. In this talk I point to new concepts for classroom and campus spaces, examining attendant rises in data gathering and analysis. We address student life possibilities and curricular and professional niches. We conclude with notes on campus strategy, including privacy, network support, and futures-facing organizations.

What Does The Internet of Things Mean to a Museum?
Robert Weisberg, Senior Project Manager, Publications and Editorial Department; Metropolitan Museum of Art;

What does the Internet of Things mean to a museum? Museums have slowly been digitizing their collections for years, and have been replacing index cards with large (and costly, and labor-intensive) CMS’s long before that, but several factors have worked against adopting smart and scalable practices which could unleash data for the benefit of the institution, its collection, and its audiences. Challenges go beyond non-profit budgets in a very for-profit world and into the siloed behaviors learned from academia, practices borne of the uniqueness of museum collections, and the multi-faceted nature of modern museums which include not only curator, but conservators, educators, librarians, publishers, and increasing numbers of digital specialists. What have museums already done, what are they doing, and what are they preparing for, as big data becomes bigger and ever more-networked?
The Role of the Research Library in Unpacking The Internet of Things
Lauren di Monte, NCSU Libraries Fellow, Cyma Rubin Fellow, North Carolina State University

The Internet of Things (IoT) is a deceptively simple umbrella term for a range of socio-technical tools and processes that are shaping our social and economic worlds. Indeed, IoT represents a new infrastructural layer that has the power to impact decision-making processes, resources distribution plans, information access, and much more. Understanding what IoT is, how “things” get networked, as well as how IoT devices and tools are constructed and deployed, are important and emerging facets of information literacy. Research libraries are uniquely positioned to help students, researchers, and other information professionals unpack IoT and understand its place within our knowledge infrastructures and digital cultures. By developing and modeling the use of IoT devices for space and program assessment, by teaching patrons how to work with IoT hardware and software, and by developing methods and infrastructures to collect IoT devices and data, we can help our patrons unlock the potential of IoT and harness the power of networked knowledge.

Lauren Di Monte is a Libraries Fellow at NC State. In this role she develops programs that facilitate critical and creative engagements with technologies and develops projects to bring physical and traditional computing into scholarship across the disciplines. Her current research explores the histories and futures of STEM knowledge practices.

What does the internet of things mean for education?

Bryan Alexander:

I’m not sure if the IoT will hit academic with the wave force of the Web in the 1990s, or become a minor tangent.  What do schools have to do with Twittering refrigerators?

Here are a few possible intersections.

  1. Changing up the campus technology space.  IT departments will face supporting more technology strata in a more complex ecosystem.  Help desks and CIOs alike will have to consider supporting sensors, embedded chips, and new devices.  Standards, storage, privacy, and other policy issues will ramify.
  2. Mutating the campus.  We’ve already adjusted campus spaces by adding wireless coverage, enabling users and visitors to connect from nearly everywhere.  What happens when benches are chipped, skateboards sport sensors, books carry RFID, and all sorts of new, mobile devices dot the quad?  One British school offers an early example.
  3. New forms of teaching and learning.  Some of these take preexisting forms and amplify them, like tagging animals in the wild or collecting data about urban centers.  The IoT lets us gather more information more easily and perform more work upon it.  Then we could also see really new ways of learning, like having students explore an environment (built or natural) by using embedded sensors, QR codes, and live datastreams from items and locations.  Instructors can build treasure hunts through campuses, nature preserves, museums, or cities.  Or even more creative enterprises.
  4. New forms of research.  As with #3, but at a higher level.  Researchers can gather and process data using networked swarms of devices.  Plus academics studying and developing the IoT in computer science and other disciplines.
  5. An environmental transformation.  People will increasingly come to campus with experiences of a truly interactive, data-rich world.  They will expect a growing proportion of objects to be at least addressable, if not communicative.  This population will become students, instructors, and support staff.  They will have a different sense of the boundaries between physical and digital than we now have in 2014. Will this transformed community alter a school’s educational mission or operations?

How the internet could evolve to 2026: responding to Pew Posted on

Emerging Trends and Impacts of the Internet of Things in Libraries

Emerging Trends and Impacts of the Internet of Things in Libraries

https://www.igi-global.com/gateway/book/244559

Chapters:

Holland, B. (2020). Emerging Technology and Today’s Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 1-33). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch001

The purpose of this chapter is to examine emerging technology and today’s libraries. New technology stands out first and foremost given that they will end up revolutionizing every industry in an age where digital transformation plays a major role. Major trends will define technological disruption. The next-gen of communication, core computing, and integration technologies will adopt new architectures. Major technological, economic, and environmental changes have generated interest in smart cities. Sensing technologies have made IoT possible, but also provide the data required for AI algorithms and models, often in real-time, to make intelligent business and operational decisions. Smart cities consume different types of electronic internet of things (IoT) sensors to collect data and then use these data to manage assets and resources efficiently. This includes data collected from citizens, devices, and assets that are processed and analyzed to monitor and manage, schools, libraries, hospitals, and other community services.

Makori, E. O. (2020). Blockchain Applications and Trends That Promote Information Management. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 34-51). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch002
Blockchain revolutionary paradigm is the new and emerging digital innovation that organizations have no choice but to embrace and implement in order to sustain and manage service delivery to the customers. From disruptive to sustaining perspective, blockchain practices have transformed the information management environment with innovative products and services. Blockchain-based applications and innovations provide information management professionals and practitioners with robust and secure opportunities to transform corporate affairs and social responsibilities of organizations through accountability, integrity, and transparency; information governance; data and information security; as well as digital internet of things.
Hahn, J. (2020). Student Engagement and Smart Spaces: Library Browsing and Internet of Things Technology. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 52-70). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch003
The purpose of this chapter is to provide evidence-based findings on student engagement within smart library spaces. The focus of smart libraries includes spaces that are enhanced with the internet of things (IoT) infrastructure and library collection maps accessed through a library-designed mobile application. The analysis herein explored IoT-based browsing within an undergraduate library collection. The open stacks and mobile infrastructure provided several years (2016-2019) of user-generated smart building data on browsing and selecting items in open stacks. The methods of analysis used in this chapter include transactional analysis and data visualization of IoT infrastructure logs. By analyzing server logs from the computing infrastructure that powers the IoT services, it is possible to infer in greater detail than heretofore possible the specifics of the way library collections are a target of undergraduate student engagement.
Treskon, M. (2020). Providing an Environment for Authentic Learning Experiences. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 71-86). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch004
The Loyola Notre Dame Library provides authentic learning environments for undergraduate students by serving as “client” for senior capstone projects. Through the creative application of IoT technologies such as Arduinos and Raspberry Pis in a library setting, the students gain valuable experience working through software design methodology and create software in response to a real-world challenge. Although these proof-of-concept projects could be implemented, the library is primarily interested in furthering the research, teaching, and learning missions of the two universities it supports. Whether the library gets a product that is worth implementing is not a requirement; it is a “bonus.”
Rashid, M., Nazeer, I., Gupta, S. K., & Khanam, Z. (2020). Internet of Things: Architecture, Challenges, and Future Directions. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 87-104). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch005
The internet of things (IoT) is a computing paradigm that has changed our daily livelihood and functioning. IoT focuses on the interconnection of all the sensor-based devices like smart meters, coffee machines, cell phones, etc., enabling these devices to exchange data with each other during human interactions. With easy connectivity among humans and devices, speed of data generation is getting multi-fold, increasing exponentially in volume, and is getting more complex in nature. In this chapter, the authors will outline the architecture of IoT for handling various issues and challenges in real-world problems and will cover various areas where usage of IoT is done in real applications. The authors believe that this chapter will act as a guide for researchers in IoT to create a technical revolution for future generations.
Martin, L. (2020). Cloud Computing, Smart Technology, and Library Automation. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 105-123). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch006
As technology continues to change, the landscape of the work of librarians and libraries continue to adapt and adopt innovations that support their services. Technology also continues to be an essential tool for dissemination, retrieving, storing, and accessing the resources and information. Cloud computing is an essential component employed to carry out these tasks. The concept of cloud computing has long been a tool utilized in libraries. Many libraries use OCLC to catalog and manage resources and share resources, WorldCat, and other library applications that are cloud-based services. Cloud computing services are used in the library automation process. Using cloud-based services can streamline library services, minimize cost, and the need to have designated space for servers, software, or other hardware to perform library operations. Cloud computing systems with the library consolidate, unify, and optimize library operations such as acquisitions, cataloging, circulation, discovery, and retrieval of information.
Owusu-Ansah, S. (2020). Developing a Digital Engagement Strategy for Ghanaian University Libraries: An Exploratory Study. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 124-139). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch007
This study represents a framework that digital libraries can leverage to increase usage and visibility. The adopted qualitative research aims to examine a digital engagement strategy for the libraries in the University of Ghana (UG). Data is collected from participants (digital librarians) who are key stakeholders of digital library service provision in the University of Ghana Library System (UGLS). The chapter reveals that digital library services included rare collections, e-journal, e-databases, e-books, microfilms, e-theses, e-newspapers, and e-past questions. Additionally, the research revealed that the digital library service patronage could be enhanced through outreach programmes, open access, exhibitions, social media, and conferences. Digital librarians recommend that to optimize digital library services, literacy programmes/instructions, social media platforms, IT equipment, software, and website must be deployed. In conclusion, a DES helps UGLS foster new relationships, connect with new audiences, and establish new or improved brand identity.
Nambobi, M., Ssemwogerere, R., & Ramadhan, B. K. (2020). Implementation of Autonomous Library Assistants Using RFID Technology. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 140-150). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch008
This is an interesting time to innovate around disruptive technologies like the internet of things (IoT), machine learning, blockchain. Autonomous assistants (IoT) are the electro-mechanical system that performs any prescribed task automatically with no human intervention through self-learning and adaptation to changing environments. This means that by acknowledging autonomy, the system has to perceive environments, actuate a movement, and perform tasks with a high degree of autonomy. This means the ability to make their own decisions in a given set of the environment. It is important to note that autonomous IoT using radio frequency identification (RFID) technology is used in educational sectors to boost the research the arena, improve customer service, ease book identification and traceability of items in the library. This chapter discusses the role, importance, the critical tools, applicability, and challenges of autonomous IoT in the library using RFID technology.
Priya, A., & Sahana, S. K. (2020). Processor Scheduling in High-Performance Computing (HPC) Environment. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 151-179). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch009
Processor scheduling is one of the thrust areas in the field of computer science. The future technologies use a huge amount of processing for execution of their tasks like huge games, programming software, and in the field of quantum computing. In real-time, many complex problems are solved by GPU programming. The primary concern of scheduling is to reduce the time complexity and manpower. Several traditional techniques exit for processor scheduling. The performance of traditional techniques is reduced when it comes to the huge processing of tasks. Most scheduling problems are NP-hard in nature. Many of the complex problems are recently solved by GPU programming. GPU scheduling is another complex issue as it runs thousands of threads in parallel and needs to be scheduled efficiently. For such large-scale scheduling problems, the performance of state-of-the-art algorithms is very poor. It is observed that evolutionary and genetic-based algorithms exhibit better performance for large-scale combinatorial and internet of things (IoT) problems.
Kirsch, B. (2020). Virtual Reality in Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 180-193). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch010
Librarians are beginning to offer virtual reality (VR) services in libraries. This chapter reviews how libraries are currently using virtual reality for both consumption and creation purposes. Virtual reality tools will be compared and contrasted, and recommendations will be given for purchasing and circulating headsets and VR equipment. Google Tour Creator and a smartphone or 360-degree camera can be used to create a virtual tour of the library and other virtual reality content. These new library services will be discussed along with practical advice and best practices for incorporating virtual reality into the library for instructional and entertainment purposes.
Heffernan, K. L., & Chartier, S. (2020). Augmented Reality Gamifies the Library: A Ride Through the Technological Frontier. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 194-210). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch011
Two librarians at a University in New Hampshire attempted to integrate gamification and mobile technologies into the exploration of, and orientation to, the library’s services and resources. From augmented reality to virtual escape rooms and finally an in-house app created by undergraduate, campus-based, game design students, the library team learned much about the triumphs and challenges that come with attempting to utilize new technologies to reach users in the 21st century. This chapter is a narrative describing years of various attempts, innovation, and iteration, which have led to the library team being on the verge of introducing an app that could revolutionize campus discovery and engagement.
Miltenoff, P. (2020). Video 360 and Augmented Reality: Visualization to Help Educators Enter the Era of eXtended Reality. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 211-225). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch012
The advent of all types of eXtended Reality (XR)—VR, AR, MR—raises serious questions, both technological and pedagogical. The setup of campus services around XR is only the prelude to the more complex and expensive project of creating learning content using XR. In 2018, the authors started a limited proof-of-concept augmented reality (AR) project for a library tour. Building on their previous research and experience creating a virtual reality (VR) library tour, they sought a scalable introduction of XR services and content for the campus community. The AR library tour aimed to start us toward a matrix for similar services for the entire campus. They also explored the attitudes of students, faculty, and staff toward this new technology and its incorporation in education, as well as its potential and limitations toward the creation of a “smart” library.

VR for student orientation

my note: the LITA publication about the Emporia State University (see below) pursues the same goals of the project two SCSU librarians, Susan Hubbs, MLIS, and Plamen Miltenoff, Ph.D. MLIS, have developed:

This library orientation was an improved version of Plamen Miltenoff’s 2014-2016 research project with numerous national and international publications and presentations: https://web.stcloudstate.edu/pmiltenoff/bi/
E.g.:
Miltenoff, P. (2018). AR, VR, and Video 360: Toward New Realities in Education by Plamen Miltenoff. In J.-P. Van Arnhem, C. Elliott, & M. Rose (Eds.), Augmented and Virtual Reality in Libraries. Retrieved from https://rowman.com/ISBN/9781538102909
https://www.slideshare.net/aidemoreto/video-360-in-the-library
https://www.slideshare.net/aidemoreto/scsu-augmented-reality-library-tour-122152539
https://www.slideshare.net/aidemoreto/vr-library
https://www.slideshare.net/aidemoreto/intro-to-xr-in-libraries-137315988
https://www.slideshare.net/aidemoreto/xr-mission-possible
https://www.slideshare.net/aidemoreto/library-technology-conference-2018
and the upcoming LITA workshops:
http://www.ala.org/lita/virtual-reality-augmented-reality-mixed-reality-and-academic-library

Virtual Reality as a Tool for Student Orientation in Distance Education Programs

A Study of New Library and Information Science Students

ABSTRACT

Virtual reality (VR) has emerged as a popular technology for gaming and learning, with its uses for teaching presently being investigated in a variety of educational settings. However, one area where the effect of this technology on students has not been examined in detail is as tool for new student orientation in colleges and universities. This study investigates this effect using an experimental methodology and the population of new master of library science (MLS) students entering a library and information science (LIS) program. The results indicate that students who received a VR orientation expressed more optimistic views about the technology, saw greater improvement in scores on an assessment of knowledge about their program and chosen profession, and saw a small decrease in program anxiety compared to those who received the same information as standard text-and-links. The majority of students also indicated a willingness to use VR technology for learning for long periods of time (25 minutes or more). The researchers concluded that VR may be a useful tool for increasing student engagement, as described by Game Engagement Theory.

AUTHOR BIOGRAPHY

Brady Lund, Emporia State University

Brady Lund is a doctoral student at Emporia State University’s School of Library and Information Management, where he studies the intersection of information technology and information science, among other topics.

1 2 3 8