Searching for "algorithm"

Tackling Data in Libraries

Tackling Data in Libraries: Opportunities and Challenges in Serving User Communities

Submit proposals at http://www.iolug.org

Deadline is Friday, March 1, 2019

Submissions are invited for the IOLUG Spring 2019 Conference, to be held May 10th in Indianapolis, IN. Submissions are welcomed from all types of libraries and on topics related to the theme of data in libraries.

Libraries and librarians work with data every day, with a variety of applications – circulation, gate counts, reference questions, and so on. The mass collection of user data has made headlines many times in the past few years. Analytics and privacy have, understandably, become important issues both globally and locally. In addition to being aware of the data ecosystem in which we work, libraries can play a pivotal role in educating user communities about data and all of its implications, both favorable and unfavorable.

The Conference Planning Committee is seeking proposals on topics related to data in libraries, including but not limited to:

  • Using tools/resources to find and leverage data to solve problems and expand knowledge,
  • Data policies and procedures,
  • Harvesting, organizing, and presenting data,
  • Data-driven decision making,
  • Learning analytics,
  • Metadata/linked data,
  • Data in collection development,
  • Using data to measure outcomes, not just uses,
  • Using data to better reach and serve your communities,
  • Libraries as data collectors,
  • Big data in libraries,
  • Privacy,
  • Social justice/Community Engagement,
  • Algorithms,
  • Storytelling, (https://web.stcloudstate.edu/pmiltenoff/lib490/)
  • Libraries as positive stewards of user data.

Facial Recognition issues

Chinese Facial Recognition Will Take over the World in 2019

Michael K. Spencer Jan 14, 2018
https://medium.com/futuresin/chinese-facial-recognition-will-take-over-the-world-in-2019-520754a7f966
The best facial recognition startups are in China, by a long-shot. As their software is less biased, global adoption is occurring via their software. This is evidenced in 2019 by the New York Police department in NYC for example, according to the South China Morning Post.
The mass surveillance state of data harvesting in real-time is coming. Facebook already rates and profiles us.

The Tech Wars come down to an AI-War

Whether the NYC police angle is true or not (it’s being hotly disputed), Facebook and Google are thinking along lines that follow the whims of the Chinese Government.

SenseTime and Megvii won’t just be worth $5 Billion, they will be worth many times that in the future. This is because a facial recognition data-harvesting of everything is the future of consumerism and capitalism, and in some places, the central tenet of social order (think Asia).

China has already ‘won’ the trade-war, because its winning the race to innovation. America doesn’t regulate Amazon, Microsoft, Google or Facebook properly, that stunts innovation and ethics in technology where the West is now forced to copy China just to keep up.

+++++++++++++
more about facial recognition in schools
http://blog.stcloudstate.edu/ims/2019/02/02/facial-recognition-technology-in-schools/

ELI webinar AI and teaching

ELI Webinar | How AI and Machine Learning Shape the Future of Teaching

https://events.educause.edu/eli/webinars/2019/how-ai-and-machine-learning-shape-the-future-of-teaching

When:
1/23/2019 Wed
12:00 PM – 1:00 PM
Where:
Centennial Hall – 100
Lecture Room
Who:
Anyone interested in
new methods for teaching

Outcomes

  • Explore what is meant by AI and how it relates to machine learning and data science
  • Identify relevant uses of AI and machine learning to advance education
  • Explore opportunities for using AI and machine learning to transform teaching
  • Understand how technology can shape open educational materials

Kyle Bowen, Director, Teaching and Learning with Technology https://members.educause.edu/kyle-bowen

Jennifer Sparrow, Senior Director of Teaching and Learning With Tech, https://members.educause.edu/jennifer-sparrow

Malcolm Brown, Director, Educause, Learning Initiative

more in this IMB blog on Jennifer Sparrow and digital fluency: http://blog.stcloudstate.edu/ims/2018/11/01/preparing-learners-for-21st-century-digital-citizenship/

++++++++++++++++++++++++++++

Feb 5, 2018 webinar notes

creating a jazz band of one: ThoughSourus

Eureka: machine learning tool, brainstorming engine. give it an initial idea and it returns similar ideas. Like Google: refine the idea, so the machine can understand it better. create a collection of ideas to translate into course design or others.

Netlix:

influencers and microinfluencers, pre- and doing the execution

place to start explore and generate content.

https://answerthepublic.com/

a machine can construct a book with the help of a person. bionic book. machine and person working hand in hand. provide keywords and phrases from lecture notes, presentation materials. from there recommendations and suggestions based on own experience; then identify included and excluded content. then instructor can construct.

Design may be the least interesting part of the book for the faculty.

multiple choice quiz may be the least interesting part, and faculty might want to do much deeper assessment.

use these machine learning techniques to build assessment. how to more effectively. inquizitive is the machine learning

 

students engagements and similar prompts

presence in the classroom: pre-service teachers class. how to immerse them and practice classroom management skills

https://books.wwnorton.com/books/inquizitive/overview/

First class: marriage btw VR and use of AI – an environment headset: an algorithm reacts how teachers are interacting with the virtual kids. series of variables, oppty to interact with present behavior. classroom management skills. simulations and environments otherwise impossible to create. apps for these type of interactions

facilitation, reflection and research

AI for more human experience, allow more time for the faculty to be more human, more free time to contemplate.

Jason: Won’t the use of AI still reduce the amount of faculty needed?

Christina Dumeng: @Jason–I think it will most likely increase the amount of students per instructor.

Andrew Cole (UW-Whitewater): I wonder if instead of reducing faculty, these types of platforms (e.g., analytic capabilities) might require instructors to also become experts in the various technology platforms.

Dirk Morrison: Also wonder what the implications of AI for informal, self-directed learning?

Kate Borowske: The context that you’re presenting this in, as “your own jazz band,” is brilliant. These tools presented as a “partner” in the “band” seems as though it might be less threatening to faculty. Sort of gamifies parts of course design…?

Dirk Morrison: Move from teacher-centric to student-centric? Recommender systems, AI-based tutoring?

Andrew Cole (UW-Whitewater): The course with the bot TA must have been 100-level right? It would be interesting to see if those results replicate in 300, 400 level courses

Recording available here

https://events.educause.edu/eli/webinars/2019/how-ai-and-machine-learning-shape-the-future-of-teaching

music literacy

The Tragic Decline of Music Literacy (and Quality)

Jon Henschen | August 16, 2018 |  529,478

https://www.intellectualtakeout.org/article/tragic-decline-music-literacy-and-quality

Both jazz and classical art forms require not only music literacy, but for the musician to be at the top of their game in technical proficiency, tonal quality and creativity in the case of the jazz idiom. Jazz masters like John Coltrane would practice six to nine hours a day, often cutting his practice only because his inner lower lip would be bleeding from the friction caused by his mouth piece against his gums and teeth. His ability to compose and create new styles and directions for jazz was legendary. With few exceptions such as Wes Montgomery or Chet Baker, if you couldn’t read music, you couldn’t play jazz.

 

can you read music?

Besides the decline of music literacy and participation, there has also been a decline in the quality of music which has been proven scientifically by Joan Serra, a postdoctoral scholar at the Artificial Intelligence Research Institute of the Spanish National Research Council in Barcelona. Joan and his colleagues looked at 500,000 pieces of music between 1955-2010, running songs through a complex set of algorithms examining three aspects of those songs:

1. Timbre- sound color, texture and tone quality

2. Pitch- harmonic content of the piece, including its chords, melody, and tonal arrangements

3. Loudness- volume variance adding richness and depth

In an interview, Billy Joel was asked what has made him a standout. He responded his ability to read and compose music made him unique in the music industry, which as he explained, was troubling for the industry when being musically literate makes you stand out. An astonishing amount of today’s popular music is written by two people: Lukasz Gottwald of the United States and Max Martin from Sweden, who are both responsible for dozens of songs in the top 100 charts. You can credit Max and Dr. Luke for most the hits of these stars:

Katy Perry, Britney Spears, Kelly Clarkson, Taylor Swift, Jessie J., KE$HA, Miley Cyrus, Avril Lavigne, Maroon 5, Taio Cruz, Ellie Goulding, NSYNC, Backstreet Boys, Ariana Grande, Justin Timberlake, Nick Minaj, Celine Dion, Bon Jovi, Usher, Adam Lambert, Justin Bieber, Domino, Pink, Pitbull, One Direction, Flo Rida, Paris Hilton, The Veronicas, R. Kelly, Zebrahead

++++++++++++++++
more on metaliteracies in this IMS blog
http://blog.stcloudstate.edu/ims?s=metaliteracies

shaping the future of AI

Shaping the Future of A.I.

Daniel Burrus

https://www.linkedin.com/pulse/shaping-future-ai-daniel-burrus/

Way back in 1983, I identified A.I. as one of 20 exponential technologies that would increasingly drive economic growth for decades to come.

Artificial intelligence applies to computing systems designed to perform tasks usually reserved for human intelligence using logic, if-then rules, decision trees and machine learning to recognize patterns from vast amounts of data, provide insights, predict outcomes and make complex decisions. A.I. can be applied to pattern recognition, object classification, language translation, data translation, logistical modeling and predictive modeling, to name a few. It’s important to understand that all A.I. relies on vast amounts of quality data and advanced analytics technology. The quality of the data used will determine the reliability of the A.I. output.

Machine learning is a subset of A.I. that utilizes advanced statistical techniques to enable computing systems to improve at tasks with experience over time. Chatbots like Amazon’s Alexa, Apple’s Siri, or any of the others from companies like Google and Microsoft all get better every year thanks to all of the use we give them and the machine learning that takes place in the background.

Deep learning is a subset of machine learning that uses advanced algorithms to enable an A.I. system to train itself to perform tasks by exposing multi-layered neural networks to vast amounts of data, then using what has been learned to recognize new patterns contained in the data. Learning can be Human Supervised LearningUnsupervised Learningand/or Reinforcement Learning like Google used with DeepMind to learn how to beat humans at the complex game Go. Reinforcement learning will drive some of the biggest breakthroughs.

Autonomous computing uses advanced A.I. tools such as deep learning to enable systems to be self-governing and capable of acting according to situational data without human command. A.I. autonomy includes perception, high-speed analytics, machine-to-machine communications and movement. For example, autonomous vehicles use all of these in real time to successfully pilot a vehicle without a human driver.

Augmented thinking: Over the next five years and beyond, A.I. will become increasingly embedded at the chip level into objects, processes, products and services, and humans will augment their personal problem-solving and decision-making abilities with the insights A.I. provides to get to a better answer faster.

Technology is not good or evil, it is how we as humans apply it. Since we can’t stop the increasing power of A.I., I want us to direct its future, putting it to the best possible use for humans. 

++++++++++
more on AI in this IMS blog
http://blog.stcloudstate.edu/ims?s=artifical+intelligence

more on deep learning in this IMS blog
http://blog.stcloudstate.edu/ims?s=deep+learning

Does AI favor tyranny

Why Technology Favors Tyranny

Artificial intelligence could erase many practical advantages of democracy, and erode the ideals of liberty and equality. It will further concentrate power among a small elite if we don’t take steps to stop it.

https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/

YUVAL NOAH HARARI  OCTOBER 2018 ISSUE

Ordinary people may not understand artificial intelligence and biotechnology in any detail, but they can sense that the future is passing them by. In 1938 the common man’s condition in the Soviet Union, Germany, or the United States may have been grim, but he was constantly told that he was the most important thing in the world, and that he was the future (provided, of course, that he was an “ordinary man,” rather than, say, a Jew or a woman).

n 2018 the common person feels increasingly irrelevant. Lots of mysterious terms are bandied about excitedly in ted Talks, at government think tanks, and at high-tech conferences—globalizationblockchaingenetic engineeringAImachine learning—and common people, both men and women, may well suspect that none of these terms is about them.

Fears of machines pushing people out of the job market are, of course, nothing new, and in the past such fears proved to be unfounded. But artificial intelligence is different from the old machines. In the past, machines competed with humans mainly in manual skills. Now they are beginning to compete with us in cognitive skills.

Israel is a leader in the field of surveillance technology, and has created in the occupied West Bank a working prototype for a total-surveillance regime. Already today whenever Palestinians make a phone call, post something on Facebook, or travel from one city to another, they are likely to be monitored by Israeli microphones, cameras, drones, or spy software. Algorithms analyze the gathered data, helping the Israeli security forces pinpoint and neutralize what they consider to be potential threats.

The conflict between democracy and dictatorship is actually a conflict between two different data-processing systems. AI may swing the advantage toward the latter.

As we rely more on Google for answers, our ability to locate information independently diminishes. Already today, “truth” is defined by the top results of a Google search. This process has likewise affected our physical abilities, such as navigating space.

So what should we do?

For starters, we need to place a much higher priority on understanding how the human mind works—particularly how our own wisdom and compassion can be cultivated.

+++++++++++++++
more on SCSU student philosophy club in this IMS blog
http://blog.stcloudstate.edu/ims?s=philosophy+student+club

deep learning revolution

Sejnowski, T. J. (2018). The Deep Learning Revolution. Cambridge, MA: The MIT Press.

How deep learning―from Google Translate to driverless cars to personal cognitive assistants―is changing our lives and transforming every sector of the economy.

The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.

Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

A pioneering scientist explains ‘deep learning’

Artificial intelligence meets human intelligence

neural networks

Buzzwords like “deep learning” and “neural networks” are everywhere, but so much of the popular understanding is misguided, says Terrence Sejnowski, a computational neuroscientist at the Salk Institute for Biological Studies.

Sejnowski, a pioneer in the study of learning algorithms, is the author of The Deep Learning Revolution (out next week from MIT Press). He argues that the hype about killer AI or robots making us obsolete ignores exciting possibilities happening in the fields of computer science and neuroscience, and what can happen when artificial intelligence meets human intelligence.

Machine learning is a very large field and goes way back. Originally, people were calling it “pattern recognition,” but the algorithms became much broader and much more sophisticated mathematically. Within machine learning are neural networks inspired by the brain, and then deep learning. Deep learning algorithms have a particular architecture with many layers that flow through the network. So basically, deep learning is one part of machine learning and machine learning is one part of AI.

December 2012 at the NIPS meeting, which is the biggest AI conference. There, [computer scientist] Geoff Hinton and two of his graduate students showed you could take a very large dataset called ImageNet, with 10,000 categories and 10 million images, and reduce the classification error by 20 percent using deep learning.Traditionally on that dataset, error decreases by less than 1 percent in one year. In one year, 20 years of research was bypassed. That really opened the floodgates.

The inspiration for deep learning really comes from neuroscience.

AlphaGo, the program that beat the Go champion included not just a model of the cortex, but also a model of a part of the brain called the basal ganglia, which is important for making a sequence of decisions to meet a goal. There’s an algorithm there called temporal differences, developed back in the ‘80s by Richard Sutton, that, when coupled with deep learning, is capable of very sophisticated plays that no human has ever seen before.

there’s a convergence occurring between AI and human intelligence. As we learn more and more about how the brain works, that’s going to reflect back in AI. But at the same time, they’re actually creating a whole theory of learning that can be applied to understanding the brain and allowing us to analyze the thousands of neurons and how their activities are coming out. So there’s this feedback loop between neuroscience and AI

+++++++++++
deep learning revolution
http://blog.stcloudstate.edu/ims?s=deep+learning

Russian Influence Operations on Twitter

Russian Influence Operations on Twitter

Summary This short paper lays out an attempt to measure how much activity from Russian state-operated accounts released in the dataset made available by Twitter in October 2018 was targeted at the United Kingdom. Finding UK-related Tweets is not an easy task. By applying a combination of geographic inference, keyword analysis and classification by algorithm, we identified UK-related Tweets sent by these accounts and subjected them to further qualitative and quantitative analytic techniques.

We find:

 There were three phases in Russian influence operations : under-the-radar account building, minor Brexit vote visibility, and larger-scale visibility during the London terror attacks.

 Russian influence operations linked to the UK were most visible when discussing Islam . Tweets discussing Islam over the period of terror attacks between March and June 2017 were retweeted 25 times more often than their other messages.

 The most widely-followed and visible troll account, @TEN_GOP, shared 109 Tweets related to the UK. Of these, 60 percent were related to Islam .

 The topology of tweet activity underlines the vulnerability of social media users to disinformation in the wake of a tragedy or outrage.

 Focus on the UK was a minor part of wider influence operations in this data . Of the nine million Tweets released by Twitter, 3.1 million were in English (34 percent). Of these 3.1 million, we estimate 83 thousand were in some way linked to the UK (2.7%). Those Tweets were shared 222 thousand times. It is plausible we are therefore seeing how the UK was caught up in Russian operations against the US .

 Influence operations captured in this data show attempts to falsely amplify other news sources and to take part in conversations around Islam , and rarely show attempts to spread ‘fake news’ or influence at an electoral level.

On 17 October 2018, Twitter released data about 9 million tweets from 3,841 blocked accounts affiliated with the Internet Research Agency (IRA) – a Russian organisation founded in 2013 and based in St Petersburg, accused of using social media platforms to push pro-Kremlin propaganda and influence nation states beyond their borders, as well as being tasked with spreading pro-Kremlin messaging in Russia. It is one of the first major datasets linked to state-operated accounts engaging in influence operations released by a social media platform.

Conclusion

This report outlines the ways in which accounts linked to the Russian Internet ResearchAgency (IRA) carried out influence operations on social media and the ways their operationsintersected with the UK.The UK plays a reasonably small part in the wider context of this data. We see two possibleexplanations: either influence operations were primarily targeted at the US and British Twitterusers were impacted as collate, or this dataset is limited to US-focused operations whereevents in the UK were highlighted in an attempt to impact US public, rather than a concertedeffort against the UK. It is plausible that such efforts al so existed but are not reflected inthis dataset.Nevertheless, the data offers a highly useful window into how Russian influence operationsare carried out, as well as highlighting the moments when we might be most vulnerable tothem.Between 2011 and 2016, these state-operated accounts were camouflaged. Through manualand automated methods, they were able to quietly build up the trappings of an active andwell-followed Twitter account before eventually pivoting into attempts to influence the widerTwitter ecosystem. Their methods included engaging in unrelated and innocuous topics ofconversation, often through automated methods, and through sharing and engaging withother, more mainstream sources of news.Although this data shows levels of electoral and party-political influence operations to berelatively low, the day of the Brexit referendum results showed how messaging originatingfrom Russian state-controlled accounts might come to be visible on June 24th 2016, we believe UK Twitter users discussing the Brexit Vote would have encountered messages originating from these accounts.As early as 2014, however, influence operations began taking part in conversations aroundIslam, and these accounts came to the fore during the three months of terror attacks thattook place between March and June 2017. In the immediate wake of these attacks, messagesrelated to Islam and circulated by Russian state-operated Twitter accounts were widelyshared, and would likely have been visible in the UK.The dataset released by Twitter begins to answer some questions about attempts by a foreignstate to interfere in British affairs online. It is notable that overt political or electoralinterference is poorly represented in this dataset: rather, we see attempts at stirring societaldivision, particularly around Islam in the UK, as the messages that resonated the most overthe period.What is perhaps most interesting about this moment is its portrayal of when we as socialmedia users are most vulnerable to the kinds of messages circulated by those looking toinfluence us. In the immediate aftermath of terror attacks, the data suggests, social mediausers were more receptive to this kind of messaging than at any other time.

It is clear that hostile states have identified the growth of online news and social media as aweak spot, and that significant effort has gone into attempting to exploit new media toinfluence its users. Understanding the ways in which these platforms have been used tospread division is an important first step to fighting it.Nevertheless, it is clear that this dataset provides just one window into the ways in whichforeign states have attempted to use online platforms as part of wider information warfare
and influence campaigns. We hope that other platforms will follow Twitter’s lead and release
similar datasets and encourage their users to proactively tackle those who would abuse theirplatforms.

+++++++++++
more on cybersecurity in this IMS blog
http://blog.stcloudstate.edu/ims?s=cybersecurity

Why Blockchain is Hard

Why Blockchain is Hard

Jimmy Song Bitcoin Educator, Developer and Entrepreneur/PGP Fingerprint: C1D7 97BE 7D10 5291 228C D70C

https://medium.com/@jimmysong/why-blockchain-is-hard-60416ea4c5c

What is a blockchain?

The main thing distinguishing a blockchain from a normal database is that there are specific rules about how to put data into the database. That is, it cannot conflict with some other data that’s already in the database (consistent), it’s append-only (immutable), and the data itself is locked to an owner (ownable), it’s replicable and available. Finally, everyone agrees on what the state of the things in the database are (canonical) without a central party (decentralized).

It is this last point that really is the holy grail of blockchain. Decentralization is very attractive because it implies there is no single point of failure.

The Cost of Blockchains

  • Development is stricter and slower
  • Incentive structures are difficult to design
  • Maintenance is very costly
  • Users are sovereign
  • All upgrades are voluntary
  • Scaling is really hard

Centralization is a lot easier

Like it or not, the word “blockchain” has taken on a life of its own. Very few people actually understand what it is, but want to appear hip so use these words as a way to sound more intelligent. Just like “cloud” means someone else’s computer and “AI” means a tweaked algorithm, “blockchain” in this context means a slow, expensive database.“blockchain” is really just a way to get rid of the heavy apparatus of government regulation. This is overselling what blockchain can do. Blockchain doesn’t magically take away human conflict.

So what is blockchain good for?

Most industries require new features or upgrades and the freedom to change and expand as necessary. Given that blockchains are hard to upgrade, hard to change and hard to scale, most industries don’t have much use for a blockchain. a lot of companies looking to use the blockchain are not really wanting a blockchain at all, but rather IT upgrades to their particular industry. This is all well and good, but using the word “blockchain” to get there is dishonest and overselling its capability.

+++++++++++
more on blockchain in this IMS blgo
http://blog.stcloudstate.edu/ims?s=blockchain

AI and ethics

Live Facebook discussion at SCSU VizLab on ethics and technology:

Join our discussion on #technology and #ethics. share your opinions, suggestions, ideas

Posted by InforMedia Services on Thursday, November 1, 2018

Heard on Marketplace this morning (Oct. 22, 2018): ethics of artificial intelligence with John Havens of the Institute of Electrical and Electronics Engineers, which has developed a new ethics certification process for AI: https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ec_bios.pdf

Ethics and AI

***** The student club, the Philosophical Society, has now been recognized by SCSU as a student organization ***

https://ed.ted.com/lessons/the-ethical-dilemma-of-self-driving-cars-patrick-lin

Could it be the case that a random decision is still better then predetermined one designed to minimize harm?

similar ethical considerations are raised also:

in this sitcom

https://www.theatlantic.com/sponsored/hpe-2018/the-ethics-of-ai/1865/ (full movie)

This TED talk:

http://blog.stcloudstate.edu/ims/2017/09/19/social-media-algorithms/

http://blog.stcloudstate.edu/ims/2018/10/02/social-media-monopoly/

 

 

+++++++++++++++++++
IoT (Internet of Things), Industry 4.0, Big Data, BlockChain,

+++++++++++++++++++
IoT (Internet of Things), Industry 4.0, Big Data, BlockChain, Privacy, Security, Surveilance

http://blog.stcloudstate.edu/ims?s=internet+of+things

peer-reviewed literature;

Keyword search: ethic* + Internet of Things = 31

Baldini, G., Botterman, M., Neisse, R., & Tallacchini, M. (2018). Ethical Design in the Internet of Things. Science & Engineering Ethics24(3), 905–925. https://doi-org.libproxy.stcloudstate.edu/10.1007/s11948-016-9754-5

Berman, F., & Cerf, V. G. (2017). Social and Ethical Behavior in the Internet of Things. Communications of the ACM60(2), 6–7. https://doi-org.libproxy.stcloudstate.edu/10.1145/3036698

Murdock, G. (2018). Media Materialties: For A Moral Economy of Machines. Journal of Communication68(2), 359–368. https://doi-org.libproxy.stcloudstate.edu/10.1093/joc/jqx023

Carrier, J. G. (2018). Moral economy: What’s in a name. Anthropological Theory18(1), 18–35. https://doi-org.libproxy.stcloudstate.edu/10.1177/1463499617735259

Kernaghan, K. (2014). Digital dilemmas: Values, ethics and information technology. Canadian Public Administration57(2), 295–317. https://doi-org.libproxy.stcloudstate.edu/10.1111/capa.12069

Koucheryavy, Y., Kirichek, R., Glushakov, R., & Pirmagomedov, R. (2017). Quo vadis, humanity? Ethics on the last mile toward cybernetic organism. Russian Journal of Communication9(3), 287–293. https://doi-org.libproxy.stcloudstate.edu/10.1080/19409419.2017.1376561

Keyword search: ethic+ + autonomous vehicles = 46

Cerf, V. G. (2017). A Brittle and Fragile Future. Communications of the ACM60(7), 7. https://doi-org.libproxy.stcloudstate.edu/10.1145/3102112

Fleetwood, J. (2017). Public Health, Ethics, and Autonomous Vehicles. American Journal of Public Health107(4), 632–537. https://doi-org.libproxy.stcloudstate.edu/10.2105/AJPH.2016.303628

HARRIS, J. (2018). Who Owns My Autonomous Vehicle? Ethics and Responsibility in Artificial and Human Intelligence. Cambridge Quarterly of Healthcare Ethics27(4), 599–609. https://doi-org.libproxy.stcloudstate.edu/10.1017/S0963180118000038

Keeling, G. (2018). Legal Necessity, Pareto Efficiency & Justified Killing in Autonomous Vehicle Collisions. Ethical Theory & Moral Practice21(2), 413–427. https://doi-org.libproxy.stcloudstate.edu/10.1007/s10677-018-9887-5

Hevelke, A., & Nida-Rümelin, J. (2015). Responsibility for Crashes of Autonomous Vehicles: An Ethical Analysis. Science & Engineering Ethics21(3), 619–630. https://doi-org.libproxy.stcloudstate.edu/10.1007/s11948-014-9565-5

Getha-Taylor, H. (2017). The Problem with Automated Ethics. Public Integrity19(4), 299–300. https://doi-org.libproxy.stcloudstate.edu/10.1080/10999922.2016.1250575

Keyword search: ethic* + artificial intelligence = 349

Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics into Artificial Intelligence. Journal of Ethics21(4), 403–418. https://doi-org.libproxy.stcloudstate.edu/10.1007/s10892-017-9252-2

Köse, U. (2018). Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on Machine Ethics and Artificial Intelligence Safety. BRAIN: Broad Research in Artificial Intelligence & Neuroscience9(2), 184–197. Retrieved from http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3daph%26AN%3d129943455%26site%3dehost-live%26scope%3dsite

++++++++++++++++
http://www.cts.umn.edu/events/conference/2018

2018 CTS Transportation Research Conference

Keynote presentations will explore the future of driving and the evolution and potential of automated vehicle technologies.

+++++++++++++++++++
http://blog.stcloudstate.edu/ims/2016/02/26/philosophy-and-technology/

+++++++++++++++++++
more on AI in this IMS blog
http://blog.stcloudstate.edu/ims/2018/09/07/limbic-thought-artificial-intelligence/

AI and autonomous cars as ALA discussion topic
http://blog.stcloudstate.edu/ims/2018/01/11/ai-autonomous-cars-libraries/

and privacy concerns
http://blog.stcloudstate.edu/ims/2018/09/14/ai-for-education/

the call of the German scientists on ethics and AI
http://blog.stcloudstate.edu/ims/2018/09/01/ethics-and-ai/

AI in the race for world dominance
http://blog.stcloudstate.edu/ims/2018/04/21/ai-china-education/

1 2 3 4 6

Skip to toolbar