Searching for "algorithm "

social media algorithms

How algorithms impact our browsing behavior? browsing history?
What is the connection between social media algorithms and fake news?
Are there topic-detection algorithms as they are community-detection ones?
How can I change the content of a [Google] search return? Can I? 

Larson, S. (2016, July 8). What is an Algorithm and How Does it Affect You? The Daily Dot. Retrieved from https://www.dailydot.com/debug/what-is-an-algorithm/
Berg, P. (2016, June 30). How Do Social Media Algorithms Affect You | Forge and Smith. Retrieved September 19, 2017, from https://forgeandsmith.com/how-do-social-media-algorithms-affect-you/
Oremus, W., & Chotiner, I. (2016, January 3). Who Controls Your Facebook Feed. Slate. Retrieved from http://www.slate.com/articles/technology/cover_story/2016/01/how_facebook_s_news_feed_algorithm_works.html
Lehrman, R. A. (2013, August 11). The new age of algorithms: How it affects the way we live. Christian Science Monitor. Retrieved from https://www.csmonitor.com/USA/Society/2013/0811/The-new-age-of-algorithms-How-it-affects-the-way-we-live
Johnson, C. (2017, March 10). How algorithms affect our way of life. Desert News. Retrieved from https://www.deseretnews.com/article/865675141/How-algorithms-affect-our-way-of-life.html
Understanding algorithms and their impact on human life goes far beyond basic digital literacy, some experts said.
An example could be the recent outcry over Facebook’s news algorithm, which enhances the so-called “filter bubble”of information.
personalized search (https://en.wikipedia.org/wiki/Personalized_search)
Kounine, A. (2016, August 24). How your personal data is used in personalization and advertising. Retrieved September 19, 2017, from https://www.tastehit.com/blog/personal-data-in-personalization-and-advertising/
Hotchkiss, G. (2007, March 9). The Pros & Cons Of Personalized Search. Retrieved September 19, 2017, from http://searchengineland.com/the-pros-cons-of-personalized-search-10697
Magid, L. (2012). How (and why) To Turn Off Google’s Personalized Search Results. Forbes. Retrieved from https://www.forbes.com/sites/larrymagid/2012/01/13/how-and-why-to-turn-off-googles-personalized-search-results/#53a30be838f2
Nelson, P. (n.d.). Big Data, Personalization and the No-Search of Tomorrow. Retrieved September 19, 2017, from https://www.searchtechnologies.com/blog/big-data-search-personalization

gender

Massanari, A. (2017). #Gamergate and The Fappening: How Reddit’s algorithm, governance, and culture support toxic technocultures. New Media & Society19(3), 329-346. doi:10.1177/1461444815608807

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d121748152%26site%3dehost-live%26scope%3dsite

community detection algorithms:

Bedi, P., & Sharma, C. (2016). Community detection in social networks. Wires: Data Mining & Knowledge Discovery6(3), 115-135.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dllf%26AN%3d114513548%26site%3dehost-live%26scope%3dsite

CRUZ, J. D., BOTHOREL, C., & POULET, F. (2014). Community Detection and Visualization in Social Networks: Integrating Structural and Semantic Information. ACM Transactions On Intelligent Systems & Technology5(1), 1-26. doi:10.1145/2542182.2542193

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3daph%26AN%3d95584126%26site%3dehost-live%26scope%3dsite

Bai, X., Yang, P., & Shi, X. (2017). An overlapping community detection algorithm based on density peaks. Neurocomputing2267-15. doi:10.1016/j.neucom.2016.11.019

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d120321022%26site%3dehost-live%26scope%3dsite

topic-detection algorithms:

Zeng, J., & Zhang, S. (2009). Incorporating topic transition in topic detection and tracking algorithms. Expert Systems With Applications36(1), 227-232. doi:10.1016/j.eswa.2007.09.013

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d34892957%26site%3dehost-live%26scope%3dsite

topic detection and tracking (TDT) algorithms based on topic models, such as LDA, pLSI (https://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis), etc.

Zhou, E., Zhong, N., & Li, Y. (2014). Extracting news blog hot topics based on the W2T Methodology. World Wide Web17(3), 377-404. doi:10.1007/s11280-013-0207-7

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d94609674%26site%3dehost-live%26scope%3dsite

The W2T (Wisdom Web of Things) methodology considers the information organization and management from the perspective of Web services, which contributes to a deep understanding of online phenomena such as users’ behaviors and comments in e-commerce platforms and online social networks.  (https://link.springer.com/chapter/10.1007/978-3-319-44198-6_10)

ethics of algorithm

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679

journalism

Malyarov, N. (2016, October 18). Journalism in the age of algorithms, platforms and newsfeeds | News | FIPP.com. Retrieved September 19, 2017, from http://www.fipp.com/news/features/journalism-in-the-age-of-algorithms-platforms-newsfeeds

+++++++++++++++++
http://blog.stcloudstate.edu/ims?s=algorithm
more on algorithms in this IMS blog

see also

Does AI favor tyranny

Why Technology Favors Tyranny

Artificial intelligence could erase many practical advantages of democracy, and erode the ideals of liberty and equality. It will further concentrate power among a small elite if we don’t take steps to stop it.

https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/

YUVAL NOAH HARARI  OCTOBER 2018 ISSUE

Ordinary people may not understand artificial intelligence and biotechnology in any detail, but they can sense that the future is passing them by. In 1938 the common man’s condition in the Soviet Union, Germany, or the United States may have been grim, but he was constantly told that he was the most important thing in the world, and that he was the future (provided, of course, that he was an “ordinary man,” rather than, say, a Jew or a woman).

n 2018 the common person feels increasingly irrelevant. Lots of mysterious terms are bandied about excitedly in ted Talks, at government think tanks, and at high-tech conferences—globalizationblockchaingenetic engineeringAImachine learning—and common people, both men and women, may well suspect that none of these terms is about them.

Fears of machines pushing people out of the job market are, of course, nothing new, and in the past such fears proved to be unfounded. But artificial intelligence is different from the old machines. In the past, machines competed with humans mainly in manual skills. Now they are beginning to compete with us in cognitive skills.

Israel is a leader in the field of surveillance technology, and has created in the occupied West Bank a working prototype for a total-surveillance regime. Already today whenever Palestinians make a phone call, post something on Facebook, or travel from one city to another, they are likely to be monitored by Israeli microphones, cameras, drones, or spy software. Algorithms analyze the gathered data, helping the Israeli security forces pinpoint and neutralize what they consider to be potential threats.

The conflict between democracy and dictatorship is actually a conflict between two different data-processing systems. AI may swing the advantage toward the latter.

As we rely more on Google for answers, our ability to locate information independently diminishes. Already today, “truth” is defined by the top results of a Google search. This process has likewise affected our physical abilities, such as navigating space.

So what should we do?

For starters, we need to place a much higher priority on understanding how the human mind works—particularly how our own wisdom and compassion can be cultivated.

+++++++++++++++
more on SCSU student philosophy club in this IMS blog
http://blog.stcloudstate.edu/ims?s=philosophy+student+club

deep learning revolution

Sejnowski, T. J. (2018). The Deep Learning Revolution. Cambridge, MA: The MIT Press.

How deep learning―from Google Translate to driverless cars to personal cognitive assistants―is changing our lives and transforming every sector of the economy.

The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.

Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

A pioneering scientist explains ‘deep learning’

Artificial intelligence meets human intelligence

neural networks

Buzzwords like “deep learning” and “neural networks” are everywhere, but so much of the popular understanding is misguided, says Terrence Sejnowski, a computational neuroscientist at the Salk Institute for Biological Studies.

Sejnowski, a pioneer in the study of learning algorithms, is the author of The Deep Learning Revolution (out next week from MIT Press). He argues that the hype about killer AI or robots making us obsolete ignores exciting possibilities happening in the fields of computer science and neuroscience, and what can happen when artificial intelligence meets human intelligence.

Machine learning is a very large field and goes way back. Originally, people were calling it “pattern recognition,” but the algorithms became much broader and much more sophisticated mathematically. Within machine learning are neural networks inspired by the brain, and then deep learning. Deep learning algorithms have a particular architecture with many layers that flow through the network. So basically, deep learning is one part of machine learning and machine learning is one part of AI.

December 2012 at the NIPS meeting, which is the biggest AI conference. There, [computer scientist] Geoff Hinton and two of his graduate students showed you could take a very large dataset called ImageNet, with 10,000 categories and 10 million images, and reduce the classification error by 20 percent using deep learning.Traditionally on that dataset, error decreases by less than 1 percent in one year. In one year, 20 years of research was bypassed. That really opened the floodgates.

The inspiration for deep learning really comes from neuroscience.

AlphaGo, the program that beat the Go champion included not just a model of the cortex, but also a model of a part of the brain called the basal ganglia, which is important for making a sequence of decisions to meet a goal. There’s an algorithm there called temporal differences, developed back in the ‘80s by Richard Sutton, that, when coupled with deep learning, is capable of very sophisticated plays that no human has ever seen before.

there’s a convergence occurring between AI and human intelligence. As we learn more and more about how the brain works, that’s going to reflect back in AI. But at the same time, they’re actually creating a whole theory of learning that can be applied to understanding the brain and allowing us to analyze the thousands of neurons and how their activities are coming out. So there’s this feedback loop between neuroscience and AI

+++++++++++
deep learning revolution
http://blog.stcloudstate.edu/ims?s=deep+learning

Russian Influence Operations on Twitter

Russian Influence Operations on Twitter

Summary This short paper lays out an attempt to measure how much activity from Russian state-operated accounts released in the dataset made available by Twitter in October 2018 was targeted at the United Kingdom. Finding UK-related Tweets is not an easy task. By applying a combination of geographic inference, keyword analysis and classification by algorithm, we identified UK-related Tweets sent by these accounts and subjected them to further qualitative and quantitative analytic techniques.

We find:

 There were three phases in Russian influence operations : under-the-radar account building, minor Brexit vote visibility, and larger-scale visibility during the London terror attacks.

 Russian influence operations linked to the UK were most visible when discussing Islam . Tweets discussing Islam over the period of terror attacks between March and June 2017 were retweeted 25 times more often than their other messages.

 The most widely-followed and visible troll account, @TEN_GOP, shared 109 Tweets related to the UK. Of these, 60 percent were related to Islam .

 The topology of tweet activity underlines the vulnerability of social media users to disinformation in the wake of a tragedy or outrage.

 Focus on the UK was a minor part of wider influence operations in this data . Of the nine million Tweets released by Twitter, 3.1 million were in English (34 percent). Of these 3.1 million, we estimate 83 thousand were in some way linked to the UK (2.7%). Those Tweets were shared 222 thousand times. It is plausible we are therefore seeing how the UK was caught up in Russian operations against the US .

 Influence operations captured in this data show attempts to falsely amplify other news sources and to take part in conversations around Islam , and rarely show attempts to spread ‘fake news’ or influence at an electoral level.

On 17 October 2018, Twitter released data about 9 million tweets from 3,841 blocked accounts affiliated with the Internet Research Agency (IRA) – a Russian organisation founded in 2013 and based in St Petersburg, accused of using social media platforms to push pro-Kremlin propaganda and influence nation states beyond their borders, as well as being tasked with spreading pro-Kremlin messaging in Russia. It is one of the first major datasets linked to state-operated accounts engaging in influence operations released by a social media platform.

Conclusion

This report outlines the ways in which accounts linked to the Russian Internet ResearchAgency (IRA) carried out influence operations on social media and the ways their operationsintersected with the UK.The UK plays a reasonably small part in the wider context of this data. We see two possibleexplanations: either influence operations were primarily targeted at the US and British Twitterusers were impacted as collate, or this dataset is limited to US-focused operations whereevents in the UK were highlighted in an attempt to impact US public, rather than a concertedeffort against the UK. It is plausible that such efforts al so existed but are not reflected inthis dataset.Nevertheless, the data offers a highly useful window into how Russian influence operationsare carried out, as well as highlighting the moments when we might be most vulnerable tothem.Between 2011 and 2016, these state-operated accounts were camouflaged. Through manualand automated methods, they were able to quietly build up the trappings of an active andwell-followed Twitter account before eventually pivoting into attempts to influence the widerTwitter ecosystem. Their methods included engaging in unrelated and innocuous topics ofconversation, often through automated methods, and through sharing and engaging withother, more mainstream sources of news.Although this data shows levels of electoral and party-political influence operations to berelatively low, the day of the Brexit referendum results showed how messaging originatingfrom Russian state-controlled accounts might come to be visible on June 24th 2016, we believe UK Twitter users discussing the Brexit Vote would have encountered messages originating from these accounts.As early as 2014, however, influence operations began taking part in conversations aroundIslam, and these accounts came to the fore during the three months of terror attacks thattook place between March and June 2017. In the immediate wake of these attacks, messagesrelated to Islam and circulated by Russian state-operated Twitter accounts were widelyshared, and would likely have been visible in the UK.The dataset released by Twitter begins to answer some questions about attempts by a foreignstate to interfere in British affairs online. It is notable that overt political or electoralinterference is poorly represented in this dataset: rather, we see attempts at stirring societaldivision, particularly around Islam in the UK, as the messages that resonated the most overthe period.What is perhaps most interesting about this moment is its portrayal of when we as socialmedia users are most vulnerable to the kinds of messages circulated by those looking toinfluence us. In the immediate aftermath of terror attacks, the data suggests, social mediausers were more receptive to this kind of messaging than at any other time.

It is clear that hostile states have identified the growth of online news and social media as aweak spot, and that significant effort has gone into attempting to exploit new media toinfluence its users. Understanding the ways in which these platforms have been used tospread division is an important first step to fighting it.Nevertheless, it is clear that this dataset provides just one window into the ways in whichforeign states have attempted to use online platforms as part of wider information warfare
and influence campaigns. We hope that other platforms will follow Twitter’s lead and release
similar datasets and encourage their users to proactively tackle those who would abuse theirplatforms.

+++++++++++
more on cybersecurity in this IMS blog
http://blog.stcloudstate.edu/ims?s=cybersecurity

Why Blockchain is Hard

Why Blockchain is Hard

Jimmy Song Bitcoin Educator, Developer and Entrepreneur/PGP Fingerprint: C1D7 97BE 7D10 5291 228C D70C

https://medium.com/@jimmysong/why-blockchain-is-hard-60416ea4c5c

What is a blockchain?

The main thing distinguishing a blockchain from a normal database is that there are specific rules about how to put data into the database. That is, it cannot conflict with some other data that’s already in the database (consistent), it’s append-only (immutable), and the data itself is locked to an owner (ownable), it’s replicable and available. Finally, everyone agrees on what the state of the things in the database are (canonical) without a central party (decentralized).

It is this last point that really is the holy grail of blockchain. Decentralization is very attractive because it implies there is no single point of failure.

The Cost of Blockchains

  • Development is stricter and slower
  • Incentive structures are difficult to design
  • Maintenance is very costly
  • Users are sovereign
  • All upgrades are voluntary
  • Scaling is really hard

Centralization is a lot easier

Like it or not, the word “blockchain” has taken on a life of its own. Very few people actually understand what it is, but want to appear hip so use these words as a way to sound more intelligent. Just like “cloud” means someone else’s computer and “AI” means a tweaked algorithm, “blockchain” in this context means a slow, expensive database.“blockchain” is really just a way to get rid of the heavy apparatus of government regulation. This is overselling what blockchain can do. Blockchain doesn’t magically take away human conflict.

So what is blockchain good for?

Most industries require new features or upgrades and the freedom to change and expand as necessary. Given that blockchains are hard to upgrade, hard to change and hard to scale, most industries don’t have much use for a blockchain. a lot of companies looking to use the blockchain are not really wanting a blockchain at all, but rather IT upgrades to their particular industry. This is all well and good, but using the word “blockchain” to get there is dishonest and overselling its capability.

+++++++++++
more on blockchain in this IMS blgo
http://blog.stcloudstate.edu/ims?s=blockchain

AI and ethics

Live Facebook discussion at SCSU VizLab on ethics and technology:

Join our discussion on #technology and #ethics. share your opinions, suggestions, ideas

Posted by InforMedia Services on Thursday, November 1, 2018

Heard on Marketplace this morning (Oct. 22, 2018): ethics of artificial intelligence with John Havens of the Institute of Electrical and Electronics Engineers, which has developed a new ethics certification process for AI: https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ec_bios.pdf

Ethics and AI

***** The student club, the Philosophical Society, has now been recognized by SCSU as a student organization ***

https://ed.ted.com/lessons/the-ethical-dilemma-of-self-driving-cars-patrick-lin

Could it be the case that a random decision is still better then predetermined one designed to minimize harm?

similar ethical considerations are raised also:

in this sitcom

https://www.theatlantic.com/sponsored/hpe-2018/the-ethics-of-ai/1865/ (full movie)

This TED talk:

http://blog.stcloudstate.edu/ims/2017/09/19/social-media-algorithms/

http://blog.stcloudstate.edu/ims/2018/10/02/social-media-monopoly/

 

 

+++++++++++++++++++
IoT (Internet of Things), Industry 4.0, Big Data, BlockChain,

+++++++++++++++++++
IoT (Internet of Things), Industry 4.0, Big Data, BlockChain, Privacy, Security, Surveilance

http://blog.stcloudstate.edu/ims?s=internet+of+things

peer-reviewed literature;

Keyword search: ethic* + Internet of Things = 31

Baldini, G., Botterman, M., Neisse, R., & Tallacchini, M. (2018). Ethical Design in the Internet of Things. Science & Engineering Ethics24(3), 905–925. https://doi-org.libproxy.stcloudstate.edu/10.1007/s11948-016-9754-5

Berman, F., & Cerf, V. G. (2017). Social and Ethical Behavior in the Internet of Things. Communications of the ACM60(2), 6–7. https://doi-org.libproxy.stcloudstate.edu/10.1145/3036698

Murdock, G. (2018). Media Materialties: For A Moral Economy of Machines. Journal of Communication68(2), 359–368. https://doi-org.libproxy.stcloudstate.edu/10.1093/joc/jqx023

Carrier, J. G. (2018). Moral economy: What’s in a name. Anthropological Theory18(1), 18–35. https://doi-org.libproxy.stcloudstate.edu/10.1177/1463499617735259

Kernaghan, K. (2014). Digital dilemmas: Values, ethics and information technology. Canadian Public Administration57(2), 295–317. https://doi-org.libproxy.stcloudstate.edu/10.1111/capa.12069

Koucheryavy, Y., Kirichek, R., Glushakov, R., & Pirmagomedov, R. (2017). Quo vadis, humanity? Ethics on the last mile toward cybernetic organism. Russian Journal of Communication9(3), 287–293. https://doi-org.libproxy.stcloudstate.edu/10.1080/19409419.2017.1376561

Keyword search: ethic+ + autonomous vehicles = 46

Cerf, V. G. (2017). A Brittle and Fragile Future. Communications of the ACM60(7), 7. https://doi-org.libproxy.stcloudstate.edu/10.1145/3102112

Fleetwood, J. (2017). Public Health, Ethics, and Autonomous Vehicles. American Journal of Public Health107(4), 632–537. https://doi-org.libproxy.stcloudstate.edu/10.2105/AJPH.2016.303628

HARRIS, J. (2018). Who Owns My Autonomous Vehicle? Ethics and Responsibility in Artificial and Human Intelligence. Cambridge Quarterly of Healthcare Ethics27(4), 599–609. https://doi-org.libproxy.stcloudstate.edu/10.1017/S0963180118000038

Keeling, G. (2018). Legal Necessity, Pareto Efficiency & Justified Killing in Autonomous Vehicle Collisions. Ethical Theory & Moral Practice21(2), 413–427. https://doi-org.libproxy.stcloudstate.edu/10.1007/s10677-018-9887-5

Hevelke, A., & Nida-Rümelin, J. (2015). Responsibility for Crashes of Autonomous Vehicles: An Ethical Analysis. Science & Engineering Ethics21(3), 619–630. https://doi-org.libproxy.stcloudstate.edu/10.1007/s11948-014-9565-5

Getha-Taylor, H. (2017). The Problem with Automated Ethics. Public Integrity19(4), 299–300. https://doi-org.libproxy.stcloudstate.edu/10.1080/10999922.2016.1250575

Keyword search: ethic* + artificial intelligence = 349

Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics into Artificial Intelligence. Journal of Ethics21(4), 403–418. https://doi-org.libproxy.stcloudstate.edu/10.1007/s10892-017-9252-2

Köse, U. (2018). Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on Machine Ethics and Artificial Intelligence Safety. BRAIN: Broad Research in Artificial Intelligence & Neuroscience9(2), 184–197. Retrieved from http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3daph%26AN%3d129943455%26site%3dehost-live%26scope%3dsite

++++++++++++++++
http://www.cts.umn.edu/events/conference/2018

2018 CTS Transportation Research Conference

Keynote presentations will explore the future of driving and the evolution and potential of automated vehicle technologies.

+++++++++++++++++++
http://blog.stcloudstate.edu/ims/2016/02/26/philosophy-and-technology/

+++++++++++++++++++
more on AI in this IMS blog
http://blog.stcloudstate.edu/ims/2018/09/07/limbic-thought-artificial-intelligence/

AI and autonomous cars as ALA discussion topic
http://blog.stcloudstate.edu/ims/2018/01/11/ai-autonomous-cars-libraries/

and privacy concerns
http://blog.stcloudstate.edu/ims/2018/09/14/ai-for-education/

the call of the German scientists on ethics and AI
http://blog.stcloudstate.edu/ims/2018/09/01/ethics-and-ai/

AI in the race for world dominance
http://blog.stcloudstate.edu/ims/2018/04/21/ai-china-education/

the intellectual dark web

Nuance: A Love Story. My affair with the intellectual dark web

Meghan Daum Aug 24 https://medium.com/s/greatescape/nuance-a-love-story-ae6a14991059

the standard set of middle-class Democratic Party values: Public safety nets were a force for good, corporate greed was a real threat, civil and reproductive rights were paramount.

I remember how good it felt to stand with my friends in our matching college sweatshirts shouting “never again!” and “my body, my choice!”

(hey, why shouldn’t Sarah Palin call herself a feminist?) brought angry letters from liberals as well as conservatives.

We would all go to the mat for women’s rights, gay rights, or pretty much any rights other than gun rights. We lived, for the most part, in big cities in blue states.

When Barack Obama came into the picture, we loved him with the delirium of crushed-out teenagers, perhaps less for his policies than for being the kind of person who also listens to NPR. We loved Hillary Clinton with the fraught resignation of a daughter’s love for her mother. We loved her even if we didn’t like her. We were liberals, after all. We were family.

Words like “mansplaining” and “gaslighting” were suddenly in heavy rotation, often invoked with such elasticity as to render them nearly meaningless. Similarly, the term “woke,” which originated in black activism, was being now used to draw a bright line between those on the right side of things and those on the wrong side of things.

From the Black Guys on Bloggingheads, YouTube’s algorithms bounced me along a path of similarly unapologetic thought criminals: the neuroscientist Sam Harris and his Waking Up podcast; Christina Hoff Sommers, aka “The Factual Feminist”; the comedian turned YouTube interviewer Dave Rubin; the counter-extremist activist Maajid Nawaz; and a cantankerous and then little-known Canadian psychology professor named Jordan Peterson, who railed against authoritarianism on both the left and right but reserved special disdain for postmodernism, which he believed was eroding rational thought on campuses and elsewhere.

the sudden national obsession with female endangerment on college campuses struck me much the same way it had in the early 1990s: well-intended but ultimately infantilizing to women and essentially unfeminist.

Weinstein and his wife, the evolutionary biologist Heather Heying, who also taught at Evergreen, would eventually leave the school and go on to become core members of the “intellectual dark web.”

Weinstein talked about intellectual “feebleness” in academia and in the media, about the demise of nuance, about still considering himself a progressive despite his feeling that the far left was no better at offering practical solutions to the world’s problems than the far right.

an American Enterprise Institute video of Sommers, the Factual Feminist, in conversation with the scholar and social critic Camille Paglia — “My generation fought for the freedom for women to risk getting raped!” I watched yet another video in which Paglia sat by herself and expounded volcanically about the patriarchal history of art (she was all for it).

the brothers sat down together for a two-hour, 47-minute interview on theRubin Report,

James Baldwin’s line, “I love America more than any other country in the world, and, exactly for this reason, I insist on the right to criticize her perpetually

Jordan Peterson Twelve Rules for Life: An Antidote for Chaos, is a sort of New and Improved Testament for the purpose-lacking young person (often but not always male) for whom tough-love directives like “clean up your room!” go down a lot easier when dispensed with a Jungian, evo-psych panache.

Quillette, a new online magazine that billed itself as “a platform for free thought”

the more honest we are about what we think, the more we’re alone with our thoughts. Just as you can’t fight Trumpism with tribalism, you can’t fight tribalism with a tribe.

media literacy backfire

Did Media Literacy Backfire?

Jan 5, 2017danah boyd

https://points.datasociety.net/did-media-literacy-backfire-7418c084d88d

Understanding what sources to trust is a basic tenet of media literacy education.

Think about how this might play out in communities where the “liberal media” is viewed with disdain as an untrustworthy source of information…or in those where science is seen as contradicting the knowledge of religious people…or where degrees are viewed as a weapon of the elite to justify oppression of working people. Needless to say, not everyone agrees on what makes a trusted source.

Students are also encouraged to reflect on economic and political incentives that might bias reporting. Follow the money, they are told. Now watch what happens when they are given a list of names of major power players in the East Coast news media whose names are all clearly Jewish. Welcome to an opening for anti-Semitic ideology.

In the United States, we believe that worthy people lift themselves up by their bootstraps. This is our idea of freedom. To take away the power of individuals to control their own destiny is viewed as anti-American by so much of this country. You are your own master.

Children are indoctrinated into this cultural logic early, even as their parents restrict their mobility and limit their access to social situations. But when it comes to information, they are taught that they are the sole proprietors of knowledge. All they have to do is “do the research” for themselves and they will know better than anyone what is real.

Combine this with a deep distrust of media sources.

Many marginalized groups are justifiably angry about the ways in which their stories have been dismissed by mainstream media for decades.It took five days for major news outlets to cover Ferguson. It took months and a lot of celebrities for journalists to start discussing the Dakota Pipeline. But feeling marginalized from news media isn’t just about people of color.

Keep in mind that anti-vaxxers aren’t arguing that vaccinations definitively cause autism. They are arguing that we don’t know. They are arguing that experts are forcing children to be vaccinated against their will, which sounds like oppression. What they want is choice — the choice to not vaccinate. And they want information about the risks of vaccination, which they feel are not being given to them. In essence, they are doing what we taught them to do: questioning information sources and raising doubts about the incentives of those who are pushing a single message. Doubt has become tool.

Addressing so-called fake news is going to require a lot more than labeling. It’s going to require a cultural change about how we make sense of information, whom we trust, and how we understand our own role in grappling with information. Quick and easy solutions may make the controversy go away, but they won’t address the underlying problems.

In the United States, we’re moving towards tribalism (see Fukuyama), and we’re undoing the social fabric of our country through polarization, distrust, and self-segregation.

++++++++++++++++++++++++++++++

boyd, danah. (2014). It’s Complicated: The Social Lives of Networked Teens (1 edition). New Haven: Yale University Press.
p. 8 networked publics are publics that are reconstructed by networked technologies. they are both space and imagined community.
p. 11 affordances: persistence, visibility, spreadability, searchability.
p. technological determinism both utopian and dystopian
p. 30 adults misinterpret teens online self-expression.
p. 31 taken out of context. Joshua Meyrowitz about Stokely Charmichael.
p. 43 as teens have embraced a plethora of social environment and helped co-create the norms that underpin them, a wide range of practices has emerged. teens have grown sophisticated with how they manage contexts and present themselves in order to be read by their intended audience.
p. 54 privacy. p. 59 Privacy is a complex concept without a clear definition. Supreme Court Justice Brandeis: the right to be let alone, but also ‘measure of th access others have to you through information, attention, and physical proximity.’
control over access and visibility
p. 65 social steganography. hiding messages in plain sight
p. 69 subtweeting. encoding content
p. 70 living with surveillance . Foucault Discipline and Punish
p. 77 addition. what makes teens obsessed w social media.
p. 81 Ivan Goldberg coined the term internet addiction disorder. jokingly
p. 89 the decision to introduce programmed activities and limit unstructured time is not unwarranted; research has shown a correlation between boredom and deviance.
My interview with Myra, a middle-class white fifteen-year-old from Iowa, turned funny and sad when “lack of time” became a verbal trick in response to every question. From learning Czech to trakc, from orchestra to work in a nursery, she told me that her mother organized “98%” of her daily routine. Myra did not like all of these activities, but her mother thought they were important.
Myra noted that her mother meant well, but she was exhausted and felt socially disconnected because she did not have time to connect with friends outside of class.
p. 100 danger
are sexual predators lurking everywhere
p. 128 bullying. is social media amplifying meanness and cruelty.
p. 131 defining bullying in a digital era. p. 131 Dan Olweus narrowed in the 70s bulling to three components: aggression, repetition and imbalance on power. p. 152 SM has not radically altered the dynamics of bullying, but it has made these dynamics more visible to more people. we must use this visibility not to justify increased punishment, but to help youth who are actually crying out for attention.
p. 153 inequality. can SM resolve social divisions?
p. 176 literacy. are today’s youth digital natives? p. 178 Barlow and Rushkoff p. 179 Prensky. p. 180 youth need new literacies. p. 181 youth must become media literate. when they engage with media–either as consumers or producers–they need to have the skills to ask questions about the construction and dissemination of particular media artifacts. what biases are embedded in the artifact? how did the creator intend for an audience to interpret the artifact, and what are the consequences of that interpretation.
p. 183 the politics of algorithms (see also these IMS blog entries http://blog.stcloudstate.edu/ims?s=algorithms) Wikipedia and google are fundamentally different sites. p. 186 Eli Pariser, The Filter Bubble: the personalization algorithms produce social divisions that undermine any ability to crate an informed public. Harvard’s Berkman Center have shown, search engines like Google shape the quality of information experienced by youth.
p. 192 digital inequality. p. 194 (bottom) 195 Eszter Hargittai: there are signifficant difference in media literacy and technical skills even within age cohorts. teens technological skills are strongly correlated with socio-economic status. Hargittai argues that many youth, far from being digital natives, are quite digitally naive.
p. 195 Dmitry  Epstein: when society frames the digital divide as a problem of access, we see government and industry as the responsible party for the addressing the issue. If DD as skills issue, we place the onus on learning how to manage on individuals and families.
p. 196 beyond digital natives

Palfrey, J., & Gasser, U. (2008). Born Digital: Understanding the First Generation of Digital Natives (1 edition). New York: Basic Books.

John Palfrey, Urs Gasser: Born Digital
Digital Natives share a common global culture that is defined not by age, strictly, but by certain attributes and experience related to how they interact with information technologies, information itself, one another, and other people and institutions. Those who were not “born digital’ can be just as connected, if not more so, than their younger counterparts. And not everyone born since, say 1982, happens to be a digital native.” (see also http://blog.stcloudstate.edu/ims/2018/04/15/no-millennials-gen-z-gen-x/

p. 197. digital native rhetoric is worse than inaccurate: it is dangerous
many of the media literacy skills needed to be digitally savvy require a level of engagement that goes far beyond what the average teen pick up hanging out with friends on FB or Twitter. Technical skills, such as the ability to build online spaces requires active cultivation. Why some search queries return some content before others. Why social media push young people to learn how to to build their own systems, versus simply using a social media platforms. teens social status and position alone do not determine how fluent or informed they are via-a-vis technology.
p. 199 Searching for a public on their own

++++++++++++

Daum, M. (2018, August 24). My Affair With the Intellectual Dark Web – Great Escape. Retrieved October 9, 2018, from https://medium.com/s/greatescape/nuance-a-love-story-ae6a14991059

the intellectual dark web

++++++++++++
more on media literacy in this IMS blog
http://blog.stcloudstate.edu/ims?s=media+literacy

fake news in this IMS blog
http://blog.stcloudstate.edu/ims?s=fake+news

Hoaxy

Interview with the Creators of Hoaxy® from Indiana University

Interview with the Creators of Hoaxy® from Indiana University

Falsehoods are spread due to biases in the brain, society, and computer algorithms (Ciampaglia & Menczer, 2018). A combined problem is “information overload and limited attention contribute to a degradation of the market’s discriminative power” (Qiu, Oliveira, Shirazi, Flammini, & Menczer, 2017).  Falsehoods spread quickly in the US through social media because this has become Americans’ preferred way to read the news (59%) in the 21st century (Mitchell, Gottfried, Barthel, & Sheer, 2016). While a mature critical reader may recognize a hoax disguised as news, there are those who share it intentionally. A 2016 US poll revealed that 23% of American adults had shared misinformation unwittingly or on purpose; this poll reported high to moderate confidence in one’s ability to identify fake news with only 15% not very confident (Barthel, Mitchell, & Holcomb, 2016).

Hoaxy® takes it one step further and shows you who is spreading or debunking a hoax or disinformation on Twitter.

+++++++++++++
more on fake news in this IMS blog
http://blog.stcloudstate.edu/ims?s=fake+news

Limbic thought and artificial intelligence

Limbic thought and artificial intelligence

September 5, 2018  Siddharth (Sid) Pai

https://www.linkedin.com/pulse/limbic-thought-artificial-intelligence-siddharth-sid-pai/

An AI programme “catastrophically forgets” the learnings from its first set of data and would have to be retrained from scratch with new data. The website futurism.com says a completely new set of algorithms would have to be written for a programme that has mastered face recognition, if it is now also expected to recognize emotions. Data on emotions would have to be manually relabelled and then fed into this completely different algorithm for the altered programme to have any use. The original facial recognition programme would have “catastrophically forgotten” the things it learnt about facial recognition as it takes on new code for recognizing emotions. According to the website, this is because computer programmes cannot understand the underlying logic that they have been coded with.
Irina Higgins, a senior researcher at Google DeepMind, has recently announced that she and her team have begun to crack the code on “catastrophic forgetting”.
As far as I am concerned, this limbic thinking is “catastrophic thinking” which is the only true antipode to AI’s “catastrophic forgetting”. It will be eons before AI thinks with a limbic brain, let alone has consciousness.
++++++++++++++++++

Stephen Hawking warns artificial intelligence could end mankind

https://www.bbc.com/news/technology-30290540
++++++++++++++++++++
thank you Sarnath Ramnat (sarnath@stcloudstate.edu) for the finding

An AI Wake-Up Call From Ancient Greece

  https://www.project-syndicate.org/commentary/artificial-intelligence-pandoras-box-by-adrienne-mayor-2018-10

++++++++++++++++++++
more on AI in this IMS blog
http://blog.stcloudstate.edu/ims?s=artifical+intelligence

1 2 3 4