Searching for "artificial intelligence"

Super Mario gets artificial intelligence

Researchers create ‘self-aware’ Super Mario with artificial intelligence

http://mashable.com/2015/01/19/super-mario-artificial-intelligence/

A team of German researchers has used artificial intelligence to create a “self-aware” version of Super Mario who can respond to verbal commands and automatically play his own game.

Artificial Intelligence helps Mario play his own game

Students at the University of Tubingen have used Mario as part of their efforts to find out how the human brain works.

The cognitive modelling unit claim their project has generated “a fully functional program” and “an alive and somewhat intelligent artificial agent”.

http://www.bbc.co.uk/newsbeat/30879456

Can Super Mario Save Artificial Intelligence?

The most popular approaches today focus on Big Data, or mimicking humansthat already know how to do some task. But sheer mimicry breaks down when one gives a machine new tasks, and, as I explained a few weeks ago, Big Data approaches tend to excel at finding correlations without necessarily being able to induce the rules of the game. If Big Data alone is not a powerful enough tool to induce a strategy in a complex but well-defined game like chess, then that’s a problem, since the real world is vastly more open-ended, and considerably more complicated.

http://www.newyorker.com/tech/elements/can-super-mario-save-artificial-intelligence

intelligence measure

Intelligence: a history

Intelligence has always been used as fig-leaf to justify domination and destruction. No wonder we fear super-smart robots

Stephen Cave

https://aeon.co/essays/on-the-dark-history-of-intelligence-as-domination

To say that someone is or is not intelligent has never been merely a comment on their mental faculties. It is always also a judgment on what they are permitted to do. Intelligence, in other words, is political.

The problem has taken an interesting 21st-century twist with the rise of Artificial Intelligence (AI).

The term ‘intelligence’ itself has never been popular with English-language philosophers. Nor does it have a direct translation into German or ancient Greek, two of the other great languages in the Western philosophical tradition. But that doesn’t mean philosophers weren’t interested in it. Indeed, they were obsessed with it, or more precisely a part of it: reason or rationality. The term ‘intelligence’ managed to eclipse its more old-fashioned relative in popular and political discourse only with the rise of the relatively new-fangled discipline of psychology, which claimed intelligence for itself.

Plato conclude, in The Republic, that the ideal ruler is ‘the philosopher king’, as only a philosopher can work out the proper order of things. This idea was revolutionary at the time. Athens had already experimented with democracy, the rule of the people – but to count as one of those ‘people’ you just had to be a male citizen, not necessarily intelligent. Elsewhere, the governing classes were made up of inherited elites (aristocracy), or by those who believed they had received divine instruction (theocracy), or simply by the strongest (tyranny).

Plato’s novel idea fell on the eager ears of the intellectuals, including those of his pupil Aristotle. Aristotle was always the more practical, taxonomic kind of thinker. He took the notion of the primacy of reason and used it to establish what he believed was a natural social hierarchy.

So at the dawn of Western philosophy, we have intelligence identified with the European, educated, male human. It becomes an argument for his right to dominate women, the lower classes, uncivilised peoples and non-human animals. While Plato argued for the supremacy of reason and placed it within a rather ungainly utopia, only one generation later, Aristotle presents the rule of the thinking man as obvious and natural.

The late Australian philosopher and conservationist Val Plumwood has argued that the giants of Greek philosophy set up a series of linked dualisms that continue to inform our thought. Opposing categories such as intelligent/stupid, rational/emotional and mind/body are linked, implicitly or explicitly, to others such as male/female, civilised/primitive, and human/animal. These dualisms aren’t value-neutral, but fall within a broader dualism, as Aristotle makes clear: that of dominant/subordinate or master/slave. Together, they make relationships of domination, such as patriarchy or slavery, appear to be part of the natural order of things.

Descartes rendered nature literally mindless, and so devoid of intrinsic value – which thereby legitimated the guilt-free oppression of other species.

For Kant, only reasoning creatures had moral standing. Rational beings were to be called ‘persons’ and were ‘ends in themselves’. Beings that were not rational, on the other hand, had ‘only a relative value as means, and are therefore called things’. We could do with them what we liked.

This line of thinking was extended to become a core part of the logic of colonialism. The argument ran like this: non-white peoples were less intelligent; they were therefore unqualified to rule over themselves and their lands. It was therefore perfectly legitimate – even a duty, ‘the white man’s burden’ – to destroy their cultures and take their territory.

The same logic was applied to women, who were considered too flighty and sentimental to enjoy the privileges afforded to the ‘rational man’.

Galton believe that intellectual ability was hereditary and could be enhanced through selective breeding. He decided to find a way to scientifically identify the most able members of society and encourage them to breed – prolifically, and with each other. The less intellectually capable should be discouraged from reproducing, or indeed prevented, for the sake of the species. Thus eugenics and the intelligence test were born together.

From David Hume to Friedrich Nietzsche, and Sigmund Freud through to postmodernism, there are plenty of philosophical traditions that challenge the notion that we’re as intelligent as we’d like to believe, and that intelligence is the highest virtue.

From 2001: A Space Odyssey to the Terminator films, writers have fantasised about machines rising up against us. Now we can see why. If we’re used to believing that the top spots in society should go to the brainiest, then of course we should expect to be made redundant by bigger-brained robots and sent to the bottom of the heap.

Natural stupidity, rather than artificial intelligence, remains the greatest risk.

++++++++++++++++++++++
more on intelligence in this IMS blog
http://blog.stcloudstate.edu/ims?s=intelligence

NMC Horizon Report 2017 K12

NMC/CoSN Horizon Report 2017 K–12 Edition

https://cdn.nmc.org/wp-content/uploads/2017-nmc-cosn-horizon-report-K12-advance.pdf
p. 16 Growing Focus on Measuring Learning
p. 18 Redesigning Learning Spaces
Biophilic Design for Schools : The innate tendency in human beings to focus on life and lifelike processes is biophilia

p. 20 Coding as a Literacy

 https://www.facebook.com/bracekids/
Best Coding Tools for High School http://go.nmc.org/bestco

p. 24

Significant Challenges Impeding Technology Adoption in K–12 Education
Improving Digital Literacy.
 Schools are charged with developing students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online etiquette and digital rights and responsibilities in blended and online learning settings. Due to the multitude of elements comprising digital literacy, it is a challenge for schools to implement a comprehensive and cohesive approach to embedding it in curricula.
Rethinking the Roles of Teachers.
Pre-service teacher training programs are also challenged to equip educators with digital and social–emotional competencies, such as the ability to analyze and use student data, amid other professional requirements to ensure classroom readiness.
p. 28 Improving Digital Literacy
Digital literacy spans across subjects and grades, taking a school-wide effort to embed it in curricula. This can ensure that students are empowered to adapt in a quickly changing world
Education Overview: Digital Literacy Has to Encompass More Than Social Use

What Web Literacy Skills are Missing from Learning Standards? Are current learning standards addressing the essential web literacy skills everyone should know?https://medium.com/read-write-participate/what-essential-web-skills-are-missing-from-current-learning-standards-66e1b6e99c72

 

web literacy;
alignment of stadards

The American Library Association (ALA) defines digital literacy as “the ability to use information and communication technologies to find, evaluate, create, and communicate or share information, requiring both cognitive and technical skills.” While the ALA’s definition does align to some of the skills in “Participate”, it does not specifically mention the skills related to the “Open Practice.”

The library community’s digital and information literacy standards do not specifically include the coding, revision and remixing of digital content as skills required for creating digital information. Most digital content created for the web is “dynamic,” rather than fixed, and coding and remixing skills are needed to create new content and refresh or repurpose existing content. Leaving out these critical skills ignores the fact that library professionals need to be able to build and contribute online content to the ever-changing Internet.

p. 30 Rethinking the Roles of Teachers

Teachers implementing new games and software learn alongside students, which requires
a degree of risk on the teacher’s part as they try new methods and learn what works
p. 32 Teaching Computational Thinking
p. 36 Sustaining Innovation through Leadership Changes
shift the role of teachers from depositors of knowledge to mentors working alongside students;
p. 38  Important Developments in Educational Technology for K–12 Education
Consumer technologies are tools created for recreational and professional purposes and were not designed, at least initially, for educational use — though they may serve well as learning aids and be quite adaptable for use in schools.
Drones > Real-Time Communication Tools > Robotics > Wearable Technology
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching and learning, whether inside or outside the classroom.
> Games and Gamification > Location Intelligence > Makerspaces > Preservation and Conservation Technologies
Enabling technologies are those technologies that have the potential to transform what we expect of our devices and tools. The link to learning in this category is less easy to make, but this group of technologies is where substantive technological innovation begins to be visible. Enabling technologies expand the reach of our tools, making them more capable and useful
Affective Computing > Analytics Technologies > Artificial Intelligence > Dynamic Spectrum and TV White Spaces > Electrovibration > Flexible Displays > Mesh Networks > Mobile Broadband > Natural User Interfaces > Near Field Communication > Next Generation Batteries > Open Hardware > Software-Defined Networking > Speech-to-Speech Translation > Virtual Assistants > Wireless Powe
Internet technologies include techniques and essential infrastructure that help to make the technologies underlying how we interact with the network more transparent, less obtrusive, and easier to use.
Bibliometrics and Citation Technologies > Blockchain > Digital Scholarship Technologies > Internet of Things > Syndication Tools
Learning technologies include both tools and resources developed expressly for the education sector, as well as pathways of development that may include tools adapted from other purposes that are matched with strategies to make them useful for learning.
Adaptive Learning Technologies > Microlearning Technologies > Mobile Learning > Online Learning > Virtual and Remote Laboratories
Social media technologies could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category.
Crowdsourcing > Online Identity > Social Networks > Virtual Worlds
Visualization technologies run the gamut from simple infographics to complex forms of visual data analysis
3D Printing > GIS/Mapping > Information Visualization > Mixed Reality > Virtual Reality
p. 46 Virtual Reality
p. 48 AI
p. 50 IoT

+++++++++++++++
more on NMC Horizon Reports in this IMS blog

http://blog.stcloudstate.edu/ims?s=new+media+horizon

disruptive technologies higher ed

The top 5 disruptive technologies in higher ed

By Leigh M. and Thomas Goldrick June 5th, 2017
The Internet of Things (IoT), augmented reality, and advancements in online learning have changed the way universities reach prospective students, engage with their current student body, and provide them the resources they need.
Online Learning
Despite online learning’s successes, many still believe that it lacks the interaction of its in-person counterpart. However, innovations in pedagogical strategy and technology are helping make it much more engaging.

Competency-based Education

Competency-based education (CBE) recognizes that all students enter a program with different skills and proficiencies and that each moves at a different rate. We now possess the technology to better measure these differences and design adaptive learning programs accordingly. These programs aim to increase student engagement, as time is spent expanding on what the students already know rather than having them relearn familiar material.

The Internet of Things

The Internet of Things has opened up a whole new world of possibilities in higher education. The increased connectivity between devices and “everyday things” means better data tracking and analytics, and improved communication between student, professor, and institution, often without ever saying a word. IoT is making it easier for students to learn when, how, and where they want, while providing professors support to create a more flexible and connected learning environment.

Virtual/Augmented Reality

Virtual and augmented reality technologies have begun to take Higher Ed into the realm of what used to be considered science fiction.

More often than not, they require significant planning and investment into the infrastructure needed to support them.

Artificial Intelligence

an A.I. professor’s assistant or an online learning platform that adapts to each student’s specific needs. Having artificial intelligence that learns and improves as it aids in the learning process could have a far-reaching effect on higher education both online and in-person.

+++++++++++++++++++++
more on disruptive technologies in this IMS blog
https://blog.stcloudstate.edu/ims?s=disruptive+technologies

directions immersive learning

Emerging Directions in Immersive Learning

Presented by: Maya Georgieva and Emory Craig, May 17, 1:00 – 2:00pm (EDT)

http://events.shindig.com/event/campus-tech

Digital Bodies cofounders Emory Craig and Maya Georgieva for an interactive session that will examine five developments in virtual, augmented, and mixed reality with the greatest potential to impact teaching and learning.   Ask your questions live as they explore how groundbreaking developments in VR, AR, MR, and artificial intelligence will power immersive technologies and transform learning.

Hololense $3000 and it is difficult to use outside. persistent digital objects
https://mixed.reality.news/news/whats-difference-between-hololens-meta-magic-leap-0171361/

https://events.google.com/io/

https://unity3d.com/sundance2017

education: new media, gaming

storytelling: immersive storytelling and AI

Jeremy Bailenson https://vhil.stanford.edu/

Julie Johnston – https://uits.iu.edu/learning-spaces

industry 4.0

A Strategist’s Guide to Industry 4.0. Global businesses are about to integrate their operations into a seamless digital whole, and thereby change the world.

https://www.strategy-business.com/article/A-Strategists-Guide-to-Industry-4.0
Industrial revolutions are momentous events. By most reckonings, there have been only three. The first was triggered in the 1700s by the commercial steam engine and the mechanical loom. The harnessing of electricity and mass production sparked the second, around the start of the 20th century. The computer set the third in motion after World War II.
Henning Kagermann, the head of the German National Academy of Science and Engineering (Acatech), did exactly that in 2011, when he used the term Industrie 4.0 to describe a proposed government-sponsored industrial initiative.
The term Industry 4.0 refers to the combination of several major innovations in digital technology
These technologies include advanced robotics and artificial intelligence; sophisticated sensors; cloud computing; the Internet of Things; data capture and analytics; digital fabrication (including 3D printing); software-as-a-service and other new marketing models; smartphones and other mobile devices; platforms that use algorithms to direct motor vehicles (including navigation tools, ride-sharing apps, delivery and ride services, and autonomous vehicles); and the embedding of all these elements in an interoperable global value chain, shared by many companies from many countries.
Companies that embrace Industry 4.0 are beginning to track everything they produce from cradle to grave, sending out upgrades for complex products after they are sold (in the same way that software has come to be updated). These companies are learning mass customization: the ability to make products in batches of one as inexpensively as they could make a mass-produced product in the 20th century, while fully tailoring the product to the specifications of the purchaser
.

adoption industry 4.0 by sector

Three aspects of digitization form the heart of an Industry 4.0 approach.

• The full digitization of a company’s operations

•  The redesign of products and services

•  Closer interaction with customers

Making Industry 4.0 work requires major shifts in organizational practices and structures. These shifts include new forms of IT architecture and data management, new approaches to regulatory and tax compliance, new organizational structures, and — most importantly — a new digitally oriented culture, which must embrace data analytics as a core enterprise capability.

Klaus Schwab put it in his recent book The Fourth Industrial Revolution (World Economic Forum, 2016), “Contrary to the previous industrial revolutions, this one is evolving at an exponential rather than linear pace.… It is not only changing the ‘what’ and the ‘how’ of doing things, but also ‘who’ we are.”

This great integrating force is gaining strength at a time of political fragmentation — when many governments are considering making international trade more difficult. It may indeed become harder to move people and products across some national borders. But Industry 4.0 could overcome those barriers by enabling companies to transfer just their intellectual property, including their software, while letting each nation maintain its own manufacturing networks.
+++++++++++++++++++++++++++
more on the Internet of Things in this IMS blog
http://blog.stcloudstate.edu/ims?s=internet+of+things

also Digital Learning

http://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/

Virtual Augmented Mixed Reality

11 Ed Tech Trends to Watch in 2017
Five higher ed leaders analyze the hottest trends in education technology this year.

http://pdf.101com.com/CampusTech/2017/701921020/CAM_1702DG.pdf

new forms of human-computer interaction (HCI) such as augmented reality (AR),virtual reality (VR) and mixed reality (MR).
p. 21
combining AR/VR/MR with cognitive computing and artificial intelligence (AI) technologies (such as machine learning, deep learning, natural language processing and chatbots).
Some thought-provoking questions include:
  • Will remote workers be able to be seen and interacted with via their holograms (i.e., attending their meetings virtually)? What would this mean for remote learners?
  • Will our smartphones increasingly allow us to see information overlaid on the real world? (Think Pokémon Go, but putting that sort of technology into a vast array of different applications, many of which could be educational in nature)
  • How do/will these new forms of HCI impact how we design our learning spaces?
  • Will students be able to pick their preferred learning setting (i.e., studying by a brook or stream or in a virtual Starbucks-like atmosphere)?
  • Will more devices/platforms be developed that combine the power of AI with VR/AR/MR-related experiences? For example, will students be able to issue a verbal question or command to be able to see and experience walking around ancient Rome?
  • Will there be many new types of learning experiences,like what Microsoft was able to achieve in its collaboration with Case Western Reserve University [OH]? Its HoloLens product transforms the way human anatomy can be taught.

p. 22 Extensive costs for VR design and development drive the need for collaborative efforts.

Case Western Reserve University, demonstrates a collaboration with the Cleveland Clinic and Microsoft to create active multi-dimensional learning using holography.

the development of more affordable high-quality virtual reality solutions.

AR game developed by the Salzburg University of Applied Sciences [Austria] (http://www.fh-salzburg.ac.at/en/) that teaches  about sustainability, the environment and living green.
Whether using AR for a gamified course or to acclimate new students to campus, the trend will continue into 2017.

++++++++++++++++++++++++++++++

15 Tech Tool Favorites From ISTE 2016

list of resources that can help educators find what they need

Google Expeditions
This virtual reality field trip tool works in conjunction with Google Cardboard and has just been officially released. The app allows teachers to guide students through an exploration of 200 (and growing) historical sites and natural resources in an immersive, three-dimensional experience. The app only works on Android devices and is free.

Flippity
This app works in conjunction with Google Sheets and allows teachers to easily make a Jeopardy-style game.

Google Science Journal
This Android app allows users to do science experiments with mobile phones. Students can use sensors in the phone or connect external sensors to collect data, but can also take notes on observations, analyze and annotate within the app.

Google Cast
This simple app solves issues of disparate devices in the classroom. When students download the app, they can project from their devices onto the screen at the front of the room easily. “You don’t have to have specific hardware, you just have to have Wi-Fi,”

Constitute
This site hosts a database of constitutions from around the world. Anything digitally available has been aggregated here. It is searchable by topic and will pull out specific excerpts related to search terms like “freedom of speech.”

YouTube
a database of YouTube Channels by subject to help educators with discoverability (hint subjects are by tab along the bottom of the document).

Zygote Body
This freemium tool has a lot of functionality in the free version, allowing students to view different parts of human anatomy and dig into how various body systems work.
Pixlr
This app has less power than Photoshop, but is free and fairly sophisticated. It works directly with Google accounts, so students can store files there.
uild With Chrome
This extension to the Chrome browser lets kids play with digital blocks like Legos. Based on the computer’s IP address, the software assigns users a plot of land on which to build nearby. There’s a Build Academy to learn how to use the various tools within the program, but then students can make whatever they want.
Google CS First
Built on Scratch’s programming language, this easy tool gives step-by-step instructions to get started and is great for the hesitant teacher who is just beginning to dip a toe into coding.
several posters about Google Apps For Education that are available to anyone for free

+++++++++++++++
More on VR in this IMS bloghttp://blog.stcloudstate.edu/ims?s=virtual+reality

Google AI

Google Researchers Create AI That Builds Its Own Encryption

BY TOM BRANT OCTOBER 28, 2016 04:45PM EST

http://www.pcmag.com/news/349154/google-researchers-create-ai-that-builds-its-own-encryption

Alice and Bob have figured out a way to have a conversation without Eve being able to overhear, no matter how hard she tries.

They’re artificial intelligence algorithms created by Google engineers, and their ability to create an encryption protocol that Eve (also an AI algorithm) can’t hack is being hailed as an important advance in machine learning and cryptography.

Martin Abadi and David G. Andersen, explained in a paper published this week that their experiment is intended to find out if neural networks—the building blocks of AI—can learn to communicate secretly.

As the Abadi and Anderson wrote, “instead of training each of Alice and Bob separately to implement some known cryptosystem, we train Alice and Bob jointly to communicate successfully and to defeat Eve without a pre-specified notion of what cryptosystem they may discover for this purpose.”

same in German

Googles AI entwickelt eigenständig Verschlüsselung

von – 31.10.2016
http://www.com-magazin.de/news/verschluesselung/googles-ai-entwickelt-eigenstaendig-verschluesselung-1145175.html
Google-Forscher Martin Abadi und David G. Andersen des Deep-Learning-Projekts “Google Brain” eine neue Verschlüsselungsmethode entwickelt beziehungsweise entwickeln lassen. Die Forscher haben verschiedene neurale Netze damit beauftragt, eine abhörsichere Kommunikation aufzustellen.

++++++++++++++++
more on AI in this IMS blog:
http://blog.stcloudstate.edu/ims?s=artificial+intelligence

fourth-wave of scientific advancement

Education in the ‘Fourth Wave’ of Science-Driven Economic Advancement

By David Nagel 07/06/16

https://thejournal.com/articles/2016/07/06/education-in-the-fourth-wave-of-science-driven-economic-advancement.aspx

fourth wave, one driven by nanotechnology, biotechnology and artificial intelligence.

In at least one presentation, he referred to the American education system as “the worst educational system known to science.”

Although there will be a “perfect” and direct transfer of information to everyone with or without educators, students will still need to come to class to benefit from the wisdom and experience of their teachers.

“So in the future, there’s going to be a balance, a balance between ‘e-instruction’ and mentoring. And teachers, more and more, will be in the business of mentoring [and] personal experience because you cannot get that on the Internet.”

Those aspects of “mentoring” and “career guidance” are especially important to Kaku, who said that teachers must push students to where the jobs will be in the future.

 

The MOOC Is Dead! Long Live Open Learning!

http://diyubook.com/2013/07/the-mooc-is-dead-long-live-open-learning/

We’re at a curious point in the hype cycle of educational innovation, where the hottest concept of the past year–Massive Open Online Courses, or MOOCs–is simultaneously being discovered by the mainstream media, even as the education-focused press is declaring them dead. “More Proof MOOCs are Hot,” and “MOOCs Embraced By Top Universities,” said the Wall Street Journal and USA Today last week upon the announcement that Coursera had received a $43 million round of funding to expand its offerings;
“Beyond MOOC Hype” was the nearly simultaneous headline in Inside Higher Ed.

Can MOOCs really be growing and dying at the same time?

The best way to resolve these contradictory signals is probably to accept that the MOOC, itself still an evolving innovation, is little more than a rhetorical catchall for a set of anxieties around teaching, learning, funding and connecting higher education to the digital world. This is a moment of cultural transition. Access to higher education is strained. The prices just keep rising. Questions about relevance are growing. The idea of millions of students from around the world learning from the worlds’ most famous professors at very small marginal cost, using the latest in artificial intelligence and high-bandwidth communications, is a captivating one that has drawn tens of millions in venture capital. Yet, partnerships between MOOC platforms and public institutions like SUNY and the University of California to create self-paced blended courses and multiple paths to degrees look like a sensible next step for the MOOC, but they are far from that revolutionary future. Separate ideas like blended learning and plain old online delivery seem to be blurring with and overtaking the MOOC–even Blackboard is using the term.

The time seems to be ripe for a reconsideration of the “Massive” impact of “Online” and “Open” learning. TheReclaim Open Learning initiative is a growing community of teachers, researchers and learners in higher education dedicated to this reconsideration. Supporters include the MIT Media Lab and the MacArthur Foundation-supported Digital Media and Learning Research Hub. I am honored to be associated with the project as a documentarian and beater of the drum.

Entries are currently open for our Innovation Contest, offering a $2000 incentive to either teachers or students who have projects to transform higher education in a direction that is connected and creative, is open as in open content and open as in open access, that is participatory, that takes advantage of some of the forms and practices that the MOOC also does but is not beholden to the narrow mainstream MOOC format (referring instead to some of the earlier iterations of student-created, distributed MOOCscreated by Dave Cormier, George Siemens, Stephen Downes and others.)

Current entries include a platform to facilitate peer to peer language learning, a Skype-based open-access seminar with guests from around the world, and a student-created course in educational technology. Go hereto add your entry! Deadline is August 2. Our judges include Cathy Davidson (HASTAC), Joi Ito (MIT), and Paul Kim (Stanford).

Reclaim Open Learning earlier sponsored a hackathon at the MIT Media Lab. This fall, September 27 and 28, our judges and contest winners will join us at a series of conversations and demo days to Reclaim Open Learning at the University of California, Irvine. If you’re interested in continuing the conversation, join us there or check us out online.

July 18, 2013

1 2