Searching for "brain"

brain activity study

Duke University researchers say every brain activity study you’ve ever read is wrong

The researchers reexamined 56 peer-reviewed, published papers that conducted 90 fMRI experiments, some by leaders in the field, and also looked at the results of so-called “test/retest” fMRIs, where 65 subjects were asked to do the same tasks months apart. They found that of seven measures of brain function, none had consistent readings.

more on the brain in this IMS blog

screen time and brain development

The Adolescent Brain Cognitive Development study tested 4,500 9-10-year-olds in its first released dataset. The ABCD study is the largest long-term study of brain development in U.S.

Early data from the study, analyzed by another group of researchers from the CHEO Research Institute’s Healthy Active Living and Obesity also showed that kids who spend less than two hours a day on screens, participated in 60 minutes of moderate-to-vigorous-intensity physical activity, and received nine to 11 hours of uninterrupted sleep had higher cognitive abilities.Cognition was measured by language abilities, episodic memory, executive function, attention, working memory, and processing speed.

prime the brain for learning

Activities That Prime the Brain for Learning

Brain breaks and focused attention practices help students feel relaxed and alert and ready to learn.



more on mindfulness in this IMS blog

Your Brain Off Facebook

This Is Your Brain Off Facebook

Planning on quitting the social platform? A major new study offers a glimpse of what unplugging might do for your life. (Spoiler: It’s not so bad.)

Benedict Carey, Jan 30, 2019

This Is Your Brain Off Facebook by BENEDICT CAREY

So what happens if you actually do quit? A new study, the most comprehensive to date, offers a preview.

Well before news broke that Facebook had shared users’ data without consent, scientists and habitual users debated how the platform had changed the experience of daily life.

the use of Facebook and other social media is linked to mental distress, especially in adolescents.

Others have likened habitual Facebook use to a mental disorder, comparing it to drug addiction and even publishing magnetic-resonance images of what Facebook addiction “looks like in the brain.”

When Facebook has published its own analyses to test such claims, the company has been roundly criticized.

For abstainers, breaking up with Facebook freed up about an hour a day, on average, and more than twice that for the heaviest users.

research led by Ethan Kross, a professor of psychology at the University of Michigan, has found that high levels of passive browsing on social media predict lowered moods, compared to more active engagement.

more on Facebook in this IMS blog

music and the brain

What’s Going On Inside the Brain When We Play Music?

Published on 

Humans love music, especially when there’s repetition that catches the attention.

“Playing music is the brain’s equivalent of a full body workout,” says educator Anita Collins in a TED-Ed video on how playing music benefits the brain. Playing music requires the visual, auditory, and motor cortices all at once


more on the brain in this IMS blog

sound and the brain

What Types of Sound Experiences Enable Children to Learn Best?
At Northwestern’s Auditory Neuroscience Lab, Kraus and colleagues measure how the brain responds when various sounds enter the ear. They’ve found that the brain reacts to sound in microseconds, and that brain waves closely resemble the sound waves.
Making sense of sound is one of the most “computationally complex” functions of the brain, Kraus said, which explains why so many language and other disorders, including autism, reveal themselves in the way the brain processes sound. The way the brain responds to the “ingredients” of sound—pitching, timing and timbre—is a window into brain health and learning ability.

practical suggestions for creating space “activities that promote sound-to-meaning development,” whether at home or in school:
Reduce noise. Chronic background noise is associated with several auditory and learning problems: it contributes to “neural noise,” wherein brain neurons fire spontaneously in the absence of sound; it reduces the brain’s sensitivity to sound; and it slows auditory growth.
Read aloud. Even before kids are able to read themselves, hearing stories told by others develops vocabulary and builds working memory; to understand how a story unfolds, listeners, need to remember what was said before.
Encourage children to play a musical instrument. “There is an explicit link between making music and strengthening language skills, so that keeping music education at the center of curricula can pay big dividends for children’s cognitive, emotional, and educational health.Two years of music instruction in elementary and even secondary school can trigger biological changes in how the brain processes sound, which in turn affects language development.
Listen to audiobooks and podcasts. Well-told stories can draw kids in and build attention skills and working memory. The number and quality of these recordings has exploded in recent years, making it that much easier to find a good fit for individuals and classes.
Support learning a second language. Growing up in a bilingual environment causes a child’s brain to manage two languages at once.
Avoid white noise machines. In an effort to soothe children to sleep, some parents set up sound machines in bedrooms. These devices, which emit “meaningless sound,” as Kraus put it, can interfere with how the brain develops sound-processing circuitry.
Use the spread of technology to your advantage. Rather than bemoan the constant bleeping and chirping of everyday life, much of it the result of technological advances, welcome the new sound opportunities these developments provide. Technologies that shrink the globalized world enable second-language learning.

More on the brain in this IMS blog

new brain cells

(thank you Mike Pickle:

Mysterious new brain cell found in people

“rosehip neurons,” were found in the uppermost layer of the cortex, which is home to many different types of neurons that inhibit the activity of other neurons.

the set of genes expressed in these inhibitory rosehip neurons doesn’t closely match any previously identified cell in the mouse, suggesting they have no analog in the rodent often used as a model for humans,

The locations of their points of contact on other neurons suggest they’re in a powerful position to put the brakes on other incoming, excitatory signals—by which complex circuits of neurons activate one another throughout the brain.

more on learning and the brain in this IMS blog

brain research distance ed

The Implications of Brain Research for Distance Education

Katrina A. Meyer
Assistant Professor, Department of Educational Leadership
University of North Dakota

posted on FB in 2013

The brain is actually three brains: the ancient reptilian brain, the limbic brain, and the cortical brain. This article will focus on the limbic brain, because it may be most important to successfully using interactive video or web-based video. The limbic brain monitors the external world and the internal body, taking in information through the senses as well as body temperature and blood pressure, among others. It is the limbic brain that generates and interprets facial expressions and handles emotions, while the cortical brain handles symbolic activities such as language as well as action and strategizing. The two interact when an emotion is sent from the limbic to the cortical brain and generates a conscious thought; in response to a feeling of fear (limbic), you ask, “what should I do?” (cortical).

The importance of direct eye contact and deciphering body language is also important for sending and picking up clues about social context.

The loss of social cues is important because it may affect the quality of the content of the presentation (by not allowing timely feedback or questions) but also because students may feel less engaged and become frustrated with the interaction, and subsequently lower their assessment of the class and the instructor (Reeves & Nass, 1996). Fortunately, faculty can provide such social cues verbally, once they are aware of the importance of helping students use these new media.

Attachment theory also supports the importance of physical and emotional connections.

As many a struggling teacher knows, students are often impervious to learning new concepts. They may replay the new information for a test, but after time passes, they revert to the earlier (and likely wrong) information. This is referred to as the “power of mental models.” As explained in Marchese (2000), when we view a tree, it is not as if we see the tree in our head, as in photography.

The coping strategies of the two hemispheres are fundamentally different. The left hemisphere’s job is to create a belief system or model and to fold new experiences into that belief system. If confronted with some new information that doesn’t fit the model, it relies on Freudian defense mechanisms to deny, repress or confabulate – anything to preserve the status quo. The right hemisphere’s strategy is to play “Devil’s Advocate,” to question the status quo and look for global inconsistencies. When the anomalous information reaches a certain threshold, the right hemisphere decides that it is time to force a complete revision of the entire model and start from scratch (Ramachandran & Blakeslee, 1998, p. 136).

While much hemispheric-based research has been repudiated as an oversimplification (Gackenbach, 1999), the above description of how new information eventually overwhelms an old world view may be the result of multiple brain functions – some of which work to preserve our models and others to alter – that help us both maintain and change as needed.

Self-talk is the “the root of empathy, understanding, cooperation, and rules that allow us to be successful social beings. Any sense of moral behavior requires thought before action” (Ratey, 2001, p. 255).

Healy (1999) argues that based on what we know about brain development in children, new computer media may be responsible for developing brains that are largely different from the brains of adults. This is because “many brain connections have become specialized for . . . media” (p. 133); in this view, a brain formed by language and reading is different from a brain formed by hypermedia. Different media lead to different synaptic connections being laid down and reinforced, creating different brains in youngsters raised on fast-paced, visually-stimulating computer applications and video games. “Newer technologies emphasize rapid processing of visual symbols . . . and deemphasize traditional verbal learning . . . and the linear, analytic thought process . . . [making it] more difficult to deal with abstract verbal reasoning” (Healy, 1999, p. 142).


more on distance ed in this IMS blog

1 2 3 15