Searching for "brain learning"

AI and ed research

https://www.scienceopen.com/document/read?vid=992eaf61-35dd-454e-aa17-f9f8216b381b

This article presents an examination of how education research is being remade as an experimental data-intensive science. AI is combining with learning science in new ‘digital laboratories’ where ownership over data, and power and authority over educational knowledge production, are being redistributed to research assemblages of computational machines and scientific expertise.

Research across the sciences, humanities and social sciences is increasingly conducted through digital knowledge machines that are reconfiguring the ways knowledge is generated, circulated and used (Meyer and Schroeder, 2015).

Knowledge infrastructures, such as those of statistical institutes or research-intensive universities, have undergone significant digital transformation with the arrival of data-intensive technologies, with knowledge production now enacted in myriad settings, from academic laboratories and research institutes to commercial research and development studios, think tanks and consultancies. Datafied knowledge infrastructures have become hubs of command and control over the creation, analysis and exchange of data (Bigo et al., 2019).

The combination of AI and learning science into an AILSci research assemblage consists of particular forms of scientific expertise embodied by knowledge actors – individuals and organizations – identified by categories including science of learning, AIED, precision education and learning engineering.

Precision education overtly uses psychological, neurological and genomic data to tailor or personalize learning around the unique needs of the individual (Williamson, 2019). Precision education approaches include cognitive tracking, behavioural monitoring, brain imaging and DNA analysis.

Expert power is therefore claimed by those who can perform big data analyses, especially those able to translate and narrate the data for various audiences. Likewise, expert power in education is now claimed by those who can enact data-intensive science of learning, precision education and learning engineering research and development, and translate AILSci findings into knowledge for application in policy and practitioner settings.

the thinking of a thinking infrastructure is not merely a conscious human cognitive process, but relationally performed across humans and socio-material strata, wherein interconnected technical devices and other forms ‘organize thinking and thought and direct action’.
As an infrastructure for AILSci analyses, these technologies at least partly structure how experts think: they generate new understandings and knowledge about processes of education and learning that are only thinkable and knowable due to the computational machinery of the research enterprise.

Big data-based molecular genetics studies are part of a bioinformatics-led transformation of biomedical sciences based on analysing exceptional volumes of data (Parry and Greenhough, 2018), which has transformed the biological sciences to focus on structured and computable data rather than embodied evidence itself.

Isin and Ruppert (2019) have recently conceptualized an emergent form of power that they characterize as sensory power. Building on Foucault, they note how sovereign power gradually metamorphosed into disciplinary power and biopolitical forms of statistical regulation over bodies and populations.
Sensory power marks a shift to practices of data-intensive sensing, and to the quantified tracking, recording and representing of living pulses, movements and sentiments through devices such as wearable fitness monitors, online natural-language processing and behaviour-tracking apps. Davies (2019: 515–20) designates these as ‘techno-somatic real-time sensing’ technologies that capture the ‘rhythms’ and ‘metronomic vitality’ of human bodies, and bring about ‘new cyborg-type assemblages of bodies, codes, screens and machines’ in a ‘constant cybernetic loop of action, feedback and adaptation’.

Techno-somatic modes of neural sensing, using neurotechnologies for brain imaging and neural analysis, are the next frontier in AILSci. Real-time brainwave sensing is being developed and trialled in multiple expert settings.

_+++++++++++++++
more on AI in this IMS blog
https://blog.stcloudstate.edu/ims?s=artificial+intelligence

XR anatomy

The EDUCAUSE XR (Extended Reality) Community Group Listserv <XR@LISTSERV.EDUCAUSE.EDU>

Greetings to you all! Presently, I am undertaking a masters course in “Instruction Design and Technology” which has two components: Coursework and Research. For my research, I would like to pursue it in the field of Augmented Reality (AR) and Mobile Learning. I am thinking of an idea that could lead to collaboration among students and directly translate into enhanced learning for students while using an AR application. However, I am having a problem with coming up with an application because I don’t have any computing background. This, in turn, is affecting my ability to come up with a good research topic.

I teach gross anatomy and histology to many students of health sciences at Mbarara University, and this is where I feel I could make a contribution to learning anatomy using AR since almost all students own smartphones. I, therefore, kindly request you to let me know which of the freely-available AR app authoring tools could help me in this regard. In addition, I request for your suggestions regarding which research area(s) I should pursue in order to come up with a good research topic.

Hoping to hear from you soon.

Grace Muwanga Department of Anatomy Mbarara University Uganda (East Africa)

++++++++++++

matthew.macvey@journalism.cuny.edu

Dear Grace, a few augmented reality tools which I’ve found are relatively easy to get started with:

For iOS, iPhone, iPad: https://www.torch.app/ or https://www.adobe.com/products/aero.html

To create AR that will work on social platforms like Facebook and Snapchat (and will work on Android, iOS) try https://sparkar.facebook.com/ar-studio/ or https://lensstudio.snapchat.com/ . You’ll want to look at the tutorials for plane tracking or target tracking https://sparkar.facebook.com/ar-studio/learn/documentation/tracking-people-and-places/effects-in-surroundings/

https://lensstudio.snapchat.com/guides/general/tracking/tracking-modes/

One limitation with Spark and Snap is that file sizes need to be small.

If you’re interested in creating AR experiences that work directly in a web browser and are up for writing some markup code, look at A-Frame AR https://aframe.io/blog/webxr-ar-module/.

For finding and hosting 3D models you can look at Sketchfab and Google Poly. I think both have many examples of anatomy.

Best, Matt

+++++++++++

“Beth L. Ritter-Guth” <britter-guth@NORTHAMPTON.EDU>

I’ve been using Roar. They have a 99$ a year license.

++++++++++++

I have recently been experimenting with an AR development tool called Zappar, which I like because the end users do not have to download an app to view the AR content. Codes can be scanned either with the Zappar app or at web.zappar.com.

From a development standpoint, Zappar has an easy to use drag-and-drop interface called ZapWorks Designer that will help you build basic AR experiences quickly, but for a more complicated, more interactive use case such as learning anatomy, you will probably need ZapWorks Studio, which will have much more of a learning curve. The Hobby (non-commercial) license is free if you are interested in trying it out.

You can check out an AR anatomy mini-lesson with models of the human brain, liver, and heart using ZapWorks here: https://www.zappar.com/campaigns/secrets-human-body/. Even if you choose to go with a different development tool, this example might help nail down ideas for your own project.

Hope this helps,

Brighten

Brighten Jelke Academic Assistant for Virtual Technology Lake Forest College bjelke@lakeforest.edu Office: DO 233 | Phone: 847-735-5168

http://www.lakeforest.edu/academics/resources/innovationspaces/virtualspace.php

+++++++++++++++++
more on XR in education in this IMS blog
https://blog.stcloudstate.edu/ims?s=xr+education

Educators in VR

Info on all presentations: https://account.altvr.com/channels/1182698623012438188

Charlie Fink: Setting the Table for the Next Decade in XR

Translating Training Requirements into Immersive Experience

Virtual Reality Technologies for Learning Designers

Virtual Reality Technologies for Learning Designers Margherita Berti

$$$$$$$$$$$$$$$$$$$$$$

Technology Acceptance and Learning Process Victoria Bolotina part 1

Technology Acceptance and Learning Process Victoria Bolotina part 2

Assessment of Learning Activities in VR Evelien Ydo part 2

++++++++++++++++++++++++++++++++++++++++

VR: So Much More Than a Field Trip Shannon Putman, Graduate Assistant/PhD Student, University of Louisville SPED special education https://account.altvr.com/events/1406092840622096803

++++++++++++++++++++++++++++++

VR and Health Professionals Rob Theriault

+++++++++++++++++++++++

Transform Your History Lessons with AR and VR Michael Fricano II

++++++++++++++++++++++++++++

Transform Your History Lessons with AR and VR Michael Fricano II, Technology Integration Specialist https://www.arvreduhub.com/transform-history

Qlone App for 3D scanning

++++++++++++++++++++++++++++++++++++++

2020 Educators in VR International Summit

The 2020 Educators in VR International Summit is February 17-22. It features over 170 speakers in 150+ events across multiple social and educational platforms including AltspaceVRENGAGErumiiMozilla Hubs, and Somnium Space.

The event requires no registration, and is virtual only, free, and open to the public. Platform access is required, so please install one of the above platforms to attend the International Summit. You may attend in 2D on a desktop or laptop computer with a headphone and microphone (USB gaming headphone recommended), or with a virtual device such as the Oculus Go, Quest, and Rift, Vive, and other mobile and tethered devices. Please note the specifications and requirements of each platform.

The majority of our events are on AltspaceVR. AltspaceVR is available for Samsung GearSteam Store for HTC ViveWindows Mixed Reality, and the Oculus Store for RiftGo and Quest users. Download and install the 2D version for use on your Windows desktop computer.

Charlie Fink, author, columnist for Forbes magazine, and Adjunct Faculty member of Chapman University, will be presenting “Setting the Table for the Next Decade in XR,” discussing the future of this innovative and immersive technology, at the 2020 Educators in VR International Summit. He will be speaking in AltspaceVR on Tuesday, February 18 at 1:00 PM EST /

International Summit

Setting the Table for the Next Decade in XR 1PM, Tues, Feb 18 https://account.altvr.com/events/1406089727517393133

Finding a New Literacy for a New Reality 5PM, Tues, Feb 18

https://account.altvr.com/events/1406093036194103494 schedule for new literacy

Finding a New Literacy for a New Reality

Dr. Sarah Jones, Deputy Dean, De Montfort University

This workshop with Dr. Sarah Jones will focus on developing a relevant and new literacy for virtual reality, including the core competencies and skills needed to develop and understand how to become an engaged user of the technology in a meaningful way. The workshop will develop into research for a forthcoming book on Uncovering a Literacy for VR due to be published in 2020.

Sarah is listed as one of the top 15 global influencers within virtual reality. After nearly a decade in television news, Sarah began working in universities focusing on future media, future technology and future education. Sarah holds a PhD in Immersive Storytelling and has published extensively on virtual and augmented reality, whilst continuing to make and create immersive experiences. She has advised the UK Government on Immersive Technologies and delivers keynotes and speaks at conferences across the world on imagining future technology. Sarah is committed to diversifying the media and technology industries and regularly champions initiatives to support this agenda.

Inter-cognitive and Intra-cognitive Communication in Virtual Reality

Inter-cognitive and Intra-cognitive Communication in Virtual Reality

Michael Vallance, Professor, Future University Hakodate

Currently there are limited ways to connect 3D VR environments to physical objects in the real-world whilst simultaneously conducting communication and collaboration between remote users. Within the context of a solar power plant, the performance metrics of the site are invaluable for environmental engineers who are remotely located. Often two or more remotely located engineers need to communicate and collaborate on solving a problem. If a solar panel component is damaged, the repair often needs to be undertaken on-site thereby incurring additional expenses. This triage of communication is known as inter-cognitive communication and intra-cognitive communication: inter-cognitive communication where information transfer occurs between two cognitive entities with different cognitive capabilities (e.g., between a human and an artificially cognitive system); intra-cognitive communication where information transfer occurs between two cognitive entities with equivalent cognitive capabilities (e.g., between two humans) [Baranyi and Csapo, 2010]. Currently, non-VR solutions offer a comprehensive analysis of solar plant data. A regular PC with a monitor currently have advantages over 3D VR. For example, sensors can be monitored using dedicated software such as EPEVER or via a web browser; as exemplified by the comprehensive service provided by Elseta. But when multiple users are able to collaborate remotely within a three-dimensional virtual simulation, the opportunities for communication, training and academic education will be profound.

Michael Vallance Ed.D. is a researcher in the Department of Media Architecture, Future University Hakodate, Japan. He has been involved in educational technology design, implementation, research and consultancy for over twenty years, working closely with Higher Education Institutes, schools and media companies in UK, Singapore, Malaysia and Japan. His 3D virtual world design and tele-robotics research has been recognized and funded by the UK Prime Minister’s Initiative (PMI2) and the Japan Advanced Institute of Science and Technology (JAIST). He has been awarded by the United States Army for his research in collaborating the programming of robots in a 3D Virtual World.

Create Strategic Snapchat & Instagram AR Campaigns

Create Strategic Snapchat & Instagram AR Campaigns

Dominique Wu, CEO/Founder, Hummingbirdsday

Augmented Reality Lens is popular among young people thanks to Snapchat’s invention. Business is losing money without fully using of social media targeting young people (14-25). In my presentation, Dominique Wu will show how businesses can generate more leads through Spark AR (Facebook AR/Instagram AR) & Snapchat AR Lens, and how to create a strategic Snapchat & Instagram AR campaigns.

Domnique Wu is an XR social media strategist and expert in UX/UI design.She has her own YouTube and Apple Podcast show called “XReality: Digital Transformation,” covering the technology and techniques of incorporating XR and AR into social media, marketing, and integration into enterprise solutions.

Mixed Reality in Classrooms Near You

Mixed Reality in Classrooms Near You

Mark Christian, EVP, Strategy and Corporate Development, GIGXR

Mixed Reality devices like the HoloLens are transforming education now. Mark Christian will discuss how the technology is not about edge use cases or POCs, but real usable products that are at Universities transforming the way we teach and learn. Christian will talk about the products of GIGXR, the story of how they were developed and what the research is saying about their efficacy. It is time to move to adoption of XR technology in education. Learn how one team has made this a reality.

As CEO of forward-thinking virtual reality and software companies, Mark Christian employs asymmetric approaches to rapid, global market adoption, hiring, diversity and revenue. He prides himself on unconventional approaches to building technology companies.

Designing Educational Content in VR

Designing Educational Content in VR

Avinash Gyawali, VR Developer, Weaver Studio

Virtual Reality is an effective medium to impart education to the student only if it is done right.The way VR is considered gimmick or not is by the way the software application are designed/developed by the developers not the hardware limitation.I will be giving insight about the VR development for educational content specifically designed for students of lower secondary school.I will also provide insights about the development of game in unity3D game engine.

Game Developer and VR developer with over 3 years of experience in Game Development.Developer of Zombie Shooter, winner of various national awards in the gaming and entertainment category, Avinash Gyawali is the developer of EDVR, an immersive voice controlled VR experience specially designed for children of age 10-18 years.

8:00 AM PST Research Virtual Reality Technologies for Learning Designers Margherita Berti ASVR

Virtual Reality Technologies for Learning Designers

Margherita Berti

Virtual Reality (VR) is a computer-generated experience that simulates presence in real or imagined environments (Kerrebrock, Brengman, & Willems, 2017). VR promotes contextualized learning, authentic experiences, critical thinking, and problem-solving opportunities. Despite the great potential and popularity of this technology, the latest two installations of the Educause Horizon Report (2018, 2019) have argued that VR remains “elusive” in terms of mainstream adoption. The reasons are varied, including the expense and the lack of empirical evidence for its effectiveness in education. More importantly, examples of successful VR implementations for those instructors who lack technical skills are still scarce. Margherita Berti will discuss a range of easy-to-use educational VR tools and examples of VR-based activity examples and the learning theories and instructional design principles utilized for their development.

Margherita Berti is a doctoral candidate in Second Language Acquisition and Teaching (SLAT) and Educational Technology at the University of Arizona. Her research specialization resides at the intersection of virtual reality, the teaching of culture, and curriculum and content development for foreign language education.

Wed 11:00 AM PST Special Event Gamifying the Biblioverse with Metaverse Amanda Fox VR Design / Biblioverse / Training & Embodiment ASVR

Gamifying the Biblioverse with Metaverse

Amanda Fox, Creative Director of STEAMPunks/MetaInk Publishing, MetaInk Publishing

There is a barrier between an author and readers of his/her books. The author’s journey ends, and the reader’s begins. But what if as an author/trainer, you could use gamification and augmented reality(AR) to interact and coach your readers as part of their learning journey? Attend this session with Amanda Fox to learn how the book Teachingland leverages augmented reality tools such as Metaverse to connect with readers beyond the text.

Amanda Fox, Creative Director of STEAMPunksEdu, and author of Teachingland: A Teacher’s Survival Guide to the Classroom Apolcalypse and Zom-Be A Design Thinker. Check her out on the Virtual Reality Podcast, or connect with her on twitter @AmandaFoxSTEM.

Wed 10:00 AM PST Research Didactic Activity of the Use of VR and Virtual Worlds to Teach Design Fundamentals Christian Jonathan Angel Rueda VR Design / Biblioverse / Training & Embodiment ASVR

Didactic Activity of the Use of VR and Virtual Worlds to Teach Design Fundamentals

Christian Jonathan Angel Rueda, research professor, Autonomous University of Queretaro (Universidad Autónoma de Querétaro)

Christian Jonathan Angel Rueda specializaes in didactic activity of the use of virtual reality/virtual worlds to learn the fundamentals of design. He shares the development of a course including recreating in the three-dimensional environment using the fundamentals learned in class, a demonstration of all the works developed throughout the semester using the knowledge of design foundation to show them creatively, and a final project class scenario that connected with the scenes of the students who showed their work throughout the semester.

Christian Jonathan Angel Rueda is a research professor at the Autonomous University of Queretaro in Mexico. With a PhD in educational technology, Christian has published several papers on the intersection of education, pedagogy, and three-dimensional immersive digital environments. He is also an edtech, virtual reality, and social media consultant at Eco Onis.

Thu 11:00 AM PST vCoaching Closing the Gap Between eLearning and XR Richard Van Tilborg XR eLearning / Laughter Medicine ASVR

Closing the Gap Between eLearning and XR

Richard Van Tilborg, founder, CoVince

How we can bridge the gap between eLearning and XR. Richard Van Tilborg discusses combining brain insights enabled with new technologies. Training and education cases realised with the CoVince platform: journeys which start on you mobile and continue in VR. The possibilities to earn from your creations and have a central distribution place for learning and data.

Richard Van Tilborg works with the CoVince platform, a VR platform offering training and educational programs for central distribution of learning and data. He is an author and speaker focusing on computers and education in virtual reality-based tasks for delivering feedback.

 

Thu 12:00 PM PST Research Assessment of Learning Activities in VR Evelien Ydo Technology Acceptance / Learning Assessment / Vaping Prevention ASVR
Thu 6:00 PM PST Down to Basics Copyright and Plagiarism Protections in VR Jonathan Bailey ASVR

 

Thu 8:00 PM PST Diversity Cyberbullying in VR John Williams, Brennan Hatton, Lorelle VanFossen ASVR

school based mindfulness

https://www.kqed.org/mindshift/51308/learning-mindfulness-centered-on-kindness-to-oneself-and-others

Mindfulness has become a core social and emotional learning strategy in the Austin Independent School District (AISD) in Texas. The district has even created a mindfulness specialist position, filled by James Butler, the district’s 2014 Teacher of the Year.

There are various understandings of mindfulness, but most focus on being nonjudgmental and present in the moment.

As part of a presentation at SXSW EDU

Teo, the first-grader, recommends the books “Your Fantastic Elastic Brain”and “Listening to My Body”; the website GoNoodle and Destress Monday, especially the gifs; the apps Stop Breathe & Think Kids and Super Stretch Yoga.

Addison, in fifth grade, recommends the books “What Does It Mean to Be Present?”and “Listening To My Body”; the website GoNoodle and Mind Yeti; the apps Calmand Smiling Mind.

Xavier, the 11th-grader, recommends the books “Cure: A Journey Into Science of Mind Over Body” and “The Happiness Track: How to Apply the Science of Happiness to Accelerate Your Success”; the websites Pocket Mindfulness and UCLA Mindful Awareness Research Center; the apps Calm and Smiling Mind.

For educators seeking to start a mindfulness practice, Butler has a list of recommendations he hands out to educators and a #mindfulAISD YouTube channel.

+++++++++++++
more on mindfulness in this IMS blog
https://blog.stcloudstate.edu/ims?s=mindfulness

a technologically literate graduate

Profile of a technologically literate graduate

By Jorge Valenzuela 1/7/2019

https://www.iste.org/explore/articleDetail?articleid=2329

When school leaders set out to create a profile of their ideal graduate, many trip up on defining technological literacy and subsequently struggle to select the right edtech to get students there.

digital equity and digital citizenship

use your divisionwide or statewide profile of a graduate.

STEP 1: Have a model and unpack it

In my state of Virginia (like many other states), we focus on these four:

  • Content knowledge
  • Workplace skills
  • Community engagement and civic responsibility
  • Career exploration

STEP 2: Tag team with colleagues to plan instruction

In step one we created our graduate profile by brainstorming and identifying both the personal and professional knowledge and skills that our future graduates need. Now it’s time to formulate plans to bring the profile to fruition. To ensure student success, implementation should take place in the classroom and tap the expertise of our colleagues.

Student  success is never due to one teacher, but a collaborative effort.

STEP 3: Identify and leverage the right industry partners

Technological literacy requires students to create authentic products using appropriate edtech, therefore developing technologically literate graduates should not be left entirely to teachers and schools.

Soliciting the help of our industry and business partners is so crucial to this process

Step 4: Create career pathways in schools

schools create systemic K-12 career pathways — or pipelines — for their students and give teachers ample time and space to plan and work together to maximize the learning aligned to well-developed graduate profiles.

ELI webinar AI and teaching

ELI Webinar | How AI and Machine Learning Shape the Future of Teaching

https://events.educause.edu/eli/webinars/2019/how-ai-and-machine-learning-shape-the-future-of-teaching

When:
1/23/2019 Wed
12:00 PM – 1:00 PM
Where:
Centennial Hall – 100
Lecture Room
Who:
Anyone interested in
new methods for teaching

Outcomes

  • Explore what is meant by AI and how it relates to machine learning and data science
  • Identify relevant uses of AI and machine learning to advance education
  • Explore opportunities for using AI and machine learning to transform teaching
  • Understand how technology can shape open educational materials

Kyle Bowen, Director, Teaching and Learning with Technology https://members.educause.edu/kyle-bowen

Jennifer Sparrow, Senior Director of Teaching and Learning With Tech, https://members.educause.edu/jennifer-sparrow

Malcolm Brown, Director, Educause, Learning Initiative

more in this IMB blog on Jennifer Sparrow and digital fluency: https://blog.stcloudstate.edu/ims/2018/11/01/preparing-learners-for-21st-century-digital-citizenship/

++++++++++++++++++++++++++++

Feb 5, 2018 webinar notes

creating a jazz band of one: ThoughSourus

Eureka: machine learning tool, brainstorming engine. give it an initial idea and it returns similar ideas. Like Google: refine the idea, so the machine can understand it better. create a collection of ideas to translate into course design or others.

Netlix:

influencers and microinfluencers, pre- and doing the execution

place to start explore and generate content.

https://answerthepublic.com/

a machine can construct a book with the help of a person. bionic book. machine and person working hand in hand. provide keywords and phrases from lecture notes, presentation materials. from there recommendations and suggestions based on own experience; then identify included and excluded content. then instructor can construct.

Design may be the least interesting part of the book for the faculty.

multiple choice quiz may be the least interesting part, and faculty might want to do much deeper assessment.

use these machine learning techniques to build assessment. how to more effectively. inquizitive is the machine learning

 

students engagements and similar prompts

presence in the classroom: pre-service teachers class. how to immerse them and practice classroom management skills

https://books.wwnorton.com/books/inquizitive/overview/

First class: marriage btw VR and use of AI – an environment headset: an algorithm reacts how teachers are interacting with the virtual kids. series of variables, oppty to interact with present behavior. classroom management skills. simulations and environments otherwise impossible to create. apps for these type of interactions

facilitation, reflection and research

AI for more human experience, allow more time for the faculty to be more human, more free time to contemplate.

Jason: Won’t the use of AI still reduce the amount of faculty needed?

Christina Dumeng: @Jason–I think it will most likely increase the amount of students per instructor.

Andrew Cole (UW-Whitewater): I wonder if instead of reducing faculty, these types of platforms (e.g., analytic capabilities) might require instructors to also become experts in the various technology platforms.

Dirk Morrison: Also wonder what the implications of AI for informal, self-directed learning?

Kate Borowske: The context that you’re presenting this in, as “your own jazz band,” is brilliant. These tools presented as a “partner” in the “band” seems as though it might be less threatening to faculty. Sort of gamifies parts of course design…?

Dirk Morrison: Move from teacher-centric to student-centric? Recommender systems, AI-based tutoring?

Andrew Cole (UW-Whitewater): The course with the bot TA must have been 100-level right? It would be interesting to see if those results replicate in 300, 400 level courses

Recording available here

https://events.educause.edu/eli/webinars/2019/how-ai-and-machine-learning-shape-the-future-of-teaching

Goldilocks effect storytelling

What’s Going On In Your Child’s Brain When You Read Them A Story?

https://www.kqed.org/mindshift/51281/whats-going-on-in-your-childs-brain-when-you-read-them-a-story

newly published study gives some insight into what may be happening inside young children’s brains

“emergent literacy” — the process of learning to read.

“Goldilocks effect,” here’s what the researchers found:

In the audio-only condition (too cold): language networks were activated, but there was less connectivity overall. “There was more evidence the children were straining to understand.”

In the animation condition (too hot): there was a lot of activity in the audio and visual perception networks, but not a lot of connectivity among the various brain networks.

++++++++
more on storytelling in this IMS blog
https://blog.stcloudstate.edu/ims?s=storytelling

Your Students Forgot Everything On Your PowerPoint Slides

Why Your Students Forgot Everything On Your PowerPoint Slides

By Mary Jo Madda (Columnist)     Jan 19, 2015

https://www.edsurge.com/news/2015-01-19-why-your-students-forgot-everything-on-your-powerpoint-slides

why instructional design doesn’t typically work with students, or anyone’s learning for that matter, when you teach with PowerPoint—as well as how you can avoid it. It all begins with a little concept called “cognitive load.”

Cognitive load describes the capacity of our brain’s working memory (or WM) to hold and process new pieces of information. We’ve all got a limited amount of working memory, so when we have to handle information in more than one way, our load gets heavier, and progressively more challenging to manage.

In a classroom, a student’s cognitive load is greatly affected by the “extraneous” nature of information—in other words, the manner by which information is presented to them (Sweller, 2010). Every teacher instinctively knows there are better—and worse—ways to present information.

A study in Australia in the late 1990s (the 1999 Kalyuga study) compared the learning achievement of a group of college students who watched an educator’s presentation involving a visual text element and an audio text element (meaning there were words on a screen while the teacher also talked) with those who only listened to a lecture, minus the pesky PowerPoint slides.

It’s called the the redundancy effect. Verbal redundancy “arises from the concurrent presentation of text and verbatim speech,” increasing the risk of overloading working memory capacity—and so may have a negative effect on learning.

Researchers including John Sweller and Kimberly Leslie contend that it would be easier for students to learn the differences between herbivores and carnivores by closing their eyes and only listening to the teacher. But students who close their eyes during a lecture are likely to to called out for “failing to paying attention.”

Richard Mayer, a brain scientist at UC Santa Barbara and author of the book Multimedia Learning, offers the following prescription: Eliminate textual elements from presentations and instead talk through points, sharing images or graphs with students

a separate Australian investigation by Leslie et al. (2012), suggest that mixing visual cues with auditory explanations (in math and science classrooms, in particular) are essential and effective. In the Leslie study, a group of 4th grade students who knew nothing about magnetism and light learned significantly more when presented with both images and a teacher’s explanation than a separate group which received only auditory explanation.

hints:

  • Limit yourself to one word per slide. If you’re defining words, try putting up the vocabulary word and an associated set of images—then challenge students to deduce the definition.
  • Honor the “personalization principle,” which essentially says that engaging learners by delivering content in a conversational tone will increase learning. For example, Richard Mayer suggests using lots of “I’s” and “you’s” in your text, as students typically relate better to more informal language.

+++++++++++++
more on Power Point in this IMS blog
https://blog.stcloudstate.edu/ims?s=power+point

smart classroom

Are ‘Smart’ Classrooms the Future?

Indiana University explores that question by bringing together tech partners and university leaders to share ideas on how to design classrooms that make better use of faculty and student time.

By Julie Johnston 10/31/18 https://campustechnology.com/articles/2018/10/31/are-smart-classrooms-the-future.aspx

  • Untether instructors from the room’s podium, allowing them control from anywhere in the room;
  • Streamline the start of class, including biometric login to the room’s technology, behind-the-scenes routing of course content to room displays, control of lights and automatic attendance taking;
  • Offer whiteboards that can be captured, routed to different displays in the room and saved for future viewing and editing;
  • Provide small-group collaboration displays and the ability to easily route content to and from these displays; and
  • Deliver these features through a simple, user-friendly and reliable room/technology interface.

Key players from CrestronGoogleSonySteelcase and Spectrum met with Indiana University faculty, technologists and architects to generate new ideas related to current and emerging technologies. Activities included collaborative brainstorming focusing on these questions:

  • What else can we do to create the classroom of the future?
  • What current technology exists to solve these problems?
  • What could be developed that doesn’t yet exist?
  • What’s next?

top five findings:

  • Screenless and biometric technology will play an important role in the evolution of classrooms in higher education. We plan to research how voice activation and other Internet of Things technologies can streamline the process for faculty and students.
  • The entire classroom will become a space for student activity and brainstorming; walls, windows, desks and all activities are easily captured to the cloud, allowing conversations to continue outside of class or at the next class meeting.
  • Technology will be leveraged to include advance automation for a variety of tasks, so the faculty member is released from duties to focus on teaching.
  • The technology will become invisible to the process and enhance and customize the experience for the learner.
  • Virtual assistants could play an important role in providing students with a supported experience throughout their entire campus career.

A full report on the summit findings is available here.

Further, this article

Kelly, B. R., & 10/11/17. (n.d.). Faculty Predict Virtual/Augmented/Mixed Reality Will Be Key to Ed Tech in 10 Years -. Retrieved October 31, 2018, from https://campustechnology.com/articles/2017/10/11/faculty-predict-virtual-augmented-mixed-reality-will-be-key-to-ed-tech-in-10-years.aspx

My note:

In September 2015, the back-then library dean (they change every 2-3 years) requested a committee of librarians to meet and discuss the remodeling of Miller Center 2018. By that time the SCSU CIO was asserting the BYOx as a new policy for SCSU. BYOx in essence means the necessity for stronger (wider) WiFI pipe. Based on that assertion, I, Plamen Miltenoff, was insisting to shift the cost of hardware (computers, laptops) to infrastructure (more WiFi nods in the room and around it) and prepare for the upcoming IoT by learning to remodel our syllabi for mobile devices and use those (students) mobile devices, rather squander University money on hardware. At least one faculty member from the committee honestly admitted she has no idea about IoT and respectively the merit of my proposal. Thus, my proposal was completely disregarded by the self-nominated chair of the committee of librarians, who pushed for her idea to replace the desktops with a cart of laptops (a very 2010 idea, which by 2015 was already passe). As per Kelly (2018) (second article above), it is obvious the failure of her proposal to the dean to choose laptops over mobile devices, considering that faculty DO see mobile devices completely replacing desktops and laptops; that faculty DO not see document cameras and overhead projectors as a tool to stay.
Here are the notes from September 2015 https://blog.stcloudstate.edu/ims/2015/09/25/mc218-remodel/
As are result, my IoT proposal as now reflected in the Johnston (2018) (first article above), did not make it even formally to the dean, hence the necessity to make it available through the blog.
The SCSU library thinking regarding physical remodeling of classrooms is behind its times and that costs money for the university, if that room needs to be remodeled again to be with the contemporary times.

suggestions for academic writing

these are suggestions from Google Groups with doctoral cohorts 6, 7, 8, 9 from the Ed leadership program

How to find a book from InterLibrary Loan: find book ILL

Citing someone else’s citation?:

http://library.northampton.ac.uk/liberation/ref/adv_harvard_else.php

http://guides.is.uwa.edu.au/c.php?g=380288&p=3109460
use them sparingly:
http://www.apastyle.org/learn/faqs/cite-another-source.aspx
Please take a look at “Paraphrasing sources: in
http://www.roanestate.edu/owl/usingsources_mla.html
it gives you a good idea why will distance you from a possibility of plagiarizing.
n example of resolution by this peer-reviewed journal article
https://doi.org/10.19173/irrodl.v17i5.2566
Ungerer, L. M. (2016). Digital Curation as a Core Competency in Current Learning and Literacy: A Higher Education Perspective. The International Review of Research in Open and Distributed Learning17(5). https://doi.org/10.19173/irrodl.v17i5.2566
Dunaway (2011) suggests that learning landscapes in a digital age are networked, social, and technological. Since people commonly create and share information by collecting, filtering, and customizing digital content, educators should provide students opportunities to master these skills (Mills, 2013). In enhancing critical thinking, we have to investigate pedagogical models that consider students’ digital realities (Mihailidis & Cohen, 2013). November (as cited in Sharma & Deschaine, 2016), however warns that although the Web fulfils a pivotal role in societal media, students often are not guided on how to critically deal with the information that they access on the Web. Sharma and Deschaine (2016) further point out the potential for personalizing teaching and incorporating authentic material when educators themselves digitally curate resources by means of Web 2.0 tools.
p. 24. Communities of practice. Lave and Wenger’s (as cited in Weller, 2011) concept of situated learning and Wenger’s (as cited in Weller, 2011) idea of communities of practice highlight the importance of apprenticeship and the social role in learning.
criteria to publish a paper

Originality: Does the paper contain new and significant information adequate to justify publication?

Relationship to Literature: Does the paper demonstrate an adequate understanding of the relevant literature in the field and cite an appropriate range of literature sources? Is any significant work ignored?

Methodology: Is the paper’s argument built on an appropriate base of theory, concepts, or other ideas? Has the research or equivalent intellectual work on which the paper is based been well designed? Are the methods employed appropriate?

Results: Are results presented clearly and analyzed appropriately? Do the conclusions adequately tie together the other elements of the paper?

Implications for research, practice and/or society: Does the paper identify clearly any implications for research, practice and/or society? Does the paper bridge the gap between theory and practice? How can the research be used in practice (economic and commercial impact), in teaching, to influence public policy, in research (contributing to the body of knowledge)? What is the impact upon society (influencing public attitudes, affecting quality of life)? Are these implications consistent with the findings and conclusions of the paper?

Quality of Communication: Does the paper clearly express its case, measured against the technical language of the field and the expected knowledge of the journal’s readership? Has attention been paid to the clarity of expression and readability, such as sentence structure, jargon use, acronyms, etc.

mixed method research

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ971947%26site%3dehost-live%26scope%3dsite

Stanton, K. V., & Liew, C. L. (2011). Open Access Theses in Institutional Repositories: An Exploratory Study of the Perceptions of Doctoral Students. Information Research: An International Electronic Journal16(4),

We examine doctoral students’ awareness of and attitudes to open access forms of publication. Levels of awareness of open access and the concept of institutional repositories, publishing behaviour and perceptions of benefits and risks of open access publishing were explored. Method: Qualitative and quantitative data were collected through interviews with eight doctoral students enrolled in a range of disciplines in a New Zealand university and a self-completion Web survey of 251 students. Analysis: Interview data were analysed thematically, then evaluated against a theoretical framework. The interview data were then used to inform the design of the survey tool. Survey responses were analysed as a single set, then by disciple using SurveyMonkey’s online toolkit and Excel. Results: While awareness of open access and repository archiving is still low, the majority of interview and survey respondents were found to be supportive of the concept of open access. The perceived benefits of enhanced exposure and potential for sharing outweigh the perceived risks. The majority of respondents were supportive of an existing mandatory thesis submission policy. Conclusions: Low levels of awareness of the university repository remains an issue, and could be addressed by further investigating the effectiveness of different communication channels for promotion.

PLEASE NOTE:

the researchers use the qualitative approach: by interviewing participants and analyzing their responses thematically, they build the survey.
Then then administer the survey (the quantitative approach)

How do you intend to use a mixed method? Please share

paraphrasing quotes

statement of the problem

Problem statement – Wikipedia

 
Metaphors: A Problem Statement is like… 
metaphor — a novel or poetic linguistic expression where one or more words for a concept are used outside normal conventional meaning to express a similar concept. Aristotle l 
The DNA of the research l A snapshot of the research l The foundation of the research l The Heart of the research l A “taste” of the research l A blueprint for the study
 
 
 
Here is a good exercise for your writing of the problem statement:
Chapter 3
several documents, which can be helpful in two different ways:
– check your structure and methodology
– borrow verbiage
http://education.nova.edu/Resources/uploads/app/35/files/arc_doc/writing_chpt3_quantitative_research_methods.pdf 
http://education.nova.edu/Resources/uploads/app/35/files/arc_doc/writing_chpt3_qualitative_research_methods.pdf
http://www.trinitydc.edu/sps/files/2010/09/APA-6-BGS-Quantitative-Research-Paper-August-2014.pdf

digital object identifier, or DOI

digital object identifier (DOI) is a unique alphanumeric string assigned by a registration agency (the International DOI Foundation) to identify content and provide a persistent link to its location on the Internet. The publisher assigns a DOI when your article is published and made available electronically.

Why do we need it?

2010 Changes to APA for Electronic Materials Digital object identifier (DOI). DOI available. If a DOI is available you no longer include a URL. Example: Author, A. A. (date). Title of article. Title of Journal, volume(number), page numbers. doi: xx.xxxxxxx

http://www.stcloudstate.edu/writeplace/_files/documents/working-with-sources/apa-electronic-material-citations.pdf

Mendeley (vs Zotero and/or RefWorks)

https://www.brighttalk.com/webcast/11355/226845?utm_campaign=Mendeley%20Webinars%202&utm_campaignPK=271205324&utm_term=OP28019&utm_content=271205712&utm_source=99&BID=799935188&utm_medium=email&SIS_ID=46360

Online Writing Tools: FourOnlineToolsforwriting

social media and altmetrics

Accodring to Sugimoto et al (2016), the Use of social media platforms for by researchers is high — ranging from 75 to 80% in large -scale surveys (Rowlands et al., 2011; Tenopir et al., 2013; Van Eperen & Marincola, 2011) .
There is one more reason, and, as much as you want to dwell on the fact that you are practitioners and research is not the most important part of your job, to a great degree, you may be judged also by the scientific output of your office and/or institution.
In that sense, both social media and altimetrics might suddenly become extremely important to understand and apply.
Shortly altmetrics (alternative metrics) measure the impact your scientific output has on the community. Your teachers and you present, publish and create work, which might not be presented and published, but may be widely reflected through, e.g. social media, and thus, having impact on the community.
How such impact is measured, if measured at all, can greatly influence the money flow to your institution
For more information:
For EVEN MORE information, read the entire article:
Sugimoto, C. R., Work, S., Larivière, V., & Haustein, S. (2016). Scholarly use of social media and altmetrics: a review of the literature. Retrieved from https://arxiv.org/abs/1608.08112
related information:
In the comments section on this blog entry,
I left notes to
Thelwall, M., & Wilson, P. (2016). Mendeley readership altmetrics for medical articles: An analysis of 45 fields. Journal of the Association for Information Science and Technology, 67(8), 1962–1972. https://doi.org/10.1002/asi.23501
Todd Tetzlaff is using Mendeley and he might be the only one to benefit … 🙂
Here is some food for thought from the article above:
Doctoral students and junior researchers are the largest reader group in Mendeley ( Haustein & Larivière, 2014; Jeng et al., 2015; Zahedi, Costas, & Wouters, 2014a) .
Studies have also provided evidence of high rate s of blogging among certain subpopulations: for example, approximately one -third of German university staff (Pscheida et al., 2013) and one fifth of UK doctoral students use blogs (Carpenter et al., 2012) .
Social data sharing platforms provide an infrastructure to share various types of scholarly objects —including datasets, software code, figures, presentation slides and videos —and for users to interact with these objects (e.g., comment on, favorite, like , and reuse ). Platforms such as Figshare and SlideShare disseminate scholars’ various types of research outputs such as datasets, figures, infographics, documents, videos, posters , or presentation slides (Enis, 2013) and displays views, likes, and shares by other users (Mas -Bleda et al., 2014) .
Frequently mentioned social platforms in scholarly communication research include research -specific tools such as Mendeley, Zotero, CiteULike, BibSonomy, and Connotea (now defunct) as well as general tools such as Delicious and Digg (Hammond, Hannay, Lund, & Scott, 2005; Hull, Pettifer, & Kell, 2008; Priem & Hemminger, 2010; Reher & Haustein, 2010) .
qualitative research
“The focus group interviews were analysed based on the principles of interpretative phenomenology”
 
1. What are  interpretative phenomenology?
Here is an excellent article in ResarchGate:
 
https://www.researchgate.net/publication/263767248_A_practical_guide_to_using_Interpretative_Phenomenological_Analysis_in_qualitative_research_psychology
 
and a discussion from the psychologists regarding the weaknesses when using IPA (Interpretative phenomenological analysis)

https://thepsychologist.bps.org.uk/volume-24/edition-10/methods-interpretative-phenomenological-analysis

2. What is Constant Comparative Method?

http://www.qualres.org/HomeCons-3824.html

Nvivo shareware

https://blog.stcloudstate.edu/ims/2017/01/11/nvivo-shareware/

Qualitative and Quantitative research in lame terms
podcast:
https://itunes.apple.com/us/podcast/how-scientific-method-works/id278981407?i=1000331586170&mt=2
if you are not podcast fans, I understand. The link above is a pain in the behind to make work, if you are not familiar with using podcast.
Here is an easier way to find it:
1. open your cell phone and go find the podcast icon, which is pre-installed, but you might have not ever used it [yet].
2. In the app, use the search option and type “stuff you should know”
3. the podcast will pop up. scroll and find “How the scientific method works,” and/or search for it if you can.
Once you can play it on the phone, you have to find time to listen to it.
I listen to podcast when i have to do unpleasant chores such as: 1. walking to work 2. washing the dishes 3. flying long hours (very rarely). 4. Driving in the car.
There are bunch of other situations, when you may be strapped and instead of filling disgruntled and stressed, you can deliver the mental [junk] food for your brain.
Earbuds help me: 1. forget the unpleasant task, 2. Utilize time 3. Learn cool stuff
Here are podcasts, I am subscribed for, besides “stuff you should know”:
TED Radio Hour
TED Talks Education
NPR Fresh Air
BBC History
and bunch others, which, if i don’t go a listen for an year, i go and erase and if i peruse through the top chart and something picks my interest, I try.
If I did not manage to convince to podcast, totally fine; do not feel obligated.
However, this podcast, you can listen to on your computer, if you don’t want to download on your phone.
It is one hour show by two geeks, who are trying to make funny (and they do) a dry matter such as quantitative vs qualitative, which you want to internalize:
1. Sometimes at minute 12, they talk about inductive versus deductive to introduce you to qualitative versus quantitative. It is good to listen to their musings, since your dissertation is going through inductive and deductive process, and understanding it, can help you control better your dissertation writing. 
2. Scientific method. Hypothesis etc (around min 17).
While this is not a Ph.D., but Ed.D. and we do not delve into the philosophy of science and dissertation etc. the more you know about this process, the better control you have over your dissertation. 
3. Methods and how you prove (Chapter 3) is discussed around min 35
4. dependent and independent variables and how do you do your research in general (min ~45)
Shortly, listen and please do share your thoughts below. You do not have to be kind to this source offering. Actually, be as critical as possible, so you can help me decide, if I should offer it to the next cohort and thank you in advance for your feedback. 

 

 

1 2 3 4 5 6 8