Searching for "data governance"

Analytics Data Integration and Governance

Supporting Analytics through Data Integration and Governance

https://www.educause.edu/focus-areas-and-initiatives/enterprise-and-infrastructure/enterprise-it-program/supporting-analytics-through-data-integration-and-governance

Support analytics initiatives with data integration and governance. The changing landscape of enterprise IT is characterized by an expanding set of services, systems, and sourcing strategies. Data governance, cross-enterprise partnerships, and data integration are key ingredients in supporting higher education’s growing need for reliable information.

Enterprise IT Case Studies

In this set of EDUCAUSE Review case studies, see how Drake University, the University of Tennessee, and the University of Montana improved their analytics initiatives through data integrations and governance.

 

 

+++++++++
more on analytics in this IMS blog
http://blog.stcloudstate.edu/ims?s=analytics

http://blog.stcloudstate.edu/ims?s=data+governance

big data

big-data-in-education-report

Center for Digital Education (CDE)

real-time impact on curriculum structure, instruction delivery and student learning, permitting change and improvement. It can also provide insight into important trends that affect present and future resource needs.

Big Data: Traditionally described as high-volume, high-velocity and high-variety information.
Learning or Data Analytics: The measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs.
Educational Data Mining: The techniques, tools and research designed for automatically extracting meaning from large repositories of data generated by or related to people’s learning activities in educational settings.
Predictive Analytics: Algorithms that help analysts predict behavior or events based on data.
Predictive Modeling: The process of creating, testing and validating a model to best predict the probability of an outcome.

Data analytics, or the measurement, collection, analysis and reporting of data, is driving decisionmaking in many institutions. However, because of the unique nature of each district’s or college’s data needs, many are building their own solutions.

For example, in 2014 the nonprofit company inBloom, Inc., backed by $100 million from the Gates Foundation and the Carnegie Foundation for the Advancement of Teaching, closed its doors amid controversy regarding its plan to store, clean and aggregate a range of student information for states and districts and then make the data available to district-approved third parties to develop tools and dashboards so the data could be used by classroom educators.22

Tips for Student Data Privacy

Know the Laws and Regulations
There are many regulations on the books intended to protect student privacy and safety: the Family Educational Rights and Privacy Act (FERPA), the Protection of Pupil Rights Amendment (PPRA), the Children’s Internet Protection Act (CIPA), the Children’s Online Privacy Protection Act (COPPA) and the Health Insurance Portability and Accountability Act (HIPAA)
— as well as state, district and community laws. Because technology changes so rapidly, it is unlikely laws and regulations will keep pace with new data protection needs. Establish a committee to ascertain your institution’s level of understanding of and compliance with these laws, along with additional safeguard measures.
Make a Checklist Your institution’s privacy policies should cover security, user safety, communications, social media, access, identification rules, and intrusion detection and prevention.
Include Experts
To nail down compliance and stave off liability issues, consider tapping those who protect privacy for a living, such as your school attorney, IT professionals and security assessment vendors. Let them review your campus or district technologies as well as devices brought to campus by students, staff and instructors. Finally, a review of your privacy and security policies, terms of use and contract language is a good idea.
Communicate, Communicate, Communicate
Students, staff, faculty and parents all need to know their rights and responsibilities regarding data privacy. Convey your technology plans, policies and requirements and then assess and re-communicate those throughout each year.

“Anything-as-a-Service” or “X-as-a-Service” solutions can help K-12 and higher education institutions cope with big data by offering storage, analytics capabilities and more. These include:
• Infrastructure-as-a-Service (IaaS): Providers offer cloud-based storage, similar to a campus storage area network (SAN)

• Platform-as-a-Service (PaaS): Opens up application platforms — as opposed to the applications themselves — so others can build their own applications
using underlying operating systems, data models and databases; pre-built application components and interfaces

• Software-as-a-Service (SaaS): The hosting of applications in the cloud

• Big-Data-as-a-Service (BDaaS): Mix all the above together, upscale the amount of data involved by an enormous amount and you’ve got BDaaS

Suggestions:

Use accurate data correctly
Define goals and develop metrics
Eliminate silos, integrate data
Remember, intelligence is the goal
Maintain a robust, supportive enterprise infrastructure.
Prioritize student privacy
Develop bullet-proof data governance guidelines
Create a culture of collaboration and sharing, not compliance.

more on big data in this IMS blog:

http://blog.stcloudstate.edu/ims/?s=big+data&submit=Search

IT issues in 2018

EDUCAUSE: The top 10 IT issues in 2018

BY MERIS STANSBURY November 6th, 2017 https://www.ecampusnews.com/campus-administration/educause-top-10-issues-2018/

Security once again tops the list of EDUCAUSE’s Top 10 IT Issues in higher education. A focus on student success and programming becomes prominent.

 the 2017 issues here.

The Top 10 IT issues for 2018

1. Information security: Developing a risk-based security strategy that keeps pace with security threats and challenges.

2. Student success: Managing the system implementations and integrations that support multiple student success initiatives.

3. Institution-wide IT strategy: Repositioning or reinforcing the role of IT leadership as an integral strategic partner of institutional leadership in achieving institutions missions.

4. Data-enabled institutional culture: Using BI and analytics to inform the broad conversation and answer big questions.

5. Student-centered institution: Understanding and advancing technology’s role in defining the student experience on campus (from applicants to alumni).

6. Higher education affordability: Balancing and rightsizing IT priorities and budget to support IT-enabled institutional efficiencies and innovations in the context if institutional funding realities.

7. IT staffing and organizational models: Ensuring adequate staffing capacity and staff retention in the face of retirements, new sourcing models, growing external competition, rising salaries, and the demands of technology initiatives on both IT and non-IT staff.

8. (tie) Data management and governance: Implementing effective institutional data governance practices.

9. (tie) Digital integrations: Ensuring system interoperability, scalability, and extensibility, as well as data integrity, standards, and governance, across multiple applications and platforms.

10. Change leadership: Helping institutional constituents (including the IT staff) adapt to the increasing pace of technology change.

++++++++++++
more on EdUCause in this IMS blog
http://blog.stcloudstate.edu/ims?s=educause

Educause 2020 IT issues survey

https://www.surveygizmo.com/s3/5155654/IT-Issues-2020?sguid=60122224

what i find most important:
Future IT Workforce: Deploying a broad array of modern recruitment, retention, and employment practices to develop a resilient IT talent pipeline for the institution

Digital Integrations: Ensuring system interoperability, scalability, and extensibility, as well as data integrity, security, standards, and governance, across multiple applications and platforms

Engaged Learning: Incorporating technologies that enable students to create content and engage in active learning in course curricula

Student Retention and Completion: Developing the capabilities and systems to incorporate artificial intelligence into student services to provide personalized, timely support

Administrative Simplification: Applying user-centered design, process improvement, and system reengineering to reduce redundant or unnecessary efforts and improve end-user experiences

Improved Enrollment: Using technology, data, and analytics to develop an inclusive and financially sustainable enrollment strategy to serve more and new learners by personalizing recruitment, enrollment, and learning experiences

Workforce of the Future: Using technology to develop curriculum, content, and learning experiences that prepare students for the evolving workforce

Holistic Student Success: Applying technology and data, including artificial intelligence, to understand and address the numerous contributors to student success, from finances to health and wellness to academic performance and degree planning (my note: this is what Christine Waisner, Mark Gill and Plamen Miltenoff are trying to do with their VR research)

Improved Teaching: Strengthening engagement among faculty, technologists, and researchers to achieve the true and expanding potential of technology to improve teaching

Student-Centric Higher Education: Creating a student-services ecosystem to support the entire student life cycle, from prospecting to enrollment, learning, job placement, alumni engagement, and continuing education

digital humanities

7 Things You Should Know About Digital Humanities

Published:   Briefs, Case Studies, Papers, Reports  

https://library.educause.edu/resources/2017/11/7-things-you-should-know-about-digital-humanities

Lippincott, J., Spiro, L., Rugg, A., Sipher, J., & Well, C. (2017). Seven Things You Should Know About Digital Humanities (ELI 7 Things You Should Know). Retrieved from https://library.educause.edu/~/media/files/library/2017/11/eli7150.pdf

definition

The term “digital humanities” can refer to research and instruction that is about information technology or that uses IT. By applying technologies in new ways, the tools and methodologies of digital humanities open new avenues of inquiry and scholarly production. Digital humanities applies computational capabilities to humanistic questions, offering new pathways for scholars to conduct research and to create and publish scholarship. Digital humanities provides promising new channels for learners and will continue to influence the ways in which we think about and evolve technology toward better and more humanistic ends.

As defined by Johanna Drucker and colleagues at UCLA, the digital humanities is “work at the intersection of digital technology and humanities disciplines.” An EDUCAUSE/CNI working group framed the digital humanities as “the application and/or development of digital tools and resources to enable researchers to address questions and perform new types of analyses in the humanities disciplines,” and the NEH Office of Digital Humanities says digital humanities “explore how to harness new technology for thumanities research as well as those that study digital culture from a humanistic perspective.” Beyond blending the digital with the humanities, there is an intentionality about combining the two that defines it.

digital humanities can include

  • creating digital texts or data sets;
  • cleaning, organizing, and tagging those data sets;
  • applying computer-based methodologies to analyze them;
  • and making claims and creating visualizations that explain new findings from those analyses.

Scholars might reflect on

  • how the digital form of the data is organized,
  • how analysis is conducted/reproduced, and
  • how claims visualized in digital form may embody assumptions or biases.

Digital humanities can enrich pedagogy as well, such as when a student uses visualized data to study voter patterns or conducts data-driven analyses of works of literature.

Digital humanities usually involves work by teams in collaborative spaces or centers. Team members might include

  • researchers and faculty from multiple disciplines,
  • graduate students,
  • librarians,
  • instructional technologists,
  • data scientists and preservation experts,
  • technologists with expertise in critical computing and computing methods, and undergraduates

projects:

downsides

  • some disciplinary associations, including the Modern Language Association and the American Historical Association, have developed guidelines for evaluating digital proj- ects, many institutions have yet to define how work in digital humanities fits into considerations for tenure and promotion
  • Because large projects are often developed with external funding that is not readily replaced by institutional funds when the grant ends sustainability is a concern. Doing digital humanities well requires access to expertise in methodologies and tools such as GIS, mod- eling, programming, and data visualization that can be expensive for a single institution to obtain
  • Resistance to learning new tech- nologies can be another roadblock, as can the propensity of many humanists to resist working in teams. While some institutions have recognized the need for institutional infrastructure (computation and storage, equipment, software, and expertise), many have not yet incorporated such support into ongoing budgets.

Opportunities for undergraduate involvement in research, provid ing students with workplace skills such as data management, visualization, coding, and modeling. Digital humanities provides new insights into policy-making in areas such as social media, demo- graphics, and new means of engaging with popular culture and understanding past cultures. Evolution in this area will continue to build connections between the humanities and other disci- plines, cross-pollinating research and education in areas like med- icine and environmental studies. Insights about digital humanities itself will drive innovation in pedagogy and expand our conceptualization of classrooms and labs

++++++++++++
more on digital humanities in this IMS blog
http://blog.stcloudstate.edu/ims?s=digital+humanities

IRDL proposal

Applications for the 2018 Institute will be accepted between December 1, 2017 and January 27, 2018. Scholars accepted to the program will be notified in early March 2018.

Title:

Learning to Harness Big Data in an Academic Library

Abstract (200)

Research on Big Data per se, as well as on the importance and organization of the process of Big Data collection and analysis, is well underway. The complexity of the process comprising “Big Data,” however, deprives organizations of ubiquitous “blue print.” The planning, structuring, administration and execution of the process of adopting Big Data in an organization, being that a corporate one or an educational one, remains an elusive one. No less elusive is the adoption of the Big Data practices among libraries themselves. Seeking the commonalities and differences in the adoption of Big Data practices among libraries may be a suitable start to help libraries transition to the adoption of Big Data and restructuring organizational and daily activities based on Big Data decisions.
Introduction to the problem. Limitations

The redefinition of humanities scholarship has received major attention in higher education. The advent of digital humanities challenges aspects of academic librarianship. Data literacy is a critical need for digital humanities in academia. The March 2016 Library Juice Academy Webinar led by John Russel exemplifies the efforts to help librarians become versed in obtaining programming skills, and respectively, handling data. Those are first steps on a rather long path of building a robust infrastructure to collect, analyze, and interpret data intelligently, so it can be utilized to restructure daily and strategic activities. Since the phenomenon of Big Data is young, there is a lack of blueprints on the organization of such infrastructure. A collection and sharing of best practices is an efficient approach to establishing a feasible plan for setting a library infrastructure for collection, analysis, and implementation of Big Data.
Limitations. This research can only organize the results from the responses of librarians and research into how libraries present themselves to the world in this arena. It may be able to make some rudimentary recommendations. However, based on each library’s specific goals and tasks, further research and work will be needed.

 

 

Research Literature

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”
– Dan Ariely, 2013  https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Big Data is becoming an omnipresent term. It is widespread among different disciplines in academia (De Mauro, Greco, & Grimaldi, 2016). This leads to “inconsistency in meanings and necessity for formal definitions” (De Mauro et al, 2016, p. 122). Similarly, to De Mauro et al (2016), Hashem, Yaqoob, Anuar, Mokhtar, Gani and Ullah Khan (2015) seek standardization of definitions. The main connected “themes” of this phenomenon must be identified and the connections to Library Science must be sought. A prerequisite for a comprehensive definition is the identification of Big Data methods. Bughin, Chui, Manyika (2011), Chen et al. (2012) and De Mauro et al (2015) single out the methods to complete the process of building a comprehensive definition.

In conjunction with identifying the methods, volume, velocity, and variety, as defined by Laney (2001), are the three properties of Big Data accepted across the literature. Daniel (2015) defines three stages in big data: collection, analysis, and visualization. According to Daniel, (2015), Big Data in higher education “connotes the interpretation of a wide range of administrative and operational data” (p. 910) and according to Hilbert (2013), as cited in Daniel (2015), Big Data “delivers a cost-effective prospect to improve decision making” (p. 911).

The importance of understanding the process of Big Data analytics is well understood in academic libraries. An example of such “administrative and operational” use for cost-effective improvement of decision making are the Finch & Flenner (2016) and Eaton (2017) case studies of the use of data visualization to assess an academic library collection and restructure the acquisition process. Sugimoto, Ding & Thelwall (2012) call for the discussion of Big Data for libraries. According to the 2017 NMC Horizon Report “Big Data has become a major focus of academic and research libraries due to the rapid evolution of data mining technologies and the proliferation of data sources like mobile devices and social media” (Adams, Becker, et al., 2017, p. 38).

Power (2014) elaborates on the complexity of Big Data in regard to decision-making and offers ideas for organizations on building a system to deal with Big Data. As explained by Boyd and Crawford (2012) and cited in De Mauro et al (2016), there is a danger of a new digital divide among organizations with different access and ability to process data. Moreover, Big Data impacts current organizational entities in their ability to reconsider their structure and organization. The complexity of institutions’ performance under the impact of Big Data is further complicated by the change of human behavior, because, arguably, Big Data affects human behavior itself (Schroeder, 2014).

De Mauro et al (2015) touch on the impact of Dig Data on libraries. The reorganization of academic libraries considering Big Data and the handling of Big Data by libraries is in a close conjunction with the reorganization of the entire campus and the handling of Big Data by the educational institution. In additional to the disruption posed by the Big Data phenomenon, higher education is facing global changes of economic, technological, social, and educational character. Daniel (2015) uses a chart to illustrate the complexity of these global trends. Parallel to the Big Data developments in America and Asia, the European Union is offering access to an EU open data portal (https://data.europa.eu/euodp/home ). Moreover, the Association of European Research Libraries expects under the H2020 program to increase “the digitization of cultural heritage, digital preservation, research data sharing, open access policies and the interoperability of research infrastructures” (Reilly, 2013).

The challenges posed by Big Data to human and social behavior (Schroeder, 2014) are no less significant to the impact of Big Data on learning. Cohen, Dolan, Dunlap, Hellerstein, & Welton (2009) propose a road map for “more conservative organizations” (p. 1492) to overcome their reservations and/or inability to handle Big Data and adopt a practical approach to the complexity of Big Data. Two Chinese researchers assert deep learning as the “set of machine learning techniques that learn multiple levels of representation in deep architectures (Chen & Lin, 2014, p. 515). Deep learning requires “new ways of thinking and transformative solutions (Chen & Lin, 2014, p. 523). Another pair of researchers from China present a broad overview of the various societal, business and administrative applications of Big Data, including a detailed account and definitions of the processes and tools accompanying Big Data analytics.  The American counterparts of these Chinese researchers are of the same opinion when it comes to “think about the core principles and concepts that underline the techniques, and also the systematic thinking” (Provost and Fawcett, 2013, p. 58). De Mauro, Greco, and Grimaldi (2016), similarly to Provost and Fawcett (2013) draw attention to the urgent necessity to train new types of specialists to work with such data. As early as 2012, Davenport and Patil (2012), as cited in Mauro et al (2016), envisioned hybrid specialists able to manage both technological knowledge and academic research. Similarly, Provost and Fawcett (2013) mention the efforts of “academic institutions scrambling to put together programs to train data scientists” (p. 51). Further, Asomoah, Sharda, Zadeh & Kalgotra (2017) share a specific plan on the design and delivery of a big data analytics course. At the same time, librarians working with data acknowledge the shortcomings in the profession, since librarians “are practitioners first and generally do not view usability as a primary job responsibility, usually lack the depth of research skills needed to carry out a fully valid” data-based research (Emanuel, 2013, p. 207).

Borgman (2015) devotes an entire book to data and scholarly research and goes beyond the already well-established facts regarding the importance of Big Data, the implications of Big Data and the technical, societal, and educational impact and complications posed by Big Data. Borgman elucidates the importance of knowledge infrastructure and the necessity to understand the importance and complexity of building such infrastructure, in order to be able to take advantage of Big Data. In a similar fashion, a team of Chinese scholars draws attention to the complexity of data mining and Big Data and the necessity to approach the issue in an organized fashion (Wu, Xhu, Wu, Ding, 2014).

Bruns (2013) shifts the conversation from the “macro” architecture of Big Data, as focused by Borgman (2015) and Wu et al (2014) and ponders over the influx and unprecedented opportunities for humanities in academia with the advent of Big Data. Does the seemingly ubiquitous omnipresence of Big Data mean for humanities a “railroading” into “scientificity”? How will research and publishing change with the advent of Big Data across academic disciplines?

Reyes (2015) shares her “skinny” approach to Big Data in education. She presents a comprehensive structure for educational institutions to shift “traditional” analytics to “learner-centered” analytics (p. 75) and identifies the participants in the Big Data process in the organization. The model is applicable for library use.

Being a new and unchartered territory, Big Data and Big Data analytics can pose ethical issues. Willis (2013) focusses on Big Data application in education, namely the ethical questions for higher education administrators and the expectations of Big Data analytics to predict students’ success.  Daries, Reich, Waldo, Young, and Whittinghill (2014) discuss rather similar issues regarding the balance between data and student privacy regulations. The privacy issues accompanying data are also discussed by Tene and Polonetsky, (2013).

Privacy issues are habitually connected to security and surveillance issues. Andrejevic and Gates (2014) point out in a decision making “generated by data mining, the focus is not on particular individuals but on aggregate outcomes” (p. 195). Van Dijck (2014) goes into further details regarding the perils posed by metadata and data to the society, in particular to the privacy of citizens. Bail (2014) addresses the same issue regarding the impact of Big Data on societal issues, but underlines the leading roles of cultural sociologists and their theories for the correct application of Big Data.

Library organizations have been traditional proponents of core democratic values such as protection of privacy and elucidation of related ethical questions (Miltenoff & Hauptman, 2005). In recent books about Big Data and libraries, ethical issues are important part of the discussion (Weiss, 2018). Library blogs also discuss these issues (Harper & Oltmann, 2017). An academic library’s role is to educate its patrons about those values. Sugimoto et al (2012) reflect on the need for discussion about Big Data in Library and Information Science. They clearly draw attention to the library “tradition of organizing, managing, retrieving, collecting, describing, and preserving information” (p.1) as well as library and information science being “a historically interdisciplinary and collaborative field, absorbing the knowledge of multiple domains and bringing the tools, techniques, and theories” (p. 1). Sugimoto et al (2012) sought a wide discussion among the library profession regarding the implications of Big Data on the profession, no differently from the activities in other fields (e.g., Wixom, Ariyachandra, Douglas, Goul, Gupta, Iyer, Kulkami, Mooney, Phillips-Wren, Turetken, 2014). A current Andrew Mellon Foundation grant for Visualizing Digital Scholarship in Libraries seeks an opportunity to view “both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets (Hwangbo, 2014).

The importance of the library with its traditional roles, as described by Sugimoto et al (2012) may continue, considering the Big Data platform proposed by Wu, Wu, Khabsa, Williams, Chen, Huang, Tuarob, Choudhury, Ororbia, Mitra, & Giles (2014). Such platforms will continue to emerge and be improved, with librarians as the ultimate drivers of such platforms and as the mediators between the patrons and the data generated by such platforms.

Every library needs to find its place in the large organization and in society in regard to this very new and very powerful phenomenon called Big Data. Libraries might not have the trained staff to become a leader in the process of organizing and building the complex mechanism of this new knowledge architecture, but librarians must educate and train themselves to be worthy participants in this new establishment.

 

Method

 

The study will be cleared by the SCSU IRB.
The survey will collect responses from library population and it readiness to use and use of Big Data.  Send survey URL to (academic?) libraries around the world.

Data will be processed through SPSS. Open ended results will be processed manually. The preliminary research design presupposes a mixed method approach.

The study will include the use of closed-ended survey response questions and open-ended questions.  The first part of the study (close ended, quantitative questions) will be completed online through online survey. Participants will be asked to complete the survey using a link they receive through e-mail.

Mixed methods research was defined by Johnson and Onwuegbuzie (2004) as “the class of research where the researcher mixes or combines quantitative and qualitative research techniques, methods, approaches, concepts, or language into a single study” (Johnson & Onwuegbuzie, 2004 , p. 17).  Quantitative and qualitative methods can be combined, if used to complement each other because the methods can measure different aspects of the research questions (Sale, Lohfeld, & Brazil, 2002).

 

Sampling design

 

  • Online survey of 10-15 question, with 3-5 demographic and the rest regarding the use of tools.
  • 1-2 open-ended questions at the end of the survey to probe for follow-up mixed method approach (an opportunity for qualitative study)
  • data analysis techniques: survey results will be exported to SPSS and analyzed accordingly. The final survey design will determine the appropriate statistical approach.

 

Project Schedule

 

Complete literature review and identify areas of interest – two months

Prepare and test instrument (survey) – month

IRB and other details – month

Generate a list of potential libraries to distribute survey – month

Contact libraries. Follow up and contact again, if necessary (low turnaround) – month

Collect, analyze data – two months

Write out data findings – month

Complete manuscript – month

Proofreading and other details – month

 

Significance of the work 

While it has been widely acknowledged that Big Data (and its handling) is changing higher education (http://blog.stcloudstate.edu/ims?s=big+data) as well as academic libraries (http://blog.stcloudstate.edu/ims/2016/03/29/analytics-in-education/), it remains nebulous how Big Data is handled in the academic library and, respectively, how it is related to the handling of Big Data on campus. Moreover, the visualization of Big Data between units on campus remains in progress, along with any policymaking based on the analysis of such data (hence the need for comprehensive visualization).

 

This research will aim to gain an understanding on: a. how librarians are handling Big Data; b. how are they relating their Big Data output to the campus output of Big Data and c. how librarians in particular and campus administration in general are tuning their practices based on the analysis.

Based on the survey returns (if there is a statistically significant return), this research might consider juxtaposing the practices from academic libraries, to practices from special libraries (especially corporate libraries), public and school libraries.

 

 

References:

 

Adams Becker, S., Cummins M, Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., … Wolfson, N. (2017). NMC Horizon Report: 2017 Library Edition.

Andrejevic, M., & Gates, K. (2014). Big Data Surveillance: Introduction. Surveillance & Society, 12(2), 185–196.

Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125

Bail, C. A. (2014). The cultural environment: measuring culture with big data. Theory and Society, 43(3–4), 465–482. https://doi.org/10.1007/s11186-014-9216-5

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press.

Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and academic scholarship. First Monday, 18(10). Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/4879

Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.

Chen, X. W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514–525. https://doi.org/10.1109/ACCESS.2014.2325029

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proc. VLDB Endow., 2(2), 1481–1492. https://doi.org/10.14778/1687553.1687576

Daniel, B. (2015). Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. https://doi.org/10.1111/bjet.12230

Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., … Chuang, I. (2014). Privacy, Anonymity, and Big Data in the Social Sciences. Commun. ACM, 57(9), 56–63. https://doi.org/10.1145/2643132

De Mauro, A. D., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644(1), 97–104. https://doi.org/10.1063/1.4907823

Dumbill, E. (2012). Making Sense of Big Data. Big Data, 1(1), 1–2. https://doi.org/10.1089/big.2012.1503

Eaton, M. (2017). Seeing Library Data: A Prototype Data Visualization Application for Librarians. Publications and Research. Retrieved from http://academicworks.cuny.edu/kb_pubs/115

Emanuel, J. (2013). Usability testing in libraries: methods, limitations, and implications. OCLC Systems & Services: International Digital Library Perspectives, 29(4), 204–217. https://doi.org/10.1108/OCLC-02-2013-0009

Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261. https://doi.org/10.1177/2043820613513121

Harper, L., & Oltmann, S. (2017, April 2). Big Data’s Impact on Privacy for Librarians and Information Professionals. Retrieved November 7, 2017, from https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47(Supplement C), 98–115. https://doi.org/10.1016/j.is.2014.07.006

Hwangbo, H. (2014, October 22). The future of collaboration: Large-scale visualization. Retrieved November 7, 2017, from http://usblogs.pwc.com/emerging-technology/the-future-of-collaboration-large-scale-visualization/

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and Variety.

Miltenoff, P., & Hauptman, R. (2005). Ethical dilemmas in libraries: an international perspective. The Electronic Library, 23(6), 664–670. https://doi.org/10.1108/02640470510635746

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015

Power, D. J. (2014). Using ‘Big Data’ for analytics and decision support. Journal of Decision Systems, 23(2), 222–228. https://doi.org/10.1080/12460125.2014.888848

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508

Reilly, S. (2013, December 12). What does Horizon 2020 mean for research libraries? Retrieved November 7, 2017, from http://libereurope.eu/blog/2013/12/12/what-does-horizon-2020-mean-for-research-libraries/

Reyes, J. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80. https://doi.org/10.1007/s11528-015-0842-1

Schroeder, R. (2014). Big Data and the brave new world of social media research. Big Data & Society, 1(2), 2053951714563194. https://doi.org/10.1177/2053951714563194

Sugimoto, C. R., Ding, Y., & Thelwall, M. (2012). Library and information science in the big data era: Funding, projects, and future [a panel proposal]. Proceedings of the American Society for Information Science and Technology, 49(1), 1–3. https://doi.org/10.1002/meet.14504901187

Tene, O., & Polonetsky, J. (2012). Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of Technology and Intellectual Property, 11, [xxvii]-274.

van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society; Newcastle upon Tyne, 12(2), 197–208.

Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010

Weiss, A. (2018). Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals. Rowman & Littlefield Publishers. Retrieved from https://rowman.com/ISBN/9781538103227/Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals

West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 4, 1–0.

Willis, J. (2013). Ethics, Big Data, and Analytics: A Model for Application. Educause Review Online. Retrieved from https://docs.lib.purdue.edu/idcpubs/1

Wixom, B., Ariyachandra, T., Douglas, D. E., Goul, M., Gupta, B., Iyer, L. S., … Turetken, O. (2014). The current state of business intelligence in academia: The arrival of big data. CAIS, 34, 1.

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Wu, Z., Wu, J., Khabsa, M., Williams, K., Chen, H. H., Huang, W., … Giles, C. L. (2014). Towards building a scholarly big data platform: Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital Libraries (pp. 117–126). https://doi.org/10.1109/JCDL.2014.6970157

 

+++++++++++++++++
more on big data





social media algorithms

How algorithms impact our browsing behavior? browsing history?
What is the connection between social media algorithms and fake news?
Are there topic-detection algorithms as they are community-detection ones?
How can I change the content of a [Google] search return? Can I? 

Larson, S. (2016, July 8). What is an Algorithm and How Does it Affect You? The Daily Dot. Retrieved from https://www.dailydot.com/debug/what-is-an-algorithm/
Berg, P. (2016, June 30). How Do Social Media Algorithms Affect You | Forge and Smith. Retrieved September 19, 2017, from https://forgeandsmith.com/how-do-social-media-algorithms-affect-you/
Oremus, W., & Chotiner, I. (2016, January 3). Who Controls Your Facebook Feed. Slate. Retrieved from http://www.slate.com/articles/technology/cover_story/2016/01/how_facebook_s_news_feed_algorithm_works.html
Lehrman, R. A. (2013, August 11). The new age of algorithms: How it affects the way we live. Christian Science Monitor. Retrieved from https://www.csmonitor.com/USA/Society/2013/0811/The-new-age-of-algorithms-How-it-affects-the-way-we-live
Johnson, C. (2017, March 10). How algorithms affect our way of life. Desert News. Retrieved from https://www.deseretnews.com/article/865675141/How-algorithms-affect-our-way-of-life.html
Understanding algorithms and their impact on human life goes far beyond basic digital literacy, some experts said.
An example could be the recent outcry over Facebook’s news algorithm, which enhances the so-called “filter bubble”of information.
personalized search (https://en.wikipedia.org/wiki/Personalized_search)
Kounine, A. (2016, August 24). How your personal data is used in personalization and advertising. Retrieved September 19, 2017, from https://www.tastehit.com/blog/personal-data-in-personalization-and-advertising/
Hotchkiss, G. (2007, March 9). The Pros & Cons Of Personalized Search. Retrieved September 19, 2017, from http://searchengineland.com/the-pros-cons-of-personalized-search-10697
Magid, L. (2012). How (and why) To Turn Off Google’s Personalized Search Results. Forbes. Retrieved from https://www.forbes.com/sites/larrymagid/2012/01/13/how-and-why-to-turn-off-googles-personalized-search-results/#53a30be838f2
Nelson, P. (n.d.). Big Data, Personalization and the No-Search of Tomorrow. Retrieved September 19, 2017, from https://www.searchtechnologies.com/blog/big-data-search-personalization

gender

Massanari, A. (2017). #Gamergate and The Fappening: How Reddit’s algorithm, governance, and culture support toxic technocultures. New Media & Society19(3), 329-346. doi:10.1177/1461444815608807

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d121748152%26site%3dehost-live%26scope%3dsite

community detection algorithms:

Bedi, P., & Sharma, C. (2016). Community detection in social networks. Wires: Data Mining & Knowledge Discovery6(3), 115-135.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dllf%26AN%3d114513548%26site%3dehost-live%26scope%3dsite

CRUZ, J. D., BOTHOREL, C., & POULET, F. (2014). Community Detection and Visualization in Social Networks: Integrating Structural and Semantic Information. ACM Transactions On Intelligent Systems & Technology5(1), 1-26. doi:10.1145/2542182.2542193

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3daph%26AN%3d95584126%26site%3dehost-live%26scope%3dsite

Bai, X., Yang, P., & Shi, X. (2017). An overlapping community detection algorithm based on density peaks. Neurocomputing2267-15. doi:10.1016/j.neucom.2016.11.019

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d120321022%26site%3dehost-live%26scope%3dsite

topic-detection algorithms:

Zeng, J., & Zhang, S. (2009). Incorporating topic transition in topic detection and tracking algorithms. Expert Systems With Applications36(1), 227-232. doi:10.1016/j.eswa.2007.09.013

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d34892957%26site%3dehost-live%26scope%3dsite

topic detection and tracking (TDT) algorithms based on topic models, such as LDA, pLSI (https://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis), etc.

Zhou, E., Zhong, N., & Li, Y. (2014). Extracting news blog hot topics based on the W2T Methodology. World Wide Web17(3), 377-404. doi:10.1007/s11280-013-0207-7

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d94609674%26site%3dehost-live%26scope%3dsite

The W2T (Wisdom Web of Things) methodology considers the information organization and management from the perspective of Web services, which contributes to a deep understanding of online phenomena such as users’ behaviors and comments in e-commerce platforms and online social networks.  (https://link.springer.com/chapter/10.1007/978-3-319-44198-6_10)

ethics of algorithm

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679

journalism

Malyarov, N. (2016, October 18). Journalism in the age of algorithms, platforms and newsfeeds | News | FIPP.com. Retrieved September 19, 2017, from http://www.fipp.com/news/features/journalism-in-the-age-of-algorithms-platforms-newsfeeds

+++++++++++++++++
http://blog.stcloudstate.edu/ims?s=algorithm
more on algorithms in this IMS blog

see also

Susan Grajek at Bryan Alexander on IT and education

Susan Grajek at Bryan Alexander on IT and education

Forum takes a deep dive into higher education and technology. On Thursday, March 23rd, from 2-3 pm EST we will be joined by Susan Grajek, the vice president for communities and research at EDUCAUSE

+++++++++++++++++++

Top 10 IT Issues, 2017: Foundations for Student Success

education fora in Europe

Education and School Leadership Symposium 2017(September 6th to 8 th, 2017 in Zug, Switzerland):

European Association for the Education of Adults

  1. Education and School Leadership Symposium 2017

1.1 Theme of the Plenary Program

The theme of the plenary program will be:

Building/Education 5.0? The Future of Learning, the Future of Schools

1.2 Themes of the Parallel Program

Thursday features a parallel program with four workshop sessions and four presentation sessions, grouped according to the following themes which will be further modified in the CfP in September:

–              Participation and Democracy in Education

–              Learning Strategies and Instruction

–              Human Resource Management / Professionalization of Educational Actors

–              Health

–              Leadership Development

–              Migration and Education

–              School Turnaround

–              Governance and Educational Policy

–              Collaboration, Networked Systems and System Leadership

1.4 Pre-Conference: International Seminar

As a pre-conference, the «International Seminar» takes place September 5-6, 2017. It mainly addresses international guests and those who want to network internationally in a more intimate atmosphere. Emphasis is put on the exchange of knowledge and experiences across countries and the discussion of challenges.

Groups of school leaders who participate in professional development programs are particularly welcome. As last time, we already have a few groups who signed up for 2017.

Besides a presentation of the Swiss school system(s), participants will have the opportunity to visit local schools in the canton of Zug.

You can find more information at:

http://www.EducationSymposium.net/program/pre-conference/

Additional information at:

http://www.EduLead.net

http://www.Bildungsmanagement.net

http://www.EducationSysmposium.net

http://www.SchoolLeadershipSymposium.net

Follow us on Twitter: @HuberEduLead http://www.twitter.com/huberedulead

1 2