Searching for "data library"

code4lib 2018

Code2LIB February 2018

http://2018.code4lib.org/

2018 Preconference Voting

10. The Virtualized Library: A Librarian’s Introduction to Docker and Virtual Machines
This session will introduce two major types of virtualization, virtual machines using tools like VirtualBox and Vagrant, and containers using Docker. The relative strengths and drawbacks of the two approaches will be discussed along with plenty of hands-on time. Though geared towards integrating these tools into a development workflow, the workshop should be useful for anyone interested in creating stable and reproducible computing environments, and examples will focus on library-specific tools like Archivematica and EZPaarse. With virtualization taking a lot of the pain out of installing and distributing software, alleviating many cross-platform issues, and becoming increasingly common in library and industry practices, now is a great time to get your feet wet.

(One three-hour session)

11. Digital Empathy: Creating Safe Spaces Online
User research is often focused on measures of the usability of online spaces. We look at search traffic, run card sorting and usability testing activities, and track how users navigate our spaces. Those results inform design decisions through the lens of information architecture. This is important, but doesn’t encompass everything a user needs in a space.

This workshop will focus on the other component of user experience design and user research: how to create spaces where users feel safe. Users bring their anxieties and stressors with them to our online spaces, but informed design choices can help to ameliorate that stress. This will ultimately lead to a more positive interaction between your institution and your users.

The presenters will discuss the theory behind empathetic design, delve deeply into using ethnographic research methods – including an opportunity for attendees to practice those ethnographic skills with student participants – and finish with the practical application of these results to ongoing and future projects.

(One three-hour session)

14. ARIA Basics: Making Your Web Content Sing Accessibility

https://dequeuniversity.com/assets/html/jquery-summit/html5/slides/landmarks.html
Are you a web developer or create web content? Do you add dynamic elements to your pages? If so, you should be concerned with making those dynamic elements accessible and usable to as many as possible. One of the most powerful tools currently available for making web pages accessible is ARIA, the Accessible Rich Internet Applications specification. This workshop will teach you the basics for leveraging the full power of ARIA to make great accessible web pages. Through several hands-on exercises, participants will come to understand the purpose and power of ARIA and how to apply it for a variety of different dynamic web elements. Topics will include semantic HTML, ARIA landmarks and roles, expanding/collapsing content, and modal dialog. Participants will also be taught some basic use of the screen reader NVDA for use in accessibility testing. Finally, the lessons will also emphasize learning how to keep on learning as HTML, JavaScript, and ARIA continue to evolve and expand.

Participants will need a basic background in HTML, CSS, and some JavaScript.

(One three-hour session)

18. Learning and Teaching Tech
Tech workshops pose two unique problems: finding skilled instructors for that content, and instructing that content well. Library hosted workshops are often a primary educational resource for solo learners, and many librarians utilize these workshops as a primary outreach platform. Tackling these two issues together often makes the most sense for our limited resources. Whether a programming language or software tool, learning tech to teach tech can be one of the best motivations for learning that tech skill or tool, but equally important is to learn how to teach and present tech well.

This hands-on workshop will guide participants through developing their own learning plan, reviewing essential pedagogy for teaching tech, and crafting a workshop of their choice. Each participant will leave with an actionable learning schedule, a prioritized list of resources to investigate, and an outline of a workshop they would like to teach.

(Two three-hour sessions)

23. Introduction to Omeka S
Omeka S represents a complete rewrite of Omeka Classic (aka the Omeka 2.x series), adhering to our fundamental principles of encouraging use of metadata standards, easy web publishing, and sharing cultural history. New objectives in Omeka S include multisite functionality and increased interaction with other systems. This workshop will compare and contrast Omeka S with Omeka Classic to highlight our emphasis on 1) modern metadata standards, 2) interoperability with other systems including Linked Open Data, 3) use of modern web standards, and 4) web publishing to meet the goals medium- to large-sized institutions.

In this workshop we will walk through Omeka S Item creation, with emphasis on LoD principles. We will also look at the features of Omeka S that ease metadata input and facilitate project-defined usage and workflows. In accordance with our commitment to interoperability, we will describe how the API for Omeka S can be deployed for data exchange and sharing between many systems. We will also describe how Omeka S promotes multiple site creation from one installation, in the interest of easy publishing with many objects in many contexts, and simplifying the work of IT departments.

(One three-hour session)

24. Getting started with static website generators
Have you been curious about static website generators? Have you been wondering who Jekyll and Hugo are? Then this workshop is for you

My notehttps://opensource.com/article/17/5/hugo-vs-jekyll

But this article isn’t about setting up a domain name and hosting for your website. It’s for the step after that, the actual making of that site. The typical choice for a lot of people would be to use something like WordPress. It’s a one-click install on most hosting providers, and there’s a gigantic market of plugins and themes available to choose from, depending on the type of site you’re trying to build. But not only is WordPress a bit overkill for most websites, it also gives you a dynamically generated site with a lot of moving parts. If you don’t keep all of those pieces up to date, they can pose a significant security risk and your site could get hijacked.

The alternative would be to have a static website, with nothing dynamically generated on the server side. Just good old HTML and CSS (and perhaps a bit of Javascript for flair). The downside to that option has been that you’ve been relegated to coding the whole thing by hand yourself. It’s doable, but you just want a place to share your work. You shouldn’t have to know all the idiosyncrasies of low-level web design (and the monumental headache of cross-browser compatibility) to do that.

Static website generators are tools used to build a website made up only of HTML, CSS, and JavaScript. Static websites, unlike dynamic sites built with tools like Drupal or WordPress, do not use databases or server-side scripting languages. Static websites have a number of benefits over dynamic sites, including reduced security vulnerabilities, simpler long-term maintenance, and easier preservation.

In this hands-on workshop, we’ll start by exploring static website generators, their components, some of the different options available, and their benefits and disadvantages. Then, we’ll work on making our own sites, and for those that would like to, get them online with GitHub pages. Familiarity with HTML, git, and command line basics will be helpful but are not required.

(One three-hour session)

26. Using Digital Media for Research and Instruction
To use digital media effectively in both research and instruction, you need to go beyond just the playback of media files. You need to be able to stream the media, divide that stream into different segments, provide descriptive analysis of each segment, order, re-order and compare different segments from the same or different streams and create web sites that can show the result of your analysis. In this workshop, we will use Omeka and several plugins for working with digital media, to show the potential of video streaming, segmentation and descriptive analysis for research and instruction.

(One three-hour session)

28. Spark in the Dark 101 https://zeppelin.apache.org/
This is an introductory session on Apache Spark, a framework for large-scale data processing (https://spark.apache.org/). We will introduce high level concepts around Spark, including how Spark execution works and it’s relationship to the other technologies for working with Big Data. Following this introduction to the theory and background, we will walk workshop participants through hands-on usage of spark-shell, Zeppelin notebooks, and Spark SQL for processing library data. The workshop will wrap up with use cases and demos for leveraging Spark within cultural heritage institutions and information organizations, connecting the building blocks learned to current projects in the real world.

(One three-hour session)

29. Introduction to Spotlight https://github.com/projectblacklight/spotlight
http://www.spotlighttechnology.com/4-OpenSource.htm
Spotlight is an open source application that extends the digital library ecosystem by providing a means for institutions to reuse digital content in easy-to-produce, attractive, and scholarly-oriented websites. Librarians, curators, and other content experts can build Spotlight exhibits to showcase digital collections using a self-service workflow for selection, arrangement, curation, and presentation.

This workshop will introduce the main features of Spotlight and present examples of Spotlight-built exhibits from the community of adopters. We’ll also describe the technical requirements for adopting Spotlight and highlight the potential to customize and extend Spotlight’s capabilities for their own needs while contributing to its growth as an open source project.

(One three-hour session)

31. Getting Started Visualizing your IoT Data in Tableau https://www.tableau.com/
The Internet of Things is a rising trend in library research. IoT sensors can be used for space assessment, service design, and environmental monitoring. IoT tools create lots of data that can be overwhelming and hard to interpret. Tableau Public (https://public.tableau.com/en-us/s/) is a data visualization tool that allows you to explore this information quickly and intuitively to find new insights.

This full-day workshop will teach you the basics of building your own own IoT sensor using a Raspberry Pi (https://www.raspberrypi.org/) in order to gather, manipulate, and visualize your data.

All are welcome, but some familiarity with Python is recommended.

(Two three-hour sessions)

32. Enabling Social Media Research and Archiving
Social media data represents a tremendous opportunity for memory institutions of all kinds, be they large academic research libraries, or small community archives. Researchers from a broad swath of disciplines have a great deal of interest in working with social media content, but they often lack access to datasets or the technical skills needed to create them. Further, it is clear that social media is already a crucial part of the historical record in areas ranging from events your local community to national elections. But attempts to build archives of social media data are largely nascent. This workshop will be both an introduction to collecting data from the APIs of social media platforms, as well as a discussion of the roles of libraries and archives in that collecting.

Assuming no prior experience, the workshop will begin with an explanation of how APIs operate. We will then focus specifically on the Twitter API, as Twitter is of significant interest to researchers and hosts an important segment of discourse. Through a combination of hands-on and demos, we will gain experience with a number of tools that support collecting social media data (e.g., Twarc, Social Feed Manager, DocNow, Twurl, and TAGS), as well as tools that enable sharing social media datasets (e.g., Hydrator, TweetSets, and the Tweet ID Catalog).

The workshop will then turn to a discussion of how to build a successful program enabling social media collecting at your institution. This might cover a variety of topics including outreach to campus researchers, collection development strategies, the relationship between social media archiving and web archiving, and how to get involved with the social media archiving community. This discussion will be framed by a focus on ethical considerations of social media data, including privacy and responsible data sharing.

Time permitting, we will provide a sampling of some approaches to social media data analysis, including Twarc Utils and Jupyter Notebooks.

(One three-hour session)

instructional design

Developments in Instructional Design

https://library.educause.edu/~/media/files/library/2015/5/eli7120-pdf.pdf

Mobile computing, cloud computing, and data-rich repositories have altered ideas about where and how learning takes place.
designers can find themselves filling a variety of roles. They might design large, complex systems or work with faculty and departments to develop courses and curricula. They might migrate traditional resources to mobile or adaptive platforms. They might help administrators understand the value and potential of new learning strategies and tools. Today’s instructional designer might work with subject-matter experts, coders, graphic designers, and others. Moreover, the work of an instructional designer increasingly continues throughout the duration of a course rather than taking place upfront
Given the expanding role and landscape of technology—as well as the growing body of knowledge about learning and about educational activities and assessments—dedicated instructional designers are increasingly common and often take a stronger role.
Competency based learning allows students to progress at their own pace and finish assignments, courses, and degree plans as time and skills permit. Data provided by analytics systems can help instructional designers predict which pedagogical approaches might be most effective and tailor learning experiences accordingly. The use of mobile learning continues to grow, enabling new kinds of learning experiences.
In some contexts, instructional designers might work more directly with students, teaching them lifelong learning skills. Students might begin coursework by choosing from a menu of options, creating their own path through content, making choices about learning options, being more hands-on, and selecting best approaches for demonstrating mastery. Educational models that feature adaptive and personalized learning will increasingly be a focus of instructional design.
Instructional designers bring a cross-disciplinary approach to their work, showing faculty how learning activities used in particular subject areas might be effective in others. In this way, instructional designers can cultivate a measure of consistency across courses and disciplines in how educational strategies and techniques are incorporated.
+++++++++++++++
more on instructional design in this IMS blog
https://blog.stcloudstate.edu/ims?s=instructional+design

VR AR MR in education

7 Things You Should Know About AR/VR/MR

https://library.educause.edu/resources/2017/10/7-things-you-should-know-about-ar-vr-mr 
Augmented reality can be described as experiencing the real world with an overlay of additional computer generated content. In contrast, virtual reality immerses a user in an entirely simulated environment, while mixed or merged reality blends real and virtual worlds in ways through which the physical and the digital can interact. AR, VR, and MR offer new opportunities to create a psychological sense of immersive presence in an environment that feels real enough to be viewed, experienced, explored, and manipulated. These technologies have the potential to democratize learning by giving everyone access to immersive experiences that were once restricted to relatively few learners.
In Grinnell College’s Immersive Experiences Lab http://gciel.sites.grinnell.edu/, teams of faculty, staff, and students collaborate on research projects, then use 3D, VR, and MR technologies as a platform to synthesize and present their findings.
In terms of equity, AR, VR, and MR have the potential to democratize learning by giving all learners access to immersive experiences
downsides :
relatively little research about the most effective ways to use these technologies as instructional tools. Combined, these factors can be disincentives for institutions to invest in the equipment, facilities, and staffing that can be required to support these systems. AR, VR, and MR technologies raise concerns about personal privacy and data security. Further, at least some of these tools and applications currently fail to meet accessibility standards. The user experience in some AR, VR, and MR applications can be intensely emotional and even disturbing (my note: but can be also used for empathy literacy),
immersing users in recreated, remote, or even hypothetical environments as small as a molecule or as large as a universe, allowing learners to experience “reality” from multiple perspectives.

++++++++++++++++
more on VR, AR, MX in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

digital badges in academic libraries

David Demaine, S., Lemmer, C. A., Keele, B. J., & Alcasid, H. (2015). Using Digital Badges to Enhance Research Instruction in Academic Libraries. In B. L. Eden (Ed.), Enhancing Teaching and Learning in the 21st-Century Academic Library: Successful Innovations That Make a Difference (2015th ed.). Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2882671

At their best, badges can create a sort of interactive e-resume.

the librarian may be invited into the classroom, or the students may be sent to the Iibrary for a single research lesson on databases and search tem1s- not enough for truly high-quality research. A better alternative may be that the professor require the students to complete a series of badges- designed, implemented, and managed by the librarian- that build thorough research skills and ultimately produce a better paper.

Meta- badges are s impl y badges that indicate comp letion o f multiple related badges.

Authentication (determining that the badge has not been altered) and validation/verification (checking that the badge has actually been earned and issued by the stated issuer) are major concerns. lt is also important, particularly in the academic context, to make sure that the badge does not come to replace the learning it represents. A badge is a symbol that other skills and knowledge exist in this individual’s portfolio of skills and talents. Therefore, badges awarded in the educational context must reflect time and effort and be based on vetted standards, or they will become empty symbols

Digital credentialing recognizes “learning of many kinds which are acquired beyond formal education institutions .. . ; it proliferates and disperses author- ity over what learning to recognize; and it provides a means of translation and commensuration across multiple spheres” (Oineck, 2012, p. I)

University digital badge projects are rarely a top-down undertaking. Typi- cally, digital badge programs arise from collaborative efforts “of people agi- tating from the middle” (Raths, 2013).

 

Scopus webinar

Scopus Content: High quality, historical depth and expert curation

Bibliographic Indexing Leader

Register for the September 28th webinar

https://www.brighttalk.com/webcast/13703/275301

metadata: counts of papers by yer, researcher, institution, province, region and country. scientific fields subfields
metadata in one-credit course as a topic:

publisher – suppliers =- Elsevier processes – Scopus Data

h-index: The h-index is an author-level metric that attempts to measure both the productivity and citation impact of the publications of a scientist or scholar. The index is based on the set of the scientist’s most cited papers and the number of citations that they have received in other publications.

+++++++++++++++++++

https://www.brighttalk.com/webcast/9995/275813

Librarians and APIs 101: overview and use cases
Christina Harlow, Library Data Specialist;Jonathan Hartmann, Georgetown Univ Medical Center; Robert Phillips, Univ of Florida

https://zenodo.org/

+++++++++++++++

Slides | Research data literacy and the library from Library_Connect

 The era of e-science demands new skill sets and competencies of researchers to ensure their work is accessible, discoverable and reusable. Librarians are naturally positioned to assist in this education as part of their liaison and information literacy services.

Research data literacy and the library

Christian Lauersen, University of Copenhagen; Sarah Wright, Cornell University; Anita de Waard, Elsevier

https://www.brighttalk.com/webcast/9995/226043

Data Literacy: access, assess, manipulate, summarize and present data

Statistical Literacy: think critically about basic stats in everyday media

Information Literacy: think critically about concepts; read, interpret, evaluate information

data information literacy: the ability to use, understand and manage data. the skills needed through the whole data life cycle.

Shield, Milo. “Information literacy, statistical literacy and data literacy.” I ASSIST Quarterly 28. 2/3 (2004): 6-11.

Carlson, J., Fosmire, M., Miller, C. C., & Nelson, M. S. (2011). Determining data information literacy needs: A study of students and research faculty. Portal: Libraries & the Academy, 11(2), 629-657.

data information literacy needs

embedded librarianship,

Courses developed: NTRESS 6600 research data management seminar. six sessions, one-credit mini course

http://guides.library.cornell.edu/ntres6600
BIOG 3020: Seminar in Research skills for biologists; one-credit semester long for undergrads. data management organization http://guides.library.cornell.edu/BIOG3020

lessons learned:

  • lack of formal training for students working with data.
  • faculty assumed that students have or should have acquired the competencies earlier
  • students were considered lacking in these competencies
  • the competencies were almost universally considered important by students and faculty interviewed

http://www.datainfolit.org/

http://www.thepress.purdue.edu/titles/format/9781612493527

ideas behind data information literacy, such as the twelve data competencies.

http://blogs.lib.purdue.edu/dil/the-twelve-dil-competencies/

http://blogs.lib.purdue.edu/dil/what-is-data-information-literacy/

Johnston, L., & Carlson, J. (2015). Data Information Literacy : Librarians, Data and the Education of a New Generation of Researchers. Ashland: Purdue University Press.  http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d987172%26site%3dehost-live%26scope%3dsite

NEW ROLESFOR LIbRARIANS: DATAMANAgEMENTAND CURATION

the capacity to manage and curate research data has not kept pace with the ability to produce them (Hey & Hey, 2006). In recognition of this gap, the NSF and other funding agencies are now mandating that every grant proposal must include a DMP (NSF, 2010). These mandates highlight the benefits of producing well-described data that can be shared, understood, and reused by oth-ers, but they generally offer little in the way of guidance or instruction on how to address the inherent issues and challenges researchers face in complying. Even with increasing expecta-tions from funding agencies and research com-munities, such as the announcement by the White House for all federal funding agencies to better share research data (Holdren, 2013), the lack of data curation services tailored for the “small sciences,” the single investigators or small labs that typically comprise science prac-tice at universities, has been identified as a bar-rier in making research data more widely avail-able (Cragin, Palmer, Carlson, & Witt, 2010).Academic libraries, which support the re-search and teaching activities of their home institutions, are recognizing the need to de-velop services and resources in support of the evolving demands of the information age. The curation of research data is an area that librar-ians are well suited to address, and a num-ber of academic libraries are taking action to build capacity in this area (Soehner, Steeves, & Ward, 2010)

REIMAgININg AN ExISTINg ROLEOF LIbRARIANS: TEAChINg INFORMATION LITERACY SkILLS

By combining the use-based standards of information literacy with skill development across the whole data life cycle, we sought to support the practices of science by develop-ing a DIL curriculum and providing training for higher education students and research-ers. We increased ca-pacity and enabled comparative work by involving several insti-tutions in developing instruction in DIL. Finally, we grounded the instruction in the real-world needs as articu-lated by active researchers and their students from a variety of fields

Chapter 1 The development of the 12 DIL competencies is explained, and a brief compari-son is performed between DIL and information literacy, as defined by the 2000 ACRL standards.

chapter 2 thinking and approaches toward engaging researchers and students with the 12 competencies, a re-view of the literature on a variety of educational approaches to teaching data management and curation to students, and an articulation of our key assumptions in forming the DIL project.

Chapter 3 Journal of Digital Curation. http://www.ijdc.net/

http://www.dcc.ac.uk/digital-curation

https://blog.stcloudstate.edu/ims/2017/10/19/digital-curation-2/

https://blog.stcloudstate.edu/ims/2016/12/06/digital-curation/

chapter 4 because these lon-gitudinal data cannot be reproduced, acquiring the skills necessary to work with databases and to handle data entry was described as essential. Interventions took place in a classroom set-ting through a spring 2013 semester one-credit course entitled Managing Data to Facilitate Your Research taught by this DIL team.

chapter 5 embedded librar-ian approach of working with the teaching as-sistants (TAs) to develop tools and resources to teach undergraduate students data management skills as a part of their EPICS experience.
Lack of organization and documentation presents a bar-rier to (a) successfully transferring code to new students who will continue its development, (b) delivering code and other project outputs to the community client, and (c) the center ad-ministration’s ability to understand and evalu-ate the impact on student learning.
skill sessions to deliver instruction to team lead-ers, crafted a rubric for measuring the quality of documenting code and other data, served as critics in student design reviews, and attended student lab sessions to observe and consult on student work

chapter 6 Although the faculty researcher had created formal policies on data management practices for his lab, this case study demonstrated that students’ adherence to these guidelines was limited at best. Similar patterns arose in discus-sions concerning the quality of metadata. This case study addressed a situation in which stu-dents are at least somewhat aware of the need to manage their data;

chapter 7 University of Minnesota team to design and implement a hybrid course to teach DIL com-petencies to graduate students in civil engi-neering.
stu-dents’ abilities to understand and track issues affecting the quality of the data, the transfer of data from their custody to the custody of the lab upon graduation, and the steps neces-sary to maintain the value and utility of the data over time.

++++++++++++++
more on Scopus in this IMS blog
https://blog.stcloudstate.edu/ims?s=scopus

case study

Feagin, J. R., Orum, A. M., & Sjoberg, G. (1991). A Case for the case study. Chapel Hill: University of North Carolina Press.

https://books.google.com/books/about/A_Case_for_the_Case_Study.html?id=7A39B6ZLyJQC

or ILL MSU,M Memorial Library –General Collection HM48 .C37 1991

p. 2 case study is defined as an in-depth

Multi-faceted investigation, using qualitative research methods, of a single social phenomenon.
use of several data sources.

Some case studies have made use of both qualitative and quantitative methods.

Comparative framework.

The social phenomenon can vary: it can be an organization, it can be a role, or role-occupants.

p. 3Quantitative methods: standardized set of q/s

K12 IT management

8 truths about K-12 IT systems management

By Gary Johnson September 13th, 2017

Unique complexities can be distilled down to eight truths, and may explain why vendors never seem to meet expectations in K-12 IT.

8 truths about K-12 IT systems management

Consider the information they handle every day. School districts in America today are complex, sophisticated businesses, not only managing multiple applications across multiple platforms, but also managing people and equipment in the real world, like bus fleets, library systems, and cafeterias.

you will find admins working with an average of 30 onsite and online platforms. That’s 30 systems to feed with data and update. The kicker is that those systems might not be on speaking terms with each other.

Interoperability is a multi-headed issue for any IT professional, but in the K-12 education world it is especially complex. These unique complexities can be distilled down to eight truths, and may explain why vendors who have been very successful in other IT verticals never seem to meet expectations in K-12.

The Solution Cannot Be Point-to-Point

Data from many active sources is profoundly difficult to keep current, especially when considering the different protocols used for each particular point-to-point integration.

There Must Be Multiple Ways of Moving Data

A successful broker/dashboard must be able to accommodate all of these integration methods. The broker needs to support it as well as the industry’s existing standards, such as SIF and CSV.

The System Must Merge Disparate Feeds

Data comes into educational systems from a variety of feeds, including CSVs and file sharing. Handling all these feeds develops a vital function, coveted by IT professionals and system admins everywhere: a comprehensive representation of the data truth of your district.

Your Data Solution Must Be Bidirectional

Different systems don’t always talk to each other politely, and with some districts using as many as 30 applications, writing grades back to the SIS can get thorny.

We Need a Flexible Data Model

some of those free or low-cost integrations are profoundly rigid and can’t accommodate the data reality of school districts.

We Must Deal with “Dumb” End Points

In the world of district data, we are moving toward REST APIs and other unintelligent end points. There is no inherent logic in an API that tells the system how to move data. And as mentioned earlier, many legacy systems still depend on CSV’s for data.

Integration Belongs in the Cloud but Must Accommodate On-Premise Apps

know the cloud actually is an ideal setting for interoperability, especially since so many of our applications are cloud-based. It gives you maximum visibility, maximum diagnostic capability and manageability. You can manage from anywhere, anytime.

Be Multi-Tenant with Supervisory Capability

For areas where intermediate units or a Board of Cooperative Educational Standards (BOCES) provide IT services to districts, the system admins need a big picture approach. The integration platform must allow the IU or BOCES to troubleshoot, diagnose, manage, and support multiple districts in one dashboard, but only show district personnel data belonging to their organization. State education agencies also have this need.

There are several reputable companies that provide an iPaaS–in fact Gartner compared 20 of them in their 2017 Magic Quadrant for Enterprise Integration Platform as a Service. However, without a deep understanding of education data models, even these vendors may fall short, and may be expensive.

++++++++++++++
more on IT for K12 in this IMS blog
https://blog.stcloudstate.edu/ims?s=digital+literacy+edad

back to school discussion

Bryan Alexander (BA) Future Trends of Sept. 7

Are you seeing enrollments change? Which technologies hold the most promise? Will your campus become politically active? What collaborations might power up teaching and learning?

  • the big technological issues for the next year?
    robotics? automation in education? big data / analytics?

organizational transformation. David Stone (Penn State) – centralization vs decentralization. technology is shifting everywhere, even the registrar. BA – where should be the IT department? CFO or Academic Department.

difference between undergrads and grad students and how to address. CETL join center for academic technologies.

faculty role, developing courses and materials. share these materials and make more usable. who should be maintaining these materials. life cycle, compensation for development materials. This is in essence the issues of the OER Open Education Resources initiative in MN

BA: OER and Open Access to Research has very similar models and issues. Open access scholarship both have a lot of impact on campus finances. Library and faculty budges.

Amanda Major is with Division of Digital Learning as part of Academic Affairs at UCF: Are there trends in competency-based learning, assessing quality course and programs, personalized adaptive learning, utilizing data analytics for retention and student success?  BA: CBL continue to grow at state U’s and community colleges.

BA for group discussions: what are the technological changes happening this coming year, not only internally on campus, but global changes and how thy might be affecting us. Amazon Dash button, electric cars for U fleet, newer devices on campus

David Stone: students are price-sensitive. college and U can charge whatever they want and text books can raise prices.

http://hechingerreport.org/ next week

++++++++++++++++++
more on future trends in this IMS blog

https://blog.stcloudstate.edu/ims/2017/05/30/missionu-on-bryan-alexanders-future-trends/

online teaching evaluation

Tobin, T. J., Mandernach, B. J., & Taylor, A. H. (2015). Evaluating Online Teaching: Implementing Best Practices (1 edition). San Francisco, CA: Jossey-Bass.
  1. 5 measurable faculty competencies for on line teaching:
  • attend to unique challenges of distance learning
  • Be familiar with unique learning needs
  • Achieve mastery of course content, structure , and organization
  • Respond to student inquiries
  • Provide detailed feedback
  • Communicate effectively
  • Promote a safe learning environment
  • Monitor student progress
  • Communicate course goals
  • Provide evidence of teaching presence.

Best practices include:

  • Making interactions challenging yet supportive for students
  • Asking learners to be active participants in the learning process
  • Acknowledging variety on the ways that students learn best
  • Providing timely and constructive feedback

Evaluation principles

  • Instructor knowledge
  • Method of instruction
  • Instructor-student rapport
  • Teaching behaviors
  • Enthusiastic teaching
  • Concern for teaching
  • Overall

8. The American Association for higher Education 9 principle4s of Good practice for assessing student learning from 1996 hold equally in the F2F and online environments:

the assessment of student learning beings with educational values

assessment is most effective when it reflects an understanding of learning as multidimensional, integrated and revealed in performance over time

assessment works best when the programs it seeks to improve have clear, explicitly stated purposes.

Assessment requires attention to outcomes but also and equally to the experiences that lead to those outcomes.

Assessment works best when it is ongoing, not episodic

Assessment fosters wider improvement when representatives from across the educational community are involved

Assessment makes a difference when it begins with issues of use and illumines questions that people really care bout

Assessment is most likely to lead to improvements when it is part of the large set of conditions that promote change.

Through assessment, educators meet responsibilities to students and to the public.

9 most of the online teaching evaluation instruments in use today are created to evaluate content design rather than teaching practices.

29 stakeholders for the evaluation of online teaching

  • faculty members with online teaching experience
  • campus faculty members as a means of establishing equitable evaluation across modes of teaching
  • contingent faculty members teaching online
  • department or college administrators
  • members of faculty unions or representative governing organizations
  • administrative support specialists
  • distance learning administrators
  • technology specialists
  • LMS administrators
  • Faculty development and training specialists
  • Institutional assessment and effectiveness specialists
  • Students

Sample student rating q/s

University resources

Rate the effectiveness of the online library for locationg course materials

Based on your experience,

148. Checklist for Online Interactive Learning COIL

150. Quality Online Course Initiative QOCI

151 QM Rubric

154 The Online Insturctor Evaluation System OIES

 

163 Data Analytics: moving beyond student learning

  • # of announcments posted per module
  • # of contributions to the asynchronous discussion boards
  • Quality of the contributions
  • Timeliness of posting student grades
  • Timelines of student feedback
  • Quality of instructional supplements
  • Quality of feedback on student work
  • Frequency of logins
  1. 180 understanding big data
  • reliability
  • validity
  • factor structure

187 a holistics valuation plan should include both formative evaluation, in which observations and rating are undertaken with the purposes of improving teaching and learning, and summative evaluation, in which observation and ratings are used in order to make personnel decisions, such as granting promotion and tenure, remediation, and asking contingent faculty to teach again.

195 separating teaching behaviors from content design

 

 

 

 

+++++++++++++++++
more on online teaching in this IMS blog
https://blog.stcloudstate.edu/ims?s=online+teaching

NMC Horizon Report 2017 K12

NMC/CoSN Horizon Report 2017 K–12 Edition

https://cdn.nmc.org/wp-content/uploads/2017-nmc-cosn-horizon-report-K12-advance.pdf
p. 16 Growing Focus on Measuring Learning
p. 18 Redesigning Learning Spaces
Biophilic Design for Schools : The innate tendency in human beings to focus on life and lifelike processes is biophilia

p. 20 Coding as a Literacy

 https://www.facebook.com/bracekids/
Best Coding Tools for High School http://go.nmc.org/bestco

p. 24

Significant Challenges Impeding Technology Adoption in K–12 Education
Improving Digital Literacy.
 Schools are charged with developing students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online etiquette and digital rights and responsibilities in blended and online learning settings. Due to the multitude of elements comprising digital literacy, it is a challenge for schools to implement a comprehensive and cohesive approach to embedding it in curricula.
Rethinking the Roles of Teachers.
Pre-service teacher training programs are also challenged to equip educators with digital and social–emotional competencies, such as the ability to analyze and use student data, amid other professional requirements to ensure classroom readiness.
p. 28 Improving Digital Literacy
Digital literacy spans across subjects and grades, taking a school-wide effort to embed it in curricula. This can ensure that students are empowered to adapt in a quickly changing world
Education Overview: Digital Literacy Has to Encompass More Than Social Use

What Web Literacy Skills are Missing from Learning Standards? Are current learning standards addressing the essential web literacy skills everyone should know?https://medium.com/read-write-participate/what-essential-web-skills-are-missing-from-current-learning-standards-66e1b6e99c72

 

web literacy;
alignment of stadards

The American Library Association (ALA) defines digital literacy as “the ability to use information and communication technologies to find, evaluate, create, and communicate or share information, requiring both cognitive and technical skills.” While the ALA’s definition does align to some of the skills in “Participate”, it does not specifically mention the skills related to the “Open Practice.”

The library community’s digital and information literacy standards do not specifically include the coding, revision and remixing of digital content as skills required for creating digital information. Most digital content created for the web is “dynamic,” rather than fixed, and coding and remixing skills are needed to create new content and refresh or repurpose existing content. Leaving out these critical skills ignores the fact that library professionals need to be able to build and contribute online content to the ever-changing Internet.

p. 30 Rethinking the Roles of Teachers

Teachers implementing new games and software learn alongside students, which requires
a degree of risk on the teacher’s part as they try new methods and learn what works
p. 32 Teaching Computational Thinking
p. 36 Sustaining Innovation through Leadership Changes
shift the role of teachers from depositors of knowledge to mentors working alongside students;
p. 38  Important Developments in Educational Technology for K–12 Education
Consumer technologies are tools created for recreational and professional purposes and were not designed, at least initially, for educational use — though they may serve well as learning aids and be quite adaptable for use in schools.
Drones > Real-Time Communication Tools > Robotics > Wearable Technology
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching and learning, whether inside or outside the classroom.
> Games and Gamification > Location Intelligence > Makerspaces > Preservation and Conservation Technologies
Enabling technologies are those technologies that have the potential to transform what we expect of our devices and tools. The link to learning in this category is less easy to make, but this group of technologies is where substantive technological innovation begins to be visible. Enabling technologies expand the reach of our tools, making them more capable and useful
Affective Computing > Analytics Technologies > Artificial Intelligence > Dynamic Spectrum and TV White Spaces > Electrovibration > Flexible Displays > Mesh Networks > Mobile Broadband > Natural User Interfaces > Near Field Communication > Next Generation Batteries > Open Hardware > Software-Defined Networking > Speech-to-Speech Translation > Virtual Assistants > Wireless Powe
Internet technologies include techniques and essential infrastructure that help to make the technologies underlying how we interact with the network more transparent, less obtrusive, and easier to use.
Bibliometrics and Citation Technologies > Blockchain > Digital Scholarship Technologies > Internet of Things > Syndication Tools
Learning technologies include both tools and resources developed expressly for the education sector, as well as pathways of development that may include tools adapted from other purposes that are matched with strategies to make them useful for learning.
Adaptive Learning Technologies > Microlearning Technologies > Mobile Learning > Online Learning > Virtual and Remote Laboratories
Social media technologies could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category.
Crowdsourcing > Online Identity > Social Networks > Virtual Worlds
Visualization technologies run the gamut from simple infographics to complex forms of visual data analysis
3D Printing > GIS/Mapping > Information Visualization > Mixed Reality > Virtual Reality
p. 46 Virtual Reality
p. 48 AI
p. 50 IoT

+++++++++++++++
more on NMC Horizon Reports in this IMS blog

https://blog.stcloudstate.edu/ims?s=new+media+horizon

1 16 17 18 19 20 27