Searching for "gaming"

alternatives to lecturing

50 Alternatives To Lecturing

Learning Models

1. Self-directed learning

2. Learning through play

3. Scenario-based learning

4. Game-based learning (https://blog.stcloudstate.edu/ims/?s=gaming)

5. Project-based learning (https://blog.stcloudstate.edu/ims/?s=project+based)

6. Peer-to-Peer instruction

7. School-to-school instruction (using Skype in the classroom, for example)

8. Learning through projects

9. Problem-based learning

10. Challenge-based learning

11. Inquiry-based learning

12. Mobile learning

13. Gamified learning (gamification)

14. Cross-curricular projects (teaching by topic: https://blog.stcloudstate.edu/ims/2015/03/24/education-reform-finland/)

15. Reciprocal Teaching

16. “Flipped-class” learning

17. Face-to-Face Driver blended learning

18. Rotation blended learning

19. Flex Blended Learning

20. “Online Lab” blended learning

21. Sync Teaching

23. HyFlex Learning

24. Self-guided MOOC

25. Traditional MOOC

26. Competency-Based Learning

27. Question-based learning

Literacy Strategies

28. Write-Around

29. Four Corners

30. Accountable Talk

31. RAFT Assignments

32. Fishbowl

33. Debate

34. Gallery Walk

35. Text Reduction

36. Concentric Circles

37. Traditional Concept-Mapping (teacher-given strategy–“fishbone” cause-effect analysis, for example)

38. Didactic, Personalized Concept Mapping (student designed and personalized for their knowledge-level and thinking patterns)

39. Mock Trial

40. Non-academic video + “academic” questioning

41. Paideia Seminar (http://www.paideia.org/, http://www.learnnc.org/lp/editions/paideia/, http://www.mtlsd.org/jefferson_middle/stuff/paideia%20seminar%20guidelines.pdf)

42. Symposium

43. Socratic Seminar (https://www.nwabr.org/sites/default/files/SocSem.pdf)

44. QFT Strategy

45. Concept Attainment

46. Directed Reading Thinking Activity

47. Paragraph Shrinking

48. FRAME Routine

49. Jigsaw Strategy

Other 

50. Content-Based Team-Building Activities

51. Learning Simulation

52. Role-Playing

53. Bloom’s Spiral

54. Virtual Field Trip (http://web.stcloudstate.edu/pmiltenoff/scw/)

55. Physical Field Trip

56. Digital Scavenger Hunt  (http://web.stcloudstate.edu/pmiltenoff/bi/)

57. Physical Scavenger Hunt

http://www.teachthought.com/teaching/50-alternatives-to-lecturing/

 

 

handbook of mobile learning

Routledge. (n.d.). Handbook of Mobile Learning (Hardback) – Routledge [Text]. Retrieved May 27, 2015, from http://www.routledge.com/books/details/9780415503693/

Crompton, H. (2013). A historical overview of mobile learning: Toward learner-centered education. Retrieved June 2, 2015, from https://www.academia.edu/5601076/A_historical_overview_of_mobile_learning_Toward_learner-centered_education

Crompton, Muilenburg and Berge’s definition for m-learning is “learning across multiple contexts, through social and content interactions, using personal electronic devices.”
The “context”in this definition encompasses m-learnng that is formalself-directed, and spontaneous learning, as well as learning that is context aware and context neutral.
therefore, m-learning can occur inside or outside the classroom, participating in a formal lesson on a mobile device; it can be self-directed, as a person determines his or her own approach to satisfy a learning goal; or spontaneous learning, as a person can use the devices to look up something that has just prompted an interest (Crompton, 2013, p. 83). (Gaming article Tallinn)Constructivist Learnings in the 1980s – Following Piage’s (1929), Brunner’s (1996) and Jonassen’s (1999) educational philosophies, constructivists proffer that knowledge acquisition develops through interactions with the environment. (p. 85). The computer was no longer a conduit for the presentation of information: it was a tool for the active manipulation of that information” (Naismith, Lonsdale, Vavoula, & Sharples, 2004, p. 12)Constructionist Learning in the 1980s – Constructionism differed from constructivism as Papert (1980) posited an additional component to constructivism: students learned best when they were actively involved in constructing social objects. The tutee position. Teaching the computer to perform tasks.Problem-Based learning in the 1990s – In the PBL, students often worked in small groups of five or six to pool knowledge and resources to solve problems. Launched the sociocultural revolution, focusing on learning in out of school contexts and the acquisition of knowledge through social interaction

Socio-Constructivist Learning in the 1990s. SCL believe that social and individual processes are independent in the co-construction of knowledge (Sullivan-Palinscar, 1998; Vygotsky, 1978).

96-97). Keegan (2002) believed that e-learning was distance learning, which has been converted to e-learning through the use of technologies such as the WWW. Which electronic media and tools constituted e-learning: e.g., did it matter if the learning took place through a networked technology, or was it simply learning with an electronic device?

99-100. Traxler (2011) described five ways in which m-learning offers new learning opportunities: 1. Contingent learning, allowing learners to respond and react to the environment and changing experiences; 2. Situated learning, in which learning takes place in the surroundings applicable to the learning; 3. Authentic learning;

Diel, W. (2013). M-Learning as a subfield of open and distance education. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.

  1. 15) Historical context in relation to the field of distance education (embedded librarian)
  2. 16 definition of independent study (workshop on mlearning and distance education
  3. 17. Theory of transactional distance (Moore)

Cochrane, T. (2013). A Summary and Critique of M-Learning Research and Practice. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.
( Galin class, workshop)

P 24

According to Cook and Sharples (2010) the development of M learning research has been characterized by three general faces a focus upon Devices Focus on learning outside the classroom He focus on the mobility of the learner

  1. 25

Baby I am learning studies focus upon content delivery for small screen devices and the PDA capabilities of mobile devices rather than leveraging the potential of mobile devices for collaborative learning as recommended by hope Joyner Mill Road and sharp P. 26 Large scale am learning project Several larger am learning projects have tended to focus on specific groups of learners rather than developing pedagogical strategies for the integration of am mlearning with him tertiary education in general

27

m learning research funding

In comparison am learning research projects in countries with smaller population sizes such as Australia and New Zealand are typiclly funded on a shoe string budget

28

M-learning research methodologies

I am learning research has been predominantly characterized by short term case studies focused upon The implementation of rapidly changing technologies with early adopters but with little evaluation reflection or emphasis on mainstream tertiary-education integration

 

p. 29 identifying the gaps in M learning research

 

lack of explicit underlying pedagogical theory Lack of transferable design frameworks

 

Cochrane, T. (2011).Proceedings ascilite 2011 Hobart:Full Paper 250 mLearning: Why? What? Where? How? http://www.ascilite.org/conferences/hobart11/downloads/papers/Cochrane-full.pdf
(Exploring mobile learning success factors http://files.eric.ed.gov/fulltext/EJ893351.pdf
https://prezi.com/kr94rajmvk9u/mlearning/
https://thomcochrane.wikispaces.com/MLearning+Praxis

Pachler, N., Bachmair, B., and Cook, J. (2013). A Sociocultural Ecological Frame for Mobile Learning. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.
(Tom video studio)

35 a line of argumentation that defines mobile devices such as mobile phones as cultural resources. Mobile cultural resources emerge within what we call a “bile complex‘, which consist of specifics structures, agency and cultural practices.

36 pedagogy looks for learning in the context of identify formation of learners within a wider societal context However at the beginning of the twentieth first century and economy oriented service function of learning driven by targets and international comparisons has started to occupy education systems and schools within them Dunning 2000 describes the lengthy transformation process from natural assets Land unskilled labor to tangible assets machinery to intangible created assets such as knowledge and information of all kinds Araya and Peters 2010 describe the development of the last 20 years in terms of faces from the post industrial economy to d information economy to the digital economy to the knowledge economy to the creative economy Cultural ecology can refer to the debate about natural resources we argue for a critical debate about the new cultural resources namely mobile devices and the services for us the focus must not be on the exploitation of mobile devices and services for learning but instead on the assimilation of learning with mobiles in informal contacts of everyday life into formal education

37

Ecology comes into being is there exists a reciprocity between perceiver and environment translated to M learning processes this means that there is a reciprocity between the mobile devices in the activity context of everyday life and the formal learning

45

Rather than focusing on the acquisition of knowledge in relation to externally defined notions of relevance increasingly in a market-oriented system individual faces the challenge of shape his/her knowledge out of his/her own sense of his/her world information is material which is selected by individuals to be transformed by them into knowledge to solve a problem in the life world

Crompton, H. (2013). A Sociocultural Ecological Frame for Mobile Learning. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.

p. 47 As philosophies and practice move toward learner-centered pedagogies, technology in a parallel move, is now able to provide new affordances to the learner, such as learning that is personalized, contextualized, and unrestricted by temporal and spatial constrains.

The necessity for m-learning to have a theory of its own, describing exactly what makes m-learning unique from conventional, tethered electronic learning and traditional learning.

48 . Definition and devices. Four central constructs. Learning pedagogies, technological devices, context and social interactions.

“learning across multiple contexts, through social and content interactions, using personal electronic devices.”

It is difficult, and ill advisable, to determine specifically which devices should be included in a definition of m-learning, as technologies are constantly being invented or redesigned. (my note against the notion that since D2L is a MnSCU mandated tool, it must be the one and only). One should consider m-learning as the utilization of electronic devices that are easily transported and used anytime and anywhere.

49 e-learning does not have to be networked learning: therefore, e-learnng activities could be used in the classroom setting, as the often are.

Why m-learning needs a different theory beyond e-learning. Conventional e-learning is tethered, in that students are anchored to one place while learning. What sets m-learning apart from conventional e-learning is the very lack of those special and temporal constrains; learning has portability, ubiquitous access and social connectivity.

50 dominant terms for m-learning should include spontaneous, intimate, situated, connected, informal, and personal, whereas conventional e-learning should include the terms computer, multimedia, interactive, hyperlinked, and media-rich environment.

51 Criteria for M-Learning
second consideration is that one must be cognizant of the substantial amount of learning taking place beyond the academic and workplace setting.

52 proposed theories

Activity theory: Vygotsky and Engestroem

Conversation theory: Pask 1975, cybernetic and dialectic framework for how knowledge is constructed. Laurillard (2007) although conversation is common for all forms of learning, m-learning can build in more opportunities for students to have ownership and control over what they are learning through digitally facilitated, location-specific activities.

53 multiple theories;

54 Context is central construct of mobile learning. Traxler (2011) described the role of context in m-learning as “context in the wider context”, as the notion of context becomes progressively richer. This theme fits with Nasimith et al situated theory, which describes the m-learning activities promoting authentic context and culture.

55. Connectivity
unlike e-learning, the learner is not anchored to a set place. it links to Vygotsky’s sociocultural approach.
Learning happens within various social groups and locations, providing a diverse range of connected  learning experiences. furthermore, connectivity is without temporal restraints, such as the schedules of educators.

55. Time
m-larning as “learning dispersed in time”

55. personalization
my note student-centered learning

Moura, A., Carvalho, A. (2013). Framework For Mobile Learning Integration Into Educational Contexts. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.

p. 58 framework is based on constructivist approach, Activity theory, and the attention, relevance and confidence satisfaction (ARCS) model http://www.arcsmodel.com/#!
http://torreytrust.com/images/ITH_Trust.pdf

to set a didacticmodel that can be applied to m-learning requires looking at the characteristics of specific devi

https://www.researchgate.net/profile/Nadire_Cavus/publication/235912545_Basic_elements_and_characteristics_of_mobile_learning/links/02e7e526c1c0647142000000.pdf
https://eleed.campussource.de/archive/9/3704

Gregory, S. (2015). Virtual World, Varsity Sport. Time, 185(12), 44.

http://time.com/3759634/virtual-world-varsity-sport/

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dmih%26AN%3d101753558%26site%3deds-live%26scope%3dsite

Much like the way athletic-gear companies such as Nike and Adidas infiltrated traditional scholastic sports, video-game companies are helping underwrite the college gaming explosion. Riot Games, creator of League of Legends, is offering $360,000 in total scholarship money toplayers who make this year’s collegiate Final Four, more than tripling last year’s prize

My note: recommendation to LRS gaming committee. Can Eric be the LRS rep who can seek collecting an adhoc SCSU team? as per https://blog.stcloudstate.edu/ims/2015/03/19/recommendations-for-games-and-gaming-at-lrs/
If we to meet Dennis, Jim and/or Susantha, as recommended by Mark Vargas, the conversation needs to go that direction. Matt Barton definitely will be interested.
If we to consider the second and third higher level (how to gamify the educational process) or the educational methodology of gaming, I think we have to prepare the argument at LRS (as recommended by someone with a terminal degree in education or at least strong interest in pedagogy).

More on gaming at IMS blog
https://blog.stcloudstate.edu/ims/?s=gaming

more on gamification at IMS blog
https://blog.stcloudstate.edu/ims/?s=gamification

 

video games Norway

Literature, Ethics, Physics: It’s All In Video Games At This Norwegian School

http://blogs.kqed.org/mindshift/2014/07/literature-ethics-physics-its-all-in-video-games-at-this-norwegian-school/

game-based learning seems to be a misnomer, as the learning is not based on games, but enhanced by them. Commercial games are repurposed and modified to support curricular goals, as opposed to driving them. Of course, learning can and should also be based on games, as they are valid texts that can be studied in and of themselves, but it is important to see video games as elastic tools whose potential uses exceed their intended purpose.

My note: game-enhanced learning can be safely classified under “gamification”:

Gamification is defined as the process of applying game mechanics and game thinking to the real world to solve problems and engage users (Phetteplace & Felker, 2014, p. 19; Becker, 2013, p. 199; Kapp, 2012).

More on the issue of gaming and gamification (including coding) in Scandinavian countries:

https://blog.stcloudstate.edu/ims/?s=finland

games for building and exploration

Beyond Minecraft: Games That Inspire Building and Exploration

http://blogs.kqed.org/mindshift/2013/11/beyond-minecraft-games-that-inspire-building-and-exploration/

1. Garry’s Mod 

garryscreenshotGarry’s Mod (GMod) is a sandbox game like Minecraft but instead of building and exploring, students use a fun physics engine that simulates things like gravity and mass. They also use a virtual toy box of assets from Valve Software’s popular games. The tool is a step up in complexity from the elegant simplicity of Minecraft, but with Garry’s Mod, students are exposed to physics concepts while having madcap fun.

2. Kerbal Space Program

kerbal_screenshotKerbal Space Program has a robust physics engine too, but it’s more focused than Garry’s Mod. Players purchase rocket parts, put them together, and then see if they can get a ship into orbit, to one of two moons, or even to another planet. These aren’t easy tasks, so play is focused on trial and error testing, and, like Minecraft, seeking help from the community is part of a successful strategy.

3. Sound Shapes 

soundshapes_screenshotSound Shapes is a visually stunning platform puzzle game set to a rich musical soundscape. Even better: students can create and share their own levels – like interactive sheet music — using sounds and objects unlocked by playing the platform game. It’s an accessible entry point into musical composition as well as game design, and provides an experience that builds on the creativity of Minecraft while offering something wholly unique for music lovers.

4. DIY

DIYFor creative kids who want to get their hands dirty, check out DIY, a site where students can find things to build, instructions for how to build them, and ways to share their creations with others. All projects are aligned to 50 skills that run the gamut from outdoors to indoors, and feature various challenges to complete and cool badges to earn and display.

5. STENCYL

screen568x568Computer programming is a great next step for students who love to mod Minecraft or toy around with the redstone resource (which simulates basic logic and circuitry). One solid entry-level tool is Stencyl, a game creation program focused on codeless, cross-platform game making. By snapping blocks of code together, students can create games that can be published and played on a variety of platforms including mobile phones.

6. CODECADEMY

Codecademy is a web-based, self-paced site that teaches actual industry-standard languages like PHP, Javascript, Python, Ruby, HTML, and CSS. While students don’t create publishable games like they would in Stencyl, their learning is purpose-driven and contextualized, e.g. JavaScript for web development or Ruby for app development. And students do get to see their code’s output directly onscreen.

Minecraft has introduced a lot of youth to games as well as the critical thinking, problem solving, and creation skills necessary for self-motivated learning. The games and sites on this list have the potential to extend that learning, providing fresh outlets for self-expression in the digital world and beyond.

More on gaming in this blog:

https://blog.stcloudstate.edu/ims/?s=minecraft

https://blog.stcloudstate.edu/ims/?s=games

Games and the Brain

This Is Your Brain On Games

http://www.opencolleges.edu.au/informed/features/this-is-your-brain-on-games/

“Action video games have a number of ingredients that are actually really powerful for brain plasticity, learning, attention, and vision,” says brain scientist Daphne Bavelier in her TED Talk on the subject.

In February, Italian researchers found that playing fast-paced video games can improve the reading skills of children with dyslexia.

In 2012, scientists at The University of Texas Medical Branch at Galveston found that high school gamers who played video games two hours a day were better at performing virtual surgery than non-gaming medical residents.

Games in the library

Games in the library

bibliography and research

http://scottnicholson.com/pubs/index.html

Playing in the Past: A History of Games, Toys, and Puzzles in North American Libraries
Author(s): Scott Nicholson
Source: The Library Quarterly, Vol. 83, No. 4 (October 2013), pp. 341-361
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/10.1086/671913

demonstrate the different ways in which libraries have used games, toys, and puzzles over the last 150 years through bothcollections and services
p, 342 Defining games –
p. 348 Games as the Subject of Collections\
p. 350A significant shift in academic libraries is a focus on providing services to students. Since agrowing number of academic publications both current issues and back volumes

are ac-cessible online through library subscriptions, the physical space of academic libraries is notneeded for collections of periodicals. The concept of the “learning commons”has become
popular on US campuses in the past decade; it combines traditional library resources and
the availability of library staff members with group work spaces, computer access and assis-
tance, and writing assistance to provide one place where students can get assistance with
course work. In addition, many of these learning commons also include cafes, social spaces,
and other support of the social lives of students, and it is in this role that academic libraries
provide access to collections of games.

p. 357 Another upcoming area of gaming in libraries is gamification. Gamification is the application of game design elements to a nongame setting ðDeterding et al. 2011Þ.

————————————-

Nicholson, S. (2013, June). Exploring Gamification Techniques for Classroom Management. Paper Presented at Games+Learning+Society 9.0, Madison, WI

The concept of meaningful gamification is that the primary use of game layers is not to provide
external rewards, but rather to help participants find a deeper connection to the underyling topic

——————————-

 

More on games in education in this blog

https://blog.stcloudstate.edu/ims/?s=games

https://blog.stcloudstate.edu/ims/?s=gaming

https://blog.stcloudstate.edu/ims/?s=gamification

brain and virtual reality

How does the brain react to virtual reality? Completely different pattern of activity in brain

http://www.sciencedaily.com/releases/2014/11/141124162926.htm

UCLA neurophysicists have found that space-mapping neurons in the brain react differently to virtual reality than they do to real-world environments. Their findings could be significant for people who use virtual reality for gaming, military, commercial, scientific or other purposes

Virtual Reality Affects Brain’s ‘GPS Cells’

http://www.livescience.com/49021-virtual-reality-brain-maps.html
a new study in rats shows that the virtual world affects the brain differently than real-world environments, which could offer clues for how the technology could be used to restore navigating ability and memory in humans.

Per Google Scholar:
http://scholar.google.com/scholar?q=brain+and+virtual+reality&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ei=KvCMVKrHPIaayATNjYKADA&ved=0CB0QgQMwAA

Harnessing the Power of Play

Harnessing the Power of Play

http://mediasite.uvs.umn.edu/Mediasite/Viewer/?peid=c84b6d4a9c1d45bb838ac49123861d9a
http://cce.umn.edu/documents/CPE-General/November-17-Creative-Design-Webinar.pdf

play as game/gamification in the creative process

Please look at our blog entries on gaming and gamification: https://blog.stcloudstate.edu/ims/?s=gamification

 

1 12 13 14 15 16