Archive of ‘learning styles’ category

7 Words to avoid as a Leader

7 Toxic Words You Should Never Say as a Leader

 June 8, 2018
https://learning.linkedin.com/blog/learning-tips/7-toxic-words-you-should-never-say-as-a-leader
https://www.linkedin.com/learning/management-tips-weekly

7 Toxic Words a Leader Should Never Use

They are:

  1.     Can’t
  2. No
  3. Wrong
  4. Fault
  5. Never
  6. Stupid
  7. Impossible
https://www.linkedin.com/learning/management-tips-weekly/5-phrases-to-avoid
+++++++++++++

leaders employees

https://www.linkedin.com/pulse/leaders-who-dont-listen-eventually-surrounded-people-say-oleg/

Rap hip-hop and physics

A Hip-Hop Experiment

JOHN LELAND NOV. 16, 2012 https://www.nytimes.com/2012/11/18/nyregion/columbia-professor-and-gza-aim-to-help-teach-science-through-hip-hop.html

Only 4 percent of African-American seniors nationally were proficient in sciences, compared with 27 percent of whites, according to the 2009 National Assessment of Educational Progress.

GZA by bringing science into hip-hop; Dr. Emdin by bringing hip-hop into the science classroom.

the popular hip-hop lyrics Web siteRap Genius, will announce a pilot project to use hip-hop to teach science in 10 New York City public schools. The pilot is small, but its architects’ goals are not modest. Dr. Emdin, who has written a book called “Urban Science Education for the Hip-Hop Generation,”

hip-hop “cypher,” participants stand in a circle and take turns rapping, often supporting or playing off one another’s rhymes.

“All of those things that are happening in the hip-hop cypher are what should happen in an ideal classroom.”

++++++++++++++++++++

Students analyze rap lyrics with code in digital humanities class

Some teachers are finding a place for coding in English, music, science, math and social studies, too

by TARA GARCÍA MATHEWSON October 18, 2018

Fifteen states now require all high schools to offer computer science courses. Twenty-three states have created K-12 computer science standards. And 40 states plus the District of Columbia allow students to count computer science courses toward high school math or science graduation requirements. That’s up from 12 states in 2013, when Code.org launched, aiming to expand access to computer science in U.S. schools and increase participation among girls and underrepresented minorities in particular.

Nevada is the only state so far to embed math, science, English language arts and social studies into its computer science standards.

how to student learning

How Can We Amplify Student Learning? The ANSWER from Cognitive Psychology

By: 

We know now from rigorous testing in cognitive psychology that learning styles are really learning preferences that do not correlate with achievement (An et al., 2017).
https://www.facultyfocus.com/articles/teaching-and-learning/how-can-we-amplify-student-learning-the-answer-from-cognitive-psychology/

An, Donggun, and Martha Carr. “Learning styles theory fails to explain learning and achievement: Recommendations for alternative approaches.” Personality and Individual Differences 116 (2017): 410-416.

To assist time-strapped instructional faculty and staff, we offer a consolidated summary of key cognitive science principles, in the form of an easy-to-remember acronym: ANSWER.

Attention: Learning requires memory, and memory requires focused attention. Multitasking is a myth, and even the more scientifically-accurate term “task-switching” yields errors compared to focused attention. The brain is quite adept at filtering out dozens of simultaneous stimuli, as it does every second of wakefulness. Attention is a required ingredient for learning. This has ramifications for syllabus policies on the use of electronic devices for note-taking, which have been shown to be irresistible and therefore lead to distraction and lower scores (Ravizza, Uitvlugt, and Fenn). Even when students are not distracted, laptops are used primarily for dictation, which does little for long-term memory; writing by hand does more to stimulate attention and build neural networks than typing (Mueller and Oppenheimer).

Novelty: variety into lesson plans, activities, and opportunities for practice, instructors amplify potential learning for their students. Further, the use of metaphors in teaching enhances transfer, hemispheric integration, and retention, so using picture prompts and images can further solidify student learning (Sousa).

Spacing: Sometimes called “distributed practice,”the spacing effect refers to the jump in performance when students study a subject and then practice with gaps of time, ideally over one or more nights (sleep helps with memory consolidation), as compared to studying all at once, as if cramming the night before a test. Cramming, or massed practice, is successful for temporary test performance, since information is loaded into working memory. But the practices that work well for short-term memory do not work well for long-term memory. The spacing effect is particularly effective when combined with interleaving, the intentional practice of mixing in older learning tasks/skills with the new ones (Roedeiger, et al.). An ideal example of this would be regular quizzes in the semester that are cumulative (think “tiny final exams”).

Why: Memory is associative; when new memories are formed, neurons wire together (and later fire together), so the context can lead to the information, and vice versa. A teaching strategy of comprised of questions to guide lesson plans (perhaps even beginning with mystery) can pique student interest and learning potential.  If you use PowerPoint, Haiku Deck, or Prezi, do your slides consist primarily of answers or questions?

Emotions: Short-term memories are stored in the hippocampus, a portion of the brain associated with emotions; the same area where we consolidate short-term into long-term memories overnight.
As instructors, we create the conditions in which students will motivate themselves (Ryan & Deci, 2000) by infusing our interactions with the positive emptions of curiosity, discovery, and fun. Simple gamification (quizzes with immediate feedback, for instance) can help.

Repetition: The creation of a new memory really means the formation of synapses across neurons and new neural pathways. These pathways and bridges degrade over time unless the synapse fires again. Consider the days before smartphones, when the way to remember a phone number was to repeat it several times mentally. Repetition, in all its forms, enables more effective recall later. This is why quizzing, practice testing, flashcards, and instructor-driven questioning and challenges are so effective.

+++++++++++
more on learning styles in this IMS blog
http://blog.stcloudstate.edu/ims?s=learning+styles

more on multitasking in this blog
http://blog.stcloudstate.edu/ims?s=multitasking

for and against the use of technology in the classroom
http://blog.stcloudstate.edu/ims/2017/04/03/use-of-laptops-in-the-classroom/

on spaced learning in this blog
http://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/

PurposeGames

https://www.purposegames.com/

Purpose Games is a free service for creating and or playing simple educational games. The service currently gives users the ability to create seven types of games. Those game types are image quizzes, text quizzes, matching games, fill-in-the-blank games, multiple choice games, shape games, and slide games.

https://www.freetech4teachers.com/2018/05/purpose-games-create-and-play.html

+++++++++++++++++++++
more on games in education in this IMS blog
http://blog.stcloudstate.edu/ims?s=gaming

Cultivating Awareness and Resilience for Educators

Why Teachers Say Practicing Mindfulness Is Transforming The Work

https://www.kqed.org/mindshift/46150/why-teachers-say-practicing-mindfulness-is-transforming-the-work

Christa Turksma, is one of the co-founders of Cultivating Awareness and Resilience for Educators, or CARE for Teachers.

In the last few years, teacher job satisfaction has reportedly plummeted to a 25-year low, and turnover is high — almost 50 percent for new teachers.

In a soon-to-be published study, Jennings and her co-authors provided an extended version of CARE training to 224 teachers in high-poverty schools in New York City, with several two-day sessions spaced over the course of a year.

CARE TECHNIQUES TO TRY IN THE CLASSROOM
Mindfulness for students and teachers

1. Calmer Transitions

2. Take 5

3. Quiet Corner Or Peace Corner

4. Mindful Walking And Centering

VR and students with special needs

Bibliography on virtual reality and students with physical and cognitive disabilities

Jeffs, T. L. (2009). Virtual Reality and Special Needs. Themes In Science And Technology Education2(1-2), 253-268.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ1131319%26site%3dehost-live%26scope%3dsite

Lahav, O., Sharkey, P., & Merrick, J. (2014). Virtual and augmented reality environments for people with special needs. International Journal Of Child Health And Human Development7(4), 337-338.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2015-10704-001%26site%3dehost-live%26scope%3dsite

Cai, Y., Chiew, R., Nay, Z. T., Indhumathi, C., & Huang, L. (2017). Design and development of VR learning environments for children with ASD. Interactive Learning Environments25(8), 1098-1109. doi:10.1080/10494820.2017.1282877

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d125723945%26site%3dehost-live%26scope%3dsite

Passig, D. (2011). The Impact of Immersive Virtual Reality on Educators’ Awareness of the Cognitive Experiences of Pupils with Dyslexia. Teachers College Record113(1), 181-204.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ913420%26site%3dehost-live%26scope%3dsite

Ke, F., & Im, T. (2013). Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism. Journal Of Educational Research106(6), 441-461. doi:10.1080/00220671.2013.832999

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d90465242%26site%3dehost-live%26scope%3dsite

Collins, J., Hoermann, S., & Regenbrecht, H. (2016). Comparing a finger dexterity assessment in virtual, video-mediated, and unmediated reality. International Journal Of Child Health And Human Development9(3), 333-341.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-009%26site%3dehost-live%26scope%3dsite

Epure, P., Gheorghe, C., Nissen, T., Toader, L. O., Macovei, A. N., Nielsen, S. M., & … Brooks, E. P. (2016). Effect of the Oculus Rift head mounted display on postural stability. International Journal Of Child Health And Human Development9(3), 343-350.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-010%26site%3dehost-live%26scope%3dsite

Sánchez, J., & Espinoza, M. (2016). Usability and redesign of a university entrance test based on audio for learners who are blind. International Journal Of Child Health And Human Development9(3), 379-387.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-014%26site%3dehost-live%26scope%3dsite

Rizzo, A. A., Bowerly, T., Shahabi, C., Buckwalter, J. G., Klimchuk, D., & Mitura, R. (2004). Diagnosing Attention Disorders in a Virtual Classroom. Computer (00189162)37(6), 87-89.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d13425208%26site%3dehost-live%26scope%3dsite

Eden, S. (2008). The effect of 3D virtual reality on sequential time perception among deaf and hard-of-hearing children. European Journal Of Special Needs Education23(4), 349-363. doi:10.1080/08856250802387315

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d34716698%26site%3dehost-live%26scope%3dsite

Eden, S., & Bezer, M. (2011). Three-dimensions vs. two-dimensions intervention programs: the effect on the mediation level and behavioural aspects of children with intellectual disability. European Journal Of Special Needs Education26(3), 337-353. doi:10.1080/08856257.2011.593827

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d65025967%26site%3dehost-live%26scope%3dsite

Lorenzo, G., Lledó, A., Roig, R., Lorenzo, A., & Pomares, J. (2016). New Educational Challenges and Innovations: Students with Disability in Immersive Learning Environments. In Virtual Learning. InTech. https://doi.org/10.5772/65219

https://www.intechopen.com/books/virtual-learning/new-educational-challenges-and-innovations-students-with-disability-in-immersive-learning-environmen

+++++++++++++
more on virtual reality in this IMS blog
http://blog.stcloudstate.edu/ims?s=virtual+reality

digital assessment

Unlocking the Promise of Digital Assessment

By Stacey Newbern Dammann, EdD, and Josh DeSantis October 30, 2017

https://www.facultyfocus.com/articles/teaching-with-technology-articles/unlocking-promise-digital-assessment/

The proliferation of mobile devices and the adoption of learning applications in higher education simplifies formative assessment. Professors can, for example, quickly create a multi-modal performance that requires students to write, draw, read, and watch video within the same assessment. Other tools allow for automatic grade responses, question-embedded documents, and video-based discussion.

  • Multi-Modal Assessments – create multiple-choice and open-ended items that are distributed digitally and assessed automatically. Student responses can be viewed instantaneously and downloaded to a spreadsheet for later use.
    • (socrative.com) and
    • Poll Everywhere (http://www.pollev.com).
    • Formative (http://www.goformative.com) allows professors to upload charts or graphic organizers that students can draw on with a stylus. Formative also allows professors to upload document “worksheets” which can then be augmented with multiple-choice and open-ended questions.
    • Nearpod (http://www.nearpod.com) allows professors to upload their digital presentations and create digital quizzes to accompany them. Nearpod also allows professors to share three-dimensional field trips and models to help communicate ideas.
  • Video-Based Assessments – Question-embedded videos are an outstanding way to improve student engagement in blended or flipped instructional contexts. Using these tools allows professors to identify if the videos they use or create are being viewed by students.
    • EdPuzzle (edpuzzle.com) and
    • Playposit (http://www.playposit.com) are two leaders in this application category. A second type of video-based assessment allows professors to sustain discussion-board like conversation with brief videos.
    • Flipgrid (http://www.flipgrid.com), for example, allows professors to posit a video question to which students may respond with their own video responses.
  • Quizzing Assessments – ools that utilize close-ended questions that provide a quick check of student understanding are also available.
    • Quizizz (quizizz.com) and
    • Kahoot (http://www.kahoot.com) are relatively quick and convenient to use as a wrap up to instruction or a review of concepts taught.

Integration of technology is aligned to sound formative assessment design. Formative assessment is most valuable when it addresses student understanding, progress toward competencies or standards, and indicates concepts that need further attention for mastery. Additionally, formative assessment provides the instructor with valuable information on gaps in their students’ learning which can imply instructional changes or additional coverage of key concepts. The use of tech tools can make the creation, administration, and grading of formative assessment more efficient and can enhance reliability of assessments when used consistently in the classroom. Selecting one that effectively addresses your assessment needs and enhances your teaching style is critical.

+++++++++++++++++
more on digital assessment in this IMS blog
http://blog.stcloudstate.edu/ims/2017/03/15/fake-news-bib/

cognitive load theory

Cognitive load theory: Research that teachers really need to understand
AUGUST 2017 Centre for Education Statistics and Evaluation
https://www.cese.nsw.gov.au/images/stories/PDF/cognitive_load_theory_report_AA1.pdf
Cognitive load theory is built upon two commonly accepted ideas. The first is that there is a limit to how much new information the human brain can process at one time. The second is that there are no known limits to how much stored information can be processed at one time. The aim of cognitive load research is therefore to develop instructional techniques and recommendations that fit within the characteristics of working memory, in order to maximise learning.
Explicit instruction involves teachers clearly showing students what to do and how to do it, rather than having students discover or construct information for themselves
how working memory and long-term memory process and store information
Working memory is the memory system where small amounts of information are stored for a very short duration (RAM). Long-term memory is the memory system where large amounts of information are stored semi-permanently (hard drive)
Cognitive load theory assumes that knowledge is stored in long- term memory in the form of ‘schemas’ 2 . A schema organises elements of information according to how they will be used. According to schema theory, skilled performance is developed through building ever greater numbers of increasingly complex schemas by combining elements of lower level schemas into higher level schemas. There is no limit to how complex schemas can become. An important process in schema construction is automation, whereby information can be processed automatically with minimal conscious effort. Automaticity occurs after extensive practice
Schemas provide a number of important functions that are relevant to learning. First, they provide a system for organising and storing knowledge. Second, and crucially for cognitive load theory, they reduce working memory load. This is because, although there are a limited number of elements that can be held in working memory at one time, a schema constitutes only a single element in working memory. In this way, a high level schema – with potentially infinite informational complexity – can effectively bypass the limits of working memory

Types of cognitive load

Cognitive load theory identifies three different types of cognitive load: intrinsic, extraneous and germane load
Intrinsic cognitive load relates to the inherent difficulty of the subject matter being learnt.

subject matter that is difficult for a novice may be very easy for an expert.
Extraneous cognitive load relates to how the subject matter is taught.
extraneous load is the ‘bad’ type of cognitive load, because it does not directly contribute to learning. Cognitive load theorists consider that instructional design will be most effective when it minimises extraneous load in order to free up the capacity of working memory
Germane cognitive load refers to the load imposed on the working memory by the process of learning – that is, the process of transferring information into the long-term memory through schema construction
the approach of decreasing extraneous cognitive load while increasing germane cognitive load will only be effective if the total cognitive load remains within the limits of working memory
Explicit teaching

+++++++++++++
more on educational theories in this IMS blog
http://blog.stcloudstate.edu/ims?s=educational+theories

1 2 3 4