Searching for "deep learning"

social media elearning

Mnkandla, Ernest, and Ansie Minnaar. 2017. “The Use of Social Media in E-Learning: A Metasynthesis.” The International Review of Research in Open and Distributed Learning 18 (5). http://www.irrodl.org/index.php/irrodl/article/view/3014.
This research represents a conceptual framework designed to explain the adoption of social media into e-learning by using online collaborative learning (OCL) in higher education. Social media in e-learning signals the end of distance education in higher education.
The proposed framework could be useful to instructional designers and academics who are interested in using modern learning theories and want to adopt social media in e-learning in higher education as a deep learning strategy.
The major paradigms underlying the theoretical frameworks that were investigated were included in social learning theory, social interactivity theory, constructionism and social constructivism, and online collaborative learning theory (Harasim, 2012). Collaboration and social constructivism were the main theoretical frameworks guiding the use of social media in e-learning in higher education that point towards a more integrative (collaborative) and co-constructivism peer supportive approach to learning in the digital age.
+++++++++++++++++++++
more on social media in IMS blog
https://blog.stcloudstate.edu/ims?s=social+media+education

next gen digital learning environment

Updating the Next Generation Digital Learning Environment for Better Student Learning Outcomes

a learning management system (LMS) is never the solution to every problem in education. Edtech is just one part of the whole learning ecosystem and student experience.

Therefore, the next generation digital learning environment (NGDLE), as envisioned by EDUCAUSE in 2015 …  Looking at the NGDLE requirements from an LMS perspective, I view the NGDLE as being about five areas: interoperability; personalization; analytics, advising, and learning assessment; collaboration; accessibility and universal design.

Interoperability

  • Content can easily be exchanged between systems.
  • Users are able to leverage the tools they love, including discipline-specific apps.
  • Learning data is available to trusted systems and people who need it.
  • The learning environment is “future proof” so that it can adapt and extend as the ecosystem evolves.

Personalization

  • The learning environment reflects individual preferences.
  • Departments, divisions, and institutions can be autonomous.
  • Instructors teach the way they want and are not constrained by the software design.
  • There are clear, individual learning paths.
  • Students have choice in activity, expression, and engagement.

Analytics, Advising, and Learning Assessment

  • Learning analytics helps to identify at-risk students, course progress, and adaptive learning pathways.
  • The learning environment enables integrated planning and assessment of student performance.
  • More data is made available, with greater context around the data.
  • The learning environment supports platform and data standards.

Collaboration

  • Individual spaces persist after courses and after graduation.
  • Learners are encouraged as creators and consumers.
  • Courses include public and private spaces.

Accessibility and Universal Design

  • Accessibility is part of the design of the learning experience.
  • The learning environment enables adaptive learning and supports different types of materials.
  • Learning design includes measurement rubrics and quality control.

The core analogy used in the NGDLE paper is that each component of the learning environment is a Lego brick:

  • The days of the LMS as a “walled garden” app that does everything is over.
  • Today many kinds of amazing learning and collaboration tools (Lego bricks) should be accessible to educators.
  • We have standards that let these tools (including an LMS) talk to each other. That is, all bricks share some properties that let them fit together.
  • Students and teachers sign in once to this “ecosystem of bricks.”
  • The bricks share results and data.
  • These bricks fit together; they can be interchanged and swapped at will, with confidence that the learning experience will continue uninterrupted.

Any “next-gen” attempt to completely rework the pedagogical model and introduce a “mash-up of whatever” to fulfil this model would fall victim to the same criticisms levied at the LMS today: there is too little time and training to expect faculty to figure out the nuances of implementation on their own.

The Lego metaphor works only if we’re talking about “old school” Lego design — bricks of two, three, and four-post pieces that neatly fit together. Modern edtech is a lot more like the modern Lego. There are wheels and rocket launchers and belts and all kinds of amazing pieces that work well with each other, but only when they are configured properly. A user cannot simply stick together different pieces and assume they will work harmoniously in creating an environment through which each student can be successful.

As the NGDLE paper states: “Despite the high percentages of LMS adoption, relatively few instructors use its more advanced features — just 41% of faculty surveyed report using the LMS ‘to promote interaction outside the classroom.'”

But this is what the next generation LMS is good at: being a central nervous system — or learning hub — through which a variety of learning activities and tools are used. This is also where the LMS needs to go: bringing together and making sense of all the amazing innovations happening around it. This is much harder to do, perhaps even impossible, if all the pieces involved are just bricks without anything to orchestrate them or to weave them together into a meaningful, personal experience for achieving well-defined learning outcomes.

  • Making a commitment to build easy, flexible, and smart technology
  • Working with colleges and universities to remove barriers to adopting new tools in the ecosystem
  • Standardizing the vetting of accessibility compliance (the Strategic Nonvisual Access Partner Program from the National Federation of the Blind is a great start)
  • Advancing standards for data exchange while protecting individual privacy
  • Building integrated components that work with the institutions using them — learning quickly about what is and is not working well and applying those lessons to the next generation of interoperability standards
  • Letting people use the tools they love [SIC] and providing more ways for nontechnical individuals (including students) to easily integrate new features into learning activities

My note: something just refused to be accepted at SCSU
Technologists are often very focused on the technology, but the reality is that the more deeply and closely we understand the pedagogy and the people in the institutions — students, faculty, instructional support staff, administrators — the better suited we are to actually making the tech work for them.

++++++++++++++++++++++

Under the Hood of a Next Generation Digital Learning Environment in Progress

The challenge is that although 85 percent of faculty use a campus learning management system (LMS),1 a recent Blackboard report found that, out of 70,000 courses across 927 North American institutions, 53 percent of LMS usage was classified as supplemental(content-heavy, low interaction) and 24 percent as complementary (one-way communication via content/announcements/gradebook).2 Only 11 percent were characterized as social, 10 percent as evaluative (heavy use of assessment), and 2 percent as holistic (balanced use of all previous). Our FYE course required innovating beyond the supplemental course-level LMS to create a more holistic cohort-wide NGDLE in order to fully support the teaching, learning, and student success missions of the program.The key design goals for our NGDLE were to:

  • Create a common platform that could deliver a standard curriculum and achieve parity in all course sections using existing systems and tools and readily available content
  • Capture, store, and analyze any generated learner data to support learning assessment, continuous program improvement, and research
  • Develop reports and actionable analytics for administrators, advisors, instructors, and students

++++++++++++
more on LMS in this blog
https://blog.stcloudstate.edu/ims?s=LMS

more on learning outcomes in this IMS blog
https://blog.stcloudstate.edu/ims?s=learning+outcomes

Personalized Learning

Response: Personalized Learning Is ‘a Partnership With Students’

http://blogs.edweek.org/teachers/classroom_qa_with_larry_ferlazzo/2015/09/response_personalized_learning_is_a_learning_partnership_with_students.html

building relationships with students so I can better connect lessons to their interests, hopes and dreams; providing them with many opportunities for organizational and cognitive choice; and creating situations where they can get positive, as well as critical, feedback in a supportive way from me, their classmates and themselves.

Response: Personalized Learning Is ‘Based On Relationships, Not Algorithms’

http://blogs.edweek.org/teachers/classroom_qa_with_larry_ferlazzo/2015/09/response_personalized_learning_is_based_on_relationships_not_algorithms.html

Too often, the notion of “personalized learning” means choice-based programmed rather than truly personalized. This comes from the tech world, where “personalization” is synonymous with user choice. It’s the idea of giving a thumbs up or a thumbs down on Pandora. It’s the idea of having adaptive programs that change based upon one’s personal preferences. It’s the Facebook algorithm that tells you what information is the most relevant to you. It’s about content delivery rather than user creation.

While tech companies promise personalization, they often promote independent, isolated learning. True personalization is interdependent rather than isolated. True personalization is based upon a horizontal relationship rather than a top-down customization. True personalization is based upon a deeply human relationship rather than a program or an algorithm or a set of scripts. True personalization is a mix between personal autonomy and group belonging. It’s a mix between what someone wants and what someone needs. It’s a chance to make, rather than simply a chance to consume.

How Technology Wires the Learning Brain

How Technology Wires the Learning Brain

http://blogs.kqed.org/mindshift/2011/02/how-technology-wires-the-learning-brain/

“It’s a matter of finding balance,” he said. “Upgrade the technology skills of older ‘digital immigrants,’ and help young kids improve social skills.”

On one hand, we’re trained not to think deeply about subjects when we text quick snippets, Tweet short thoughts,
On the other hand, technology trains the brain to be nimble and to process new ideas quickly. We become more open to new ideas, and communicate more freely and frequently.

 

In the Age of AI

In The Age Of A.I. (2019) — This just aired last night and it’s absolutely fantastic. It presents a great look at AI, and it also talks about automation, wealth inequality, data-mining and surveillance. from Documentaries

13 min 40 sec = Wechat

14 min 60 sec = data is the new oil and China is the new Saudi Arabia

18 min 30 sec = social credit and facial recognition

++++++++++
more on deep learning in this IMS blog
https://blog.stcloudstate.edu/ims?s=deep+learning

Boost Students’ Conceptual Thinking

3 Ways to Boost Students’ Conceptual Thinking

Coaching students to think in terms of concepts helps them understand how to apply their learning in the future.

By Carla Marschall September 10, 2019
https://www.edutopia.org/article/3-ways-boost-students-conceptual-thinking

Questions to Consider During Lesson Planning

To help students go from surface to deep learning, we can ask ourselves three questions:

  1. From the facts or skills being taught, which concepts are at the heart of the learning? For instance, a unit on the human body may be driven by the concepts of system, interdependence, and health.
  2. Which connections between concepts would we like students to make as a result of the learning? For example, in mathematics, we may ask students to connect the concepts of multiplication and division. In science, we may wish to see how they draw links between photosynthesis and energy transformation.
  3. What opportunities for application and transfer can we design to help students take their learning further? For instance, we may ask students who have learned about principles of art and design to create posters for a social or environmental cause of their choice.

NLP and ACL

NLP – natural language processing; ACL – Association for Computational Linguistics (ACL 2019)

Major trends in NLP: a review of 20 years of ACL research

Janna Lipenkova, July 23, 2019

https://www.linkedin.com/pulse/major-trends-nlp-review-20-years-acl-research-janna-lipenkova

The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)

 Data: working around the bottlenecks

large data is inherently noisy. \In general, the more “democratic” the production channel, the dirtier the data – which means that more effort has to be spent on its cleaning. For example, data from social media will require a longer cleaning pipeline. Among others, you will need to deal with extravagancies of self-expression like smileys and irregular punctuation, which are normally absent in more formal settings such as scientific papers or legal contracts.

The other major challenge is the labeled data bottleneck

crowd-sourcing and Training Data as a Service (TDaaS). On the other hand, a range of automatic workarounds for the creation of annotated datasets have also been suggested in the machine learning community.

Algorithms: a chain of disruptions in Deep Learning

Neural Networks are the workhorse of Deep Learning (cf. Goldberg and Hirst (2017) for an introduction of the basic architectures in the NLP context). Convolutional Neural Networks have seen an increase in the past years, whereas the popularity of the traditional Recurrent Neural Network (RNN) is dropping. This is due, on the one hand, to the availability of more efficient RNN-based architectures such as LSTM and GRU. On the other hand, a new and pretty disruptive mechanism for sequential processing – attention – has been introduced in the sequence-to-sequence (seq2seq) model by Sutskever et al. (2014).

Consolidating various NLP tasks

the three “global” NLP development curves – syntax, semantics and context awareness
the third curve – the awareness of a larger context – has already become one of the main drivers behind new Deep Learning algorithms.

A note on multilingual research

Think of different languages as different lenses through which we view the same world – they share many properties, a fact that is fully accommodated by modern learning algorithms with their increasing power for abstraction and generalization.

Spurred by the global AI hype, the NLP field is exploding with new approaches and disruptive improvements. There is a shift towards modeling meaning and context dependence, probably the most universal and challenging fact of human language. The generalisation power of modern algorithms allows for efficient scaling across different tasks, languages and datasets, thus significantly speeding up the ROI cycle of NLP developments and allowing for a flexible and efficient integration of NLP into individual business scenarios.

Policy for Artificial Intelligence

Law is Code: Making Policy for Artificial Intelligence

Jules Polonetsky and Omer Tene January 16, 2019

https://www.ourworld.co/law-is-code-making-policy-for-artificial-intelligence/

Twenty years have passed since renowned Harvard Professor Larry Lessig coined the phrase “Code is Law”, suggesting that in the digital age, computer code regulates behavior much like legislative code traditionally did.  These days, the computer code that powers artificial intelligence (AI) is a salient example of Lessig’s statement.

  • Good AI requires sound data.  One of the principles,  some would say the organizing principle, of privacy and data protection frameworks is data minimization.  Data protection laws require organizations to limit data collection to the extent strictly necessary and retain data only so long as it is needed for its stated goal. 
  • Preventing discrimination – intentional or not.
    When is a distinction between groups permissible or even merited and when is it untoward?  How should organizations address historically entrenched inequalities that are embedded in data?  New mathematical theories such as “fairness through awareness” enable sophisticated modeling to guarantee statistical parity between groups.
  • Assuring explainability – technological due process.  In privacy and freedom of information frameworks alike, transparency has traditionally been a bulwark against unfairness and discrimination.  As Justice Brandeis once wrote, “Sunlight is the best of disinfectants.”
  • Deep learning means that iterative computer programs derive conclusions for reasons that may not be evident even after forensic inquiry. 

Yet even with code as law and a rising need for law in code, policymakers do not need to become mathematicians, engineers and coders.  Instead, institutions must develop and enhance their technical toolbox by hiring experts and consulting with top academics, industry researchers and civil society voices.  Responsible AI requires access to not only lawyers, ethicists and philosophers but also to technical leaders and subject matter experts to ensure an appropriate balance between economic and scientific benefits to society on the one hand and individual rights and freedoms on the other hand.

+++++++++++++
more on AI in this IMS blog
https://blog.stcloudstate.edu/ims?s=artificial+intelligence

shaping the future of AI

Shaping the Future of A.I.

Daniel Burrus

https://www.linkedin.com/pulse/shaping-future-ai-daniel-burrus/

Way back in 1983, I identified A.I. as one of 20 exponential technologies that would increasingly drive economic growth for decades to come.

Artificial intelligence applies to computing systems designed to perform tasks usually reserved for human intelligence using logic, if-then rules, decision trees and machine learning to recognize patterns from vast amounts of data, provide insights, predict outcomes and make complex decisions. A.I. can be applied to pattern recognition, object classification, language translation, data translation, logistical modeling and predictive modeling, to name a few. It’s important to understand that all A.I. relies on vast amounts of quality data and advanced analytics technology. The quality of the data used will determine the reliability of the A.I. output.

Machine learning is a subset of A.I. that utilizes advanced statistical techniques to enable computing systems to improve at tasks with experience over time. Chatbots like Amazon’s Alexa, Apple’s Siri, or any of the others from companies like Google and Microsoft all get better every year thanks to all of the use we give them and the machine learning that takes place in the background.

Deep learning is a subset of machine learning that uses advanced algorithms to enable an A.I. system to train itself to perform tasks by exposing multi-layered neural networks to vast amounts of data, then using what has been learned to recognize new patterns contained in the data. Learning can be Human Supervised LearningUnsupervised Learningand/or Reinforcement Learning like Google used with DeepMind to learn how to beat humans at the complex game Go. Reinforcement learning will drive some of the biggest breakthroughs.

Autonomous computing uses advanced A.I. tools such as deep learning to enable systems to be self-governing and capable of acting according to situational data without human command. A.I. autonomy includes perception, high-speed analytics, machine-to-machine communications and movement. For example, autonomous vehicles use all of these in real time to successfully pilot a vehicle without a human driver.

Augmented thinking: Over the next five years and beyond, A.I. will become increasingly embedded at the chip level into objects, processes, products and services, and humans will augment their personal problem-solving and decision-making abilities with the insights A.I. provides to get to a better answer faster.

Technology is not good or evil, it is how we as humans apply it. Since we can’t stop the increasing power of A.I., I want us to direct its future, putting it to the best possible use for humans. 

++++++++++
more on AI in this IMS blog
https://blog.stcloudstate.edu/ims?s=artifical+intelligence

more on deep learning in this IMS blog
https://blog.stcloudstate.edu/ims?s=deep+learning

IRDL proposal

Applications for the 2018 Institute will be accepted between December 1, 2017 and January 27, 2018. Scholars accepted to the program will be notified in early March 2018.

Title:

Learning to Harness Big Data in an Academic Library

Abstract (200)

Research on Big Data per se, as well as on the importance and organization of the process of Big Data collection and analysis, is well underway. The complexity of the process comprising “Big Data,” however, deprives organizations of ubiquitous “blue print.” The planning, structuring, administration and execution of the process of adopting Big Data in an organization, being that a corporate one or an educational one, remains an elusive one. No less elusive is the adoption of the Big Data practices among libraries themselves. Seeking the commonalities and differences in the adoption of Big Data practices among libraries may be a suitable start to help libraries transition to the adoption of Big Data and restructuring organizational and daily activities based on Big Data decisions.
Introduction to the problem. Limitations

The redefinition of humanities scholarship has received major attention in higher education. The advent of digital humanities challenges aspects of academic librarianship. Data literacy is a critical need for digital humanities in academia. The March 2016 Library Juice Academy Webinar led by John Russel exemplifies the efforts to help librarians become versed in obtaining programming skills, and respectively, handling data. Those are first steps on a rather long path of building a robust infrastructure to collect, analyze, and interpret data intelligently, so it can be utilized to restructure daily and strategic activities. Since the phenomenon of Big Data is young, there is a lack of blueprints on the organization of such infrastructure. A collection and sharing of best practices is an efficient approach to establishing a feasible plan for setting a library infrastructure for collection, analysis, and implementation of Big Data.
Limitations. This research can only organize the results from the responses of librarians and research into how libraries present themselves to the world in this arena. It may be able to make some rudimentary recommendations. However, based on each library’s specific goals and tasks, further research and work will be needed.

 

 

Research Literature

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”
– Dan Ariely, 2013  https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Big Data is becoming an omnipresent term. It is widespread among different disciplines in academia (De Mauro, Greco, & Grimaldi, 2016). This leads to “inconsistency in meanings and necessity for formal definitions” (De Mauro et al, 2016, p. 122). Similarly, to De Mauro et al (2016), Hashem, Yaqoob, Anuar, Mokhtar, Gani and Ullah Khan (2015) seek standardization of definitions. The main connected “themes” of this phenomenon must be identified and the connections to Library Science must be sought. A prerequisite for a comprehensive definition is the identification of Big Data methods. Bughin, Chui, Manyika (2011), Chen et al. (2012) and De Mauro et al (2015) single out the methods to complete the process of building a comprehensive definition.

In conjunction with identifying the methods, volume, velocity, and variety, as defined by Laney (2001), are the three properties of Big Data accepted across the literature. Daniel (2015) defines three stages in big data: collection, analysis, and visualization. According to Daniel, (2015), Big Data in higher education “connotes the interpretation of a wide range of administrative and operational data” (p. 910) and according to Hilbert (2013), as cited in Daniel (2015), Big Data “delivers a cost-effective prospect to improve decision making” (p. 911).

The importance of understanding the process of Big Data analytics is well understood in academic libraries. An example of such “administrative and operational” use for cost-effective improvement of decision making are the Finch & Flenner (2016) and Eaton (2017) case studies of the use of data visualization to assess an academic library collection and restructure the acquisition process. Sugimoto, Ding & Thelwall (2012) call for the discussion of Big Data for libraries. According to the 2017 NMC Horizon Report “Big Data has become a major focus of academic and research libraries due to the rapid evolution of data mining technologies and the proliferation of data sources like mobile devices and social media” (Adams, Becker, et al., 2017, p. 38).

Power (2014) elaborates on the complexity of Big Data in regard to decision-making and offers ideas for organizations on building a system to deal with Big Data. As explained by Boyd and Crawford (2012) and cited in De Mauro et al (2016), there is a danger of a new digital divide among organizations with different access and ability to process data. Moreover, Big Data impacts current organizational entities in their ability to reconsider their structure and organization. The complexity of institutions’ performance under the impact of Big Data is further complicated by the change of human behavior, because, arguably, Big Data affects human behavior itself (Schroeder, 2014).

De Mauro et al (2015) touch on the impact of Dig Data on libraries. The reorganization of academic libraries considering Big Data and the handling of Big Data by libraries is in a close conjunction with the reorganization of the entire campus and the handling of Big Data by the educational institution. In additional to the disruption posed by the Big Data phenomenon, higher education is facing global changes of economic, technological, social, and educational character. Daniel (2015) uses a chart to illustrate the complexity of these global trends. Parallel to the Big Data developments in America and Asia, the European Union is offering access to an EU open data portal (https://data.europa.eu/euodp/home ). Moreover, the Association of European Research Libraries expects under the H2020 program to increase “the digitization of cultural heritage, digital preservation, research data sharing, open access policies and the interoperability of research infrastructures” (Reilly, 2013).

The challenges posed by Big Data to human and social behavior (Schroeder, 2014) are no less significant to the impact of Big Data on learning. Cohen, Dolan, Dunlap, Hellerstein, & Welton (2009) propose a road map for “more conservative organizations” (p. 1492) to overcome their reservations and/or inability to handle Big Data and adopt a practical approach to the complexity of Big Data. Two Chinese researchers assert deep learning as the “set of machine learning techniques that learn multiple levels of representation in deep architectures (Chen & Lin, 2014, p. 515). Deep learning requires “new ways of thinking and transformative solutions (Chen & Lin, 2014, p. 523). Another pair of researchers from China present a broad overview of the various societal, business and administrative applications of Big Data, including a detailed account and definitions of the processes and tools accompanying Big Data analytics.  The American counterparts of these Chinese researchers are of the same opinion when it comes to “think about the core principles and concepts that underline the techniques, and also the systematic thinking” (Provost and Fawcett, 2013, p. 58). De Mauro, Greco, and Grimaldi (2016), similarly to Provost and Fawcett (2013) draw attention to the urgent necessity to train new types of specialists to work with such data. As early as 2012, Davenport and Patil (2012), as cited in Mauro et al (2016), envisioned hybrid specialists able to manage both technological knowledge and academic research. Similarly, Provost and Fawcett (2013) mention the efforts of “academic institutions scrambling to put together programs to train data scientists” (p. 51). Further, Asomoah, Sharda, Zadeh & Kalgotra (2017) share a specific plan on the design and delivery of a big data analytics course. At the same time, librarians working with data acknowledge the shortcomings in the profession, since librarians “are practitioners first and generally do not view usability as a primary job responsibility, usually lack the depth of research skills needed to carry out a fully valid” data-based research (Emanuel, 2013, p. 207).

Borgman (2015) devotes an entire book to data and scholarly research and goes beyond the already well-established facts regarding the importance of Big Data, the implications of Big Data and the technical, societal, and educational impact and complications posed by Big Data. Borgman elucidates the importance of knowledge infrastructure and the necessity to understand the importance and complexity of building such infrastructure, in order to be able to take advantage of Big Data. In a similar fashion, a team of Chinese scholars draws attention to the complexity of data mining and Big Data and the necessity to approach the issue in an organized fashion (Wu, Xhu, Wu, Ding, 2014).

Bruns (2013) shifts the conversation from the “macro” architecture of Big Data, as focused by Borgman (2015) and Wu et al (2014) and ponders over the influx and unprecedented opportunities for humanities in academia with the advent of Big Data. Does the seemingly ubiquitous omnipresence of Big Data mean for humanities a “railroading” into “scientificity”? How will research and publishing change with the advent of Big Data across academic disciplines?

Reyes (2015) shares her “skinny” approach to Big Data in education. She presents a comprehensive structure for educational institutions to shift “traditional” analytics to “learner-centered” analytics (p. 75) and identifies the participants in the Big Data process in the organization. The model is applicable for library use.

Being a new and unchartered territory, Big Data and Big Data analytics can pose ethical issues. Willis (2013) focusses on Big Data application in education, namely the ethical questions for higher education administrators and the expectations of Big Data analytics to predict students’ success.  Daries, Reich, Waldo, Young, and Whittinghill (2014) discuss rather similar issues regarding the balance between data and student privacy regulations. The privacy issues accompanying data are also discussed by Tene and Polonetsky, (2013).

Privacy issues are habitually connected to security and surveillance issues. Andrejevic and Gates (2014) point out in a decision making “generated by data mining, the focus is not on particular individuals but on aggregate outcomes” (p. 195). Van Dijck (2014) goes into further details regarding the perils posed by metadata and data to the society, in particular to the privacy of citizens. Bail (2014) addresses the same issue regarding the impact of Big Data on societal issues, but underlines the leading roles of cultural sociologists and their theories for the correct application of Big Data.

Library organizations have been traditional proponents of core democratic values such as protection of privacy and elucidation of related ethical questions (Miltenoff & Hauptman, 2005). In recent books about Big Data and libraries, ethical issues are important part of the discussion (Weiss, 2018). Library blogs also discuss these issues (Harper & Oltmann, 2017). An academic library’s role is to educate its patrons about those values. Sugimoto et al (2012) reflect on the need for discussion about Big Data in Library and Information Science. They clearly draw attention to the library “tradition of organizing, managing, retrieving, collecting, describing, and preserving information” (p.1) as well as library and information science being “a historically interdisciplinary and collaborative field, absorbing the knowledge of multiple domains and bringing the tools, techniques, and theories” (p. 1). Sugimoto et al (2012) sought a wide discussion among the library profession regarding the implications of Big Data on the profession, no differently from the activities in other fields (e.g., Wixom, Ariyachandra, Douglas, Goul, Gupta, Iyer, Kulkami, Mooney, Phillips-Wren, Turetken, 2014). A current Andrew Mellon Foundation grant for Visualizing Digital Scholarship in Libraries seeks an opportunity to view “both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets (Hwangbo, 2014).

The importance of the library with its traditional roles, as described by Sugimoto et al (2012) may continue, considering the Big Data platform proposed by Wu, Wu, Khabsa, Williams, Chen, Huang, Tuarob, Choudhury, Ororbia, Mitra, & Giles (2014). Such platforms will continue to emerge and be improved, with librarians as the ultimate drivers of such platforms and as the mediators between the patrons and the data generated by such platforms.

Every library needs to find its place in the large organization and in society in regard to this very new and very powerful phenomenon called Big Data. Libraries might not have the trained staff to become a leader in the process of organizing and building the complex mechanism of this new knowledge architecture, but librarians must educate and train themselves to be worthy participants in this new establishment.

 

Method

 

The study will be cleared by the SCSU IRB.
The survey will collect responses from library population and it readiness to use and use of Big Data.  Send survey URL to (academic?) libraries around the world.

Data will be processed through SPSS. Open ended results will be processed manually. The preliminary research design presupposes a mixed method approach.

The study will include the use of closed-ended survey response questions and open-ended questions.  The first part of the study (close ended, quantitative questions) will be completed online through online survey. Participants will be asked to complete the survey using a link they receive through e-mail.

Mixed methods research was defined by Johnson and Onwuegbuzie (2004) as “the class of research where the researcher mixes or combines quantitative and qualitative research techniques, methods, approaches, concepts, or language into a single study” (Johnson & Onwuegbuzie, 2004 , p. 17).  Quantitative and qualitative methods can be combined, if used to complement each other because the methods can measure different aspects of the research questions (Sale, Lohfeld, & Brazil, 2002).

 

Sampling design

 

  • Online survey of 10-15 question, with 3-5 demographic and the rest regarding the use of tools.
  • 1-2 open-ended questions at the end of the survey to probe for follow-up mixed method approach (an opportunity for qualitative study)
  • data analysis techniques: survey results will be exported to SPSS and analyzed accordingly. The final survey design will determine the appropriate statistical approach.

 

Project Schedule

 

Complete literature review and identify areas of interest – two months

Prepare and test instrument (survey) – month

IRB and other details – month

Generate a list of potential libraries to distribute survey – month

Contact libraries. Follow up and contact again, if necessary (low turnaround) – month

Collect, analyze data – two months

Write out data findings – month

Complete manuscript – month

Proofreading and other details – month

 

Significance of the work 

While it has been widely acknowledged that Big Data (and its handling) is changing higher education (https://blog.stcloudstate.edu/ims?s=big+data) as well as academic libraries (https://blog.stcloudstate.edu/ims/2016/03/29/analytics-in-education/), it remains nebulous how Big Data is handled in the academic library and, respectively, how it is related to the handling of Big Data on campus. Moreover, the visualization of Big Data between units on campus remains in progress, along with any policymaking based on the analysis of such data (hence the need for comprehensive visualization).

 

This research will aim to gain an understanding on: a. how librarians are handling Big Data; b. how are they relating their Big Data output to the campus output of Big Data and c. how librarians in particular and campus administration in general are tuning their practices based on the analysis.

Based on the survey returns (if there is a statistically significant return), this research might consider juxtaposing the practices from academic libraries, to practices from special libraries (especially corporate libraries), public and school libraries.

 

 

References:

 

Adams Becker, S., Cummins M, Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., … Wolfson, N. (2017). NMC Horizon Report: 2017 Library Edition.

Andrejevic, M., & Gates, K. (2014). Big Data Surveillance: Introduction. Surveillance & Society, 12(2), 185–196.

Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125

Bail, C. A. (2014). The cultural environment: measuring culture with big data. Theory and Society, 43(3–4), 465–482. https://doi.org/10.1007/s11186-014-9216-5

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press.

Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and academic scholarship. First Monday, 18(10). Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/4879

Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.

Chen, X. W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514–525. https://doi.org/10.1109/ACCESS.2014.2325029

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proc. VLDB Endow., 2(2), 1481–1492. https://doi.org/10.14778/1687553.1687576

Daniel, B. (2015). Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. https://doi.org/10.1111/bjet.12230

Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., … Chuang, I. (2014). Privacy, Anonymity, and Big Data in the Social Sciences. Commun. ACM, 57(9), 56–63. https://doi.org/10.1145/2643132

De Mauro, A. D., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644(1), 97–104. https://doi.org/10.1063/1.4907823

Dumbill, E. (2012). Making Sense of Big Data. Big Data, 1(1), 1–2. https://doi.org/10.1089/big.2012.1503

Eaton, M. (2017). Seeing Library Data: A Prototype Data Visualization Application for Librarians. Publications and Research. Retrieved from http://academicworks.cuny.edu/kb_pubs/115

Emanuel, J. (2013). Usability testing in libraries: methods, limitations, and implications. OCLC Systems & Services: International Digital Library Perspectives, 29(4), 204–217. https://doi.org/10.1108/OCLC-02-2013-0009

Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261. https://doi.org/10.1177/2043820613513121

Harper, L., & Oltmann, S. (2017, April 2). Big Data’s Impact on Privacy for Librarians and Information Professionals. Retrieved November 7, 2017, from https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47(Supplement C), 98–115. https://doi.org/10.1016/j.is.2014.07.006

Hwangbo, H. (2014, October 22). The future of collaboration: Large-scale visualization. Retrieved November 7, 2017, from http://usblogs.pwc.com/emerging-technology/the-future-of-collaboration-large-scale-visualization/

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and Variety.

Miltenoff, P., & Hauptman, R. (2005). Ethical dilemmas in libraries: an international perspective. The Electronic Library, 23(6), 664–670. https://doi.org/10.1108/02640470510635746

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015

Power, D. J. (2014). Using ‘Big Data’ for analytics and decision support. Journal of Decision Systems, 23(2), 222–228. https://doi.org/10.1080/12460125.2014.888848

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508

Reilly, S. (2013, December 12). What does Horizon 2020 mean for research libraries? Retrieved November 7, 2017, from http://libereurope.eu/blog/2013/12/12/what-does-horizon-2020-mean-for-research-libraries/

Reyes, J. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80. https://doi.org/10.1007/s11528-015-0842-1

Schroeder, R. (2014). Big Data and the brave new world of social media research. Big Data & Society, 1(2), 2053951714563194. https://doi.org/10.1177/2053951714563194

Sugimoto, C. R., Ding, Y., & Thelwall, M. (2012). Library and information science in the big data era: Funding, projects, and future [a panel proposal]. Proceedings of the American Society for Information Science and Technology, 49(1), 1–3. https://doi.org/10.1002/meet.14504901187

Tene, O., & Polonetsky, J. (2012). Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of Technology and Intellectual Property, 11, [xxvii]-274.

van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society; Newcastle upon Tyne, 12(2), 197–208.

Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010

Weiss, A. (2018). Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals. Rowman & Littlefield Publishers. Retrieved from https://rowman.com/ISBN/9781538103227/Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals

West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 4, 1–0.

Willis, J. (2013). Ethics, Big Data, and Analytics: A Model for Application. Educause Review Online. Retrieved from https://docs.lib.purdue.edu/idcpubs/1

Wixom, B., Ariyachandra, T., Douglas, D. E., Goul, M., Gupta, B., Iyer, L. S., … Turetken, O. (2014). The current state of business intelligence in academia: The arrival of big data. CAIS, 34, 1.

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Wu, Z., Wu, J., Khabsa, M., Williams, K., Chen, H. H., Huang, W., … Giles, C. L. (2014). Towards building a scholarly big data platform: Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital Libraries (pp. 117–126). https://doi.org/10.1109/JCDL.2014.6970157

 

+++++++++++++++++
more on big data





1 2 3 4 10