Searching for "feedback"

VR and soft skills

Virtual Reality helps students build skills for the modern workplace

https://www.thevrara.com/blog2/2021/7/6/virtual-reality-helps-students-build-skills-for-the-modern-workplace-bodyswapsvr-ufitrust-southessexcoll-harlowcollege-writtleofficial-sandwellcollege-bridgendcollege

Career Mindset Development is a 15-minute interactive learning simulation designed as part of a Ufi VocTech Trust initiative in collaboration with teachers and careers counsellors from Harlow CollegeWrittle University CollegeSouth Essex CollegeBridgend College, and Sandwell College to give young people guidance and feedback on:

  • Building self-awareness

  • Taking the initiative when talking to people you don’t know

  • Making a positive impact at work

  • Communicating ideas clearly and with confidence.

The simulation was piloted by the colleges between 1 March and 30 April 2021. Highlights of the results can be seen in this infographic.

+++++++++++++++++++
more on soft skills in this IMS blog
https://blog.stcloudstate.edu/ims?s=soft+skills

student engagement in higher ed

Improved Student Engagement in Higher Education’s Next Normal

https://er.educause.edu/articles/2021/3/improved-student-engagement-in-higher-educations-next-normal

We define student engagement as a constructivist approach to teaching and learning: less “sage on the stage” and more learning by doing.

Digital collaborative technologies embrace three important student engagement objectives: connecting students with the content, with the instructor, and with one another, within and across groups. Formulating, sharing, and getting feedback on responses benefits all students by increasing the exchange of ideas and approaches to the given prompt, helping students develop critical thinking skills through thoughtful peer review and analysis, and engaging them with timely feedback from expert instructors. Retaining these “blended learning” practices and additional affordances post-pandemic is worthwhile as we move to the next normal.

The five teaching enhancements/adaptations discussed above—collaborative technologies for sense-making, student experts in learning and technology, back channels, digital breakout rooms, and supplemental recording.

++++++++++++++++++++++++
more on student engagement in this IMS blog
https://blog.stcloudstate.edu/ims?s=student+engagement

AI use in education

EDUCAUSE QuickPoll Results: Artificial Intelligence Use in Higher Education

D. Christopher Brooks” Friday, June 11, 2021

https://er.educause.edu/articles/2021/6/educause-quickpoll-results-artificial-intelligence-use-in-higher-education

AI is being used to monitor students and their work. The most prominent uses of AI in higher education are attached to applications designed to protect or preserve academic integrity through the use of plagiarism-detection software (60%) and proctoring applications (42%) (see figure 1).

The chatbots are coming! A sizable percentage (36%) of respondents reported that chatbots and digital assistants are in use at least somewhat on their campuses, with another 17% reporting that their institutions are in the planning, piloting, and initial stages of use (see figure 2). The use of chatbots in higher education by admissions, student affairs, career services, and other student success and support units is not entirely new, but the pandemic has likely contributed to an increase in their use as they help students get efficient, relevant, and correct answers to their questions without long waits.Footnote10 Chatbots may also liberate staff from repeatedly responding to the same questions and reduce errors by deploying updates immediately and universally.

AI is being used for student success tools such as identifying students who are at-risk academically (22%) and sending early academic warnings (16%); another 14% reported that their institutions are in the stage of planning, piloting, and initial usage of AI for these tasks.

Nearly three-quarters of respondents said that ineffective data management and integration (72%) and insufficient technical expertise (71%) present at least a moderate challenge to AI implementation. Financial concerns (67%) and immature data governance (66%) also pose challenges. Insufficient leadership support (56%) is a foundational challenge that is related to each of the previous listed challenges in this group.

Current use of AI

  • Chatbots for informational and technical support, HR benefits questions, parking questions, service desk questions, and student tutoring
  • Research applications, conducting systematic reviews and meta-analyses, and data science research (my italics)
  • Library services (my italics)
  • Recruitment of prospective students
  • Providing individual instructional material pathways, assessment feedback, and adaptive learning software
  • Proctoring and plagiarism detection
  • Student engagement support and nudging, monitoring well-being, and predicting likelihood of disengaging the institution
  • Detection of network attacks
  • Recommender systems

++++++++++++++++++
more on AI in education in this IMS blog
https://blog.stcloudstate.edu/ims?s=artificial+intelligence+education

Virtual Reality Training

Is VR the Future of Corporate Training?

Jeremy Bailenson

https://hbr.org/2020/09/is-vr-the-future-of-corporate-training

  • A more efficient way to learn procedures.
  • A safe place to learn soft skills.
  • Sometimes even better than IRL.

++++++++++++++++

https://www.bignewsnetwork.com/news/269445281/why-virtual-reality-training-matters-and-helping-ceos

A wide range of manufacturing industries such as oilgas refineries, petrochemicals, power, mining, automotive, aerospace, life sciences, pharmaceuticals etc

Managers and supervisors can track employee learning performance with detailed evaluation reports and feedback to achieve the required competencies. The learning is gamified which makes learning fun and rewarding.

+++++++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

Facilitate Effective Group Work at Business Schools

free webinar: ‘How to facilitate effective group work at business schools’ on May 5 at 1PM ET.

This webinar will gather teachers and instructional designers from business schools in a panel discussion to share and exchange ideas on improving group dynamics and social loafing in team based education.

We’re happy to welcome Mustafa Elsawy, Learning Technologist from Georgia State University and Jeff Webb, Associate Professor from David Eccles School of Business as guest speakers for the discussion to share their insights on:

  • Why and how team based learning adds value to course design;
  • The challenges of implementing and facilitating group work in online, blended and hybrid classrooms;
  • How peer feedback and peer assessment can contribute to achieve learning outcomes;
  • How to empower faculty to scale peer feedback/assessment in future courses and prepare students for the labor market

You can learn more about the event on our website and register for free here.

++++++++++++++++++++++
more on online ed in this IMS blog
https://blog.stcloudstate.edu/ims?s=online+education

HaptX Exoskeleton

https://www.linkedin.com/pulse/haptx-researchers-build-full-body-exoskeleton-charlie-fink/

ForceBot is a four year project to develop an exoskeleton for commercial and enterprise applications using HaptX’s microfluidic touch feedback technology to simulate virtual objects. The NSF grant will be distributed between each company to contribute individual components to ForceBot, and then the resulting IP will be used for commercial products.

peer to peer curation

Peer-to-Peer Curation Activities Boost Higher-Order Thinking

https://www.kritik.io/resources/peer-to-peer-curation-activities-boost-higher-order-thinking

Most professors we hear from want to assess their students on higher levels and that if current assessments kept student at the lowest level of Bloom’s Taxonomy, they wouldn’t feel rewarded as educators.

However, assessment is by far the most labour-intensive part of teaching. Assessment plans and rubrics must be prepped. Test questions must be written. Every student needs a mark, personalized feedback and a road-map for improvement. The larger the class, the more work for the instructor. Add in formative assessments like weekly assignments and exercises that precipitate subtle, ongoing tweaks to the syllabus and it’s easy to see why many faculty opt to stick with what they know: An accumulation of easy-to-grade summative assessments that almost inevitably rely upon memorization and the most basic understanding of concepts

Curation Activities can be one of the most effective teaching strategies to help students compare what they’re learning in the classroom with real-world examples, and gain insight into how they can relate to each other.

Curation Activities can apply to all disciples, such as Business, Arts, or Sciences.

When students explain what they’ve learned to other students, they help consolidate and strengthen connections to those concepts while simultaneously engaging in active learning Find more project ideas here.

By actively engaging with their classmates and applying their own evaluative skills to feedback they’re delivering to their peers, students are developing lifelong critical thinking and creative analysis skills. Additionally, peer assessment is proven to be effective in getting students faster feedback from diverse sources, increases meta-cognition, independence and self-reflection, and improves student learning. These are all important skills that provide value far beyond the classroom. More details on the benefits of peer assessment here.

++++++++++++++
more on curation in this IMS blog
https://blog.stcloudstate.edu/ims?s=curation

AI and ed research

https://www.scienceopen.com/document/read?vid=992eaf61-35dd-454e-aa17-f9f8216b381b

This article presents an examination of how education research is being remade as an experimental data-intensive science. AI is combining with learning science in new ‘digital laboratories’ where ownership over data, and power and authority over educational knowledge production, are being redistributed to research assemblages of computational machines and scientific expertise.

Research across the sciences, humanities and social sciences is increasingly conducted through digital knowledge machines that are reconfiguring the ways knowledge is generated, circulated and used (Meyer and Schroeder, 2015).

Knowledge infrastructures, such as those of statistical institutes or research-intensive universities, have undergone significant digital transformation with the arrival of data-intensive technologies, with knowledge production now enacted in myriad settings, from academic laboratories and research institutes to commercial research and development studios, think tanks and consultancies. Datafied knowledge infrastructures have become hubs of command and control over the creation, analysis and exchange of data (Bigo et al., 2019).

The combination of AI and learning science into an AILSci research assemblage consists of particular forms of scientific expertise embodied by knowledge actors – individuals and organizations – identified by categories including science of learning, AIED, precision education and learning engineering.

Precision education overtly uses psychological, neurological and genomic data to tailor or personalize learning around the unique needs of the individual (Williamson, 2019). Precision education approaches include cognitive tracking, behavioural monitoring, brain imaging and DNA analysis.

Expert power is therefore claimed by those who can perform big data analyses, especially those able to translate and narrate the data for various audiences. Likewise, expert power in education is now claimed by those who can enact data-intensive science of learning, precision education and learning engineering research and development, and translate AILSci findings into knowledge for application in policy and practitioner settings.

the thinking of a thinking infrastructure is not merely a conscious human cognitive process, but relationally performed across humans and socio-material strata, wherein interconnected technical devices and other forms ‘organize thinking and thought and direct action’.
As an infrastructure for AILSci analyses, these technologies at least partly structure how experts think: they generate new understandings and knowledge about processes of education and learning that are only thinkable and knowable due to the computational machinery of the research enterprise.

Big data-based molecular genetics studies are part of a bioinformatics-led transformation of biomedical sciences based on analysing exceptional volumes of data (Parry and Greenhough, 2018), which has transformed the biological sciences to focus on structured and computable data rather than embodied evidence itself.

Isin and Ruppert (2019) have recently conceptualized an emergent form of power that they characterize as sensory power. Building on Foucault, they note how sovereign power gradually metamorphosed into disciplinary power and biopolitical forms of statistical regulation over bodies and populations.
Sensory power marks a shift to practices of data-intensive sensing, and to the quantified tracking, recording and representing of living pulses, movements and sentiments through devices such as wearable fitness monitors, online natural-language processing and behaviour-tracking apps. Davies (2019: 515–20) designates these as ‘techno-somatic real-time sensing’ technologies that capture the ‘rhythms’ and ‘metronomic vitality’ of human bodies, and bring about ‘new cyborg-type assemblages of bodies, codes, screens and machines’ in a ‘constant cybernetic loop of action, feedback and adaptation’.

Techno-somatic modes of neural sensing, using neurotechnologies for brain imaging and neural analysis, are the next frontier in AILSci. Real-time brainwave sensing is being developed and trialled in multiple expert settings.

_+++++++++++++++
more on AI in this IMS blog
https://blog.stcloudstate.edu/ims?s=artificial+intelligence

hybrid in the fall of 2020

the HyFlex model for the fall… reflects a rift between administrators and professors, who are raising alarms over the health risks of teaching in person, and about the logistical, technical, and pedagogical complications of the model itself. Search HyFlex on Facebook and Twitter and you’ll come across comments like this one: “Whoever the hell thought of this is a bean counter, not an educator, and an idiot.”

Teaching experts and others familiar with hybrid teaching say that HyFlex can work, but it requires effective technology, careful planning, instructional support, and creative course design.

“If HyFlex is part of the plan, it has to be done with will faculty participation,” says Brian Beatty, an associate professor of instructional technologies at San Francisco State, who created the model. “Otherwise, if it’s top down and the administration is saying, We’re doing this, then the faculty are saying, But why are we doing this?”

Much of what bothers professors about the push for HyFlex is that so many details about its mechanics remain ill defined. And assumptions about its value seem rooted in a particular idea of teaching, one where the professor stands at the front of a classroom and lectures.

We are the ones holding the bag if this does not work, or if it’s chaos,” says Michelle Miller, a psychology professor at Northern Arizona University and author of Minds Online: Teaching Effectively With Technology.

Miller is a fan of the original HyFlex model from San Francisco State, but says that colleges need to be mindful that the conditions under which it’s now being adapted — quickly, at scale, and without giving students much choice — will limit its effectiveness.

To work effectively, she says, hybrid teaching requires a lot of support, such as having teaching assistants help manage the complexities of working simultaneously with two different audiences. Otherwise it risks becoming a “lecture-centric, passive consumption view of learning.” That goes against years of hard work faculty members have been doing to make their classrooms more inclusive, active, and engaged.

To help think through pedagogical challenges, faculty groups are testing out teaching strategies, some departments meet weekly to discuss course design, and a student-leadership team is providing feedback and creating online tools to help their peers learn effectively online. Even so, the process has been challenging and frustrating at times for faculty members. Professors are both looking for templates and wanting to maintain control over their courses, which inevitably creates tension with the administration.

+++++++++++
more on hyflex in this IMS blog
https://blog.stcloudstate.edu/ims?s=hyflex

iLearn2020

YouTube Live stream: https://www.youtube.com/watch?v=DSXLJGhI2D8&feature=youtu.be
and the Discord directions: https://docs.google.com/document/d/1GgI4dfq-iD85yJiyoyPApB33tIkRJRns1cJ8OpHAYno/editiLearn2020

Modest3D Guided Virtual Adventure – iLRN Conference 2020 – Session 1: currently, live session: https://youtu.be/GjxTPOFSGEM

https://mediaspace.minnstate.edu/media/Modest+3D/1_28ejh60g

CALL FOR PROPOSALS: GUIDED VIRTUAL ADVENTURE TOURS
at iLRN 2020: 6th International Conference of the Immersive Learning Research Network
Organized in conjunction with Educators in VR
Technically co-sponsored by the IEEE Education Society
June 21-25, 2020, Online
Conference theme: “Vision 20/20: Hindsight, Insight, and Foresight in XR and Immersive Learning”
Conference website: https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fimmersivelrn.org%2Filrn2020&data=02%7C01%7Cpmiltenoff%40STCLOUDSTATE.EDU%7C7a9997a1d6724744f7d708d7f52d9387%7C5011c7c60ab446ab9ef4fae74a921a7f%7C0%7C0%7C637247448406614239&sdata=Jt%2BFUtP3Vs%2FQi1z9HCk9x8m%2B%2BRjkZ63qrcoZnFiUdaQ%3D&reserved=0
++++++++++++++++++++++++++++++
Wednesday, June 24 • 12:00pm – 1:00pm

 Instruction and Instructional Design

Presentation 1: Inspiring Faculty (+ Students) with Tales of Immersive Tech (Practitioner Presentation #106)

Authors: Nicholas Smerker

Immersive technologies – 360º video, virtual and augmented realities – are being discussed in many corners of higher education. For an instructor who is familiar with the terms, at least in passing, learning more about why they and their students should care can be challenging, at best. In order to create a font of inspiration, the IMEX Lab team within Teaching and Learning with Technology at Penn State devised its Get Inspired web resource. Building on a similar repository for making technology stories at the sister Maker Commons website, the IMEX Lab Get Inspired landing page invites faculty to discover real world examples of how cutting edge XR tools are being used every day. In addition to very approachable video content and a short summary calling out why our team chose the story, there are also instructional designer-developed Assignment Ideas that allow for quick deployment of exercises related to – though not always relying upon – the technologies highlighted in a given Get Inspired story.

Presentation 2: Lessons Learned from Over A Decade of Designing and Teaching Immersive VR in Higher Education Online Courses (Practitioner Presentation #101)

Authors: Eileen Oconnor

This presentation overviews the design and instruction in immersive virtual reality environments created by the author beginning with Second Life and progressing to open source venues. It will highlight the diversity of VR environment developed, the challenges that were overcome, and the accomplishment of students who created their own VR environments for K12, college and corporate settings. The instruction and design materials created to enable this 100% online master’s program accomplishment will be shared; an institute launched in 2018 for emerging technology study will be noted.

Presentation 3: Virtual Reality Student Teaching Experience: A Live, Remote Option for Learning Teaching Skills During Campus Closure and Social Distancing (Practitioner Presentation #110)

Authors: Becky Lane, Christine Havens-Hafer, Catherine Fiore, Brianna Mutsindashyaka and Lauren Suna

Summary: During the Coronavirus pandemic, Ithaca College teacher education majors needed a classroom of students in order to practice teaching and receive feedback, but the campus was closed, and gatherings forbidden. Students were unable to participate in live practice teaching required for their program. We developed a virtual reality pilot project to allow students to experiment in two third-party social VR programs, AltSpaceVR and Rumii. Social VR platforms allow a live, embodied experience that mimics in-person events to give students a more realistic, robust and synchronous teaching practice opportunity. We documented the process and lessons learned to inform, develop and scale next generation efforts.

++++++++++++++++++++++++++
Tuesday, June 23 • 5:00pm – 6:00pm
+++++++++++++++++++++++++++
Sunday, June 21 • 8:00am – 9:00am
Escape the (Class)room games in OpenSim or Second Life FULLhttps://ilrn2020.sched.com/event/ceKP/escape-the-classroom-games-in-opensim-or-second-lifePre-registration for this tour is required as places are limited. Joining instructions will be emailed to registrants ahead of the scheduled tour time.The Guided Virtual Adventure tour will take you to EduNation in Second Life to experience an Escape room game. For one hour, a group of participants engage in voice communication and try to solve puzzles, riddles or conundrums and follow clues to eventually escape the space. These scenarios are designed for problem solving and negotiating language and are ideal for language education. They are fun and exciting and the clock ticking adds to game play.Tour guide(s)/leader(s): Philp Heike, let’s talk online sprl, Belgium

Target audience sector: Informal and/or lifelong learning

Supported devices: Desktop/laptop – Windows, Desktop/laptop – Mac

Platform/environment access: Download from a website and install on a desktop/laptop computer
Official website: http://www.secondlife.com

+++++++++++++++++++

Thursday, June 25 • 9:00am – 10:00am

Games and Gamification II

Click here to remove from My Sched.

Presentation 1: Evaluating the impact of multimodal Collaborative Virtual Environments on user’s spatial knowledge and experience of gamified educational tasks (Full Paper #91)

Authors: Ioannis Doumanis and Daphne Economou

>>Access Video Presentation<<

Several research projects in spatial cognition have suggested Virtual Environments (VEs) as an effective way of facilitating mental map development of a physical space. In the study reported in this paper, we evaluated the effectiveness of multimodal real-time interaction in distilling understanding of the VE after completing gamified educational tasks. We also measure the impact of these design elements on the user’s experience of educational tasks. The VE used reassembles an art gallery and it was built using REVERIE (Real and Virtual Engagement In Realistic Immersive Environment) a framework designed to enable multimodal communication on the Web. We compared the impact of REVERIE VG with an educational platform called Edu-Simulation for the same gamified educational tasks. We found that the multimodal VE had no impact on the ability of students to retain a mental model of the virtual space. However, we also found that students thought that it was easier to build a mental map of the virtual space in REVERIE VG. This means that using a multimodal CVE in a gamified educational experience does not benefit spatial performance, but also it does not cause distraction. The paper ends with future work and conclusions and suggestions for improving mental map construction and user experience in multimodal CVEs.

Presentation 2: A case study on student’s perception of the virtual game supported collaborative learning (Full Paper #42)

Authors: Xiuli Huang, Juhou He and Hongyan Wang

>>Access Video Presentation<<

The English education course in China aims to help students establish the English skills to enhance their international competitiveness. However, in traditional English classes, students often lack the linguistic environment to apply the English skills they learned in their textbook. Virtual reality (VR) technology can set up an immersive English language environment and then promote the learners to use English by presenting different collaborative communication tasks. In this paper, spherical video-based virtual reality technology was applied to build a linguistic environment and a collaborative learning strategy was adopted to promote their communication. Additionally, a mixed-methods research approach was used to analyze students’ achievement between a traditional classroom and a virtual reality supported collaborative classroom and their perception towards the two approaches. The experimental results revealed that the virtual reality supported collaborative classroom was able to enhance the students’ achievement. Moreover, by analyzing the interview, students’ attitudes towards the virtual reality supported collaborative class were reported and the use of language learning strategies in virtual reality supported collaborative class was represented. These findings could be valuable references for those who intend to create opportunities for students to collaborate and communicate in the target language in their classroom and then improve their language skills

!!!!!!!!!!!!!!!!!!!
Thursday, June 25 • 11:00am – 12:00pm

 Games and Gamification III

Click here to remove from My Sched.

Presentation 1: Reducing Cognitive Load through the Worked Example Effect within a Serious Game Environment (Full Paper #19)

Authors: Bernadette Spieler, Naomi Pfaff and Wolfgang Slany

>>Access Video Presentation<<

Novices often struggle to represent problems mentally; the unfamiliar process can exhaust their cognitive resources, creating frustration that deters them from learning. By improving novices’ mental representation of problems, worked examples improve both problem-solving skills and transfer performance. Programming requires both skills. In programming, it is not sufficient to simply understand how Stackoverflow examples work; programmers have to be able to adapt the principles and apply them to their own programs. This paper shows evidence in support of the theory that worked examples are the most efficient mode of instruction for novices. In the present study, 42 students were asked to solve the tutorial The Magic Word, a game especially for girls created with the Catrobat programming environment. While the experimental group was presented with a series of worked examples of code, the control groups were instructed through theoretical text examples. The final task was a transfer question. While the average score was not significantly better in the worked example condition, the fact that participants in this experimental group finished significantly faster than the control group suggests that their overall performance was better than that of their counterparts.

Presentation 2: A literature review of e-government services with gamification elements (Full Paper #56)

Authors: Ruth S. Contreras-Espinosa and Alejandro Blanco-M

>>Access Video Presentation<<

Nowadays several democracies are facing the growing problem of a breach in communication between its citizens and their political representatives, resulting in low citizen’s engagement in the participation of political decision making and on public consultations. Therefore, it is fundamental to generate a constructive relationship between both public administration and the citizens by solving its needs. This document contains a useful literature review of the gamification topic and e-government services. The documents contain a background of those concepts and conduct a selection and analysis of the different applications found. A set of three lines of research gaps are found with a potential impact on future studies.

++++++++++++++++++
Thursday, June 25 • 12:00pm – 1:00pm

 Museums and Libraries

Click here to remove from My Sched.

Presentation 1: Connecting User Experience to Learning in an Evaluation of an Immersive, Interactive, Multimodal Augmented Reality Virtual Diorama in a Natural History Museum & the Importance of Story (Full Paper #51)

Authors: Maria Harrington

>>Access Video Presentation<<

Reported are the findings of user experience and learning outcomes from a July 2019 study of an immersive, interactive, multimodal augmented reality (AR) application, used in the context of a museum. The AR Perpetual Garden App is unique in creating an immersive multisensory experience of data. It allowed scientifically naïve visitors to walk into a virtual diorama constructed as a data visualization of a springtime woodland understory, and interact with multimodal information directly through their senses. The user interface comprised of two different AR data visualization scenarios reinforced with data based ambient bioacoustics, an audio story of the curator’s narrative, and interactive access to plant facts. While actual learning and dwell times were the same between the AR app and the control condition, the AR experience received higher ratings on perceived learning. The AR interface design features of “Story” and “Plant Info” showed significant correlations with actual learning outcomes, while “Ease of Use” and “3D Plants” showed significant correlations with perceived learning. As such, designers and developers of AR apps can generalize these findings to inform future designs.

Presentation 2: The Naturalist’s Workshop: Virtual Reality Interaction with a Natural Science Educational Collection (Short Paper #11)

Authors: Colin Patrick Keenan, Cynthia Lincoln, Adam Rogers, Victoria Gerson, Jack Wingo, Mikhael Vasquez-Kool and Richard L. Blanton

>>Access Video Presentation<<

For experiential educators who utilize or maintain physical collections, The Naturalist’s Workshop is an exemplar virtual reality platform to interact with digitized collections in an intuitive and playful way. The Naturalist’s Workshop is a purpose-developed application for the Oculus Quest standalone virtual reality headset for use by museum visitors on the floor of the North Carolina Museum of Natural Sciences under the supervision of a volunteer attendant. Within the application, museum visitors are seated at a virtual desk. Using their hand controllers and head-mounted display, they explore drawers containing botanical specimens and tools-of-the-trade of a naturalist. While exploring, the participant can receive new information about any specimen by dropping it into a virtual examination tray. 360-degree photography and three-dimensionally scanned specimens are used to allow user-motivated, immersive experience of botanical meta-data such as specimen collection coordinates.

Presentation 3: 360˚ Videos: Entry level Immersive Media for Libraries and Education (Practitioner Presentation #132)

Authors: Diane Michaud

>>Access Video Presentation<<

Within the continuum of XR Technologies, 360˚ videos are relatively easy to produce and need only an inexpensive mobile VR viewer to provide a sense of immersion. 360˚ videos present an opportunity to reveal “behind the scenes” spaces that are normally inaccessible to users of academic libraries. This can promote engagement with unique special collections and specific library services. In December 2019, with little previous experience, I led the production of a short 360˚video tour, a walk-through of our institution’s archives. This was a first attempt; there are plans to transform it into a more interactive, user-driven exploration. The beta version successfully generated interest, but the enhanced version will also help prepare uninitiated users for the process of examining unique archival documents and artefacts. This presentation will cover the lessons learned, and what we would do differently for our next immersive video production. Additionally, I will propose that the medium of 360˚ video is ideal for many institutions’ current or recent predicament with campuses shutdown due to the COVID-19 pandemic. Online or immersive 360˚ video can be used for virtual tours of libraries and/or other campus spaces. Virtual tours would retain their value beyond current campus shutdowns as there will always be prospective students and families who cannot easily make a trip to campus. These virtual tours would provide a welcome alternative as they eliminate the financial burden of travel and can be taken at any time.

++++++++++++++++++

1 2 3 4 18