Dec
2020
learning paradigms
Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778
p. 3
2.2. Learning paradigms
An understanding of the existing learning paradigms is essential for performing an analysis of the current state of VR applications in higher education. Thus, we introduce the main ideas behind the existing learning paradigms. Literature distinguishes between behaviorism, cognitivism, and constructivism (Schunk, 2012). Other scholars also include experiential learning (Kolb & Kolb, 2012) to this list and, recently, connectivism has been introduced as a new learning paradigm (Kathleen Dunaway, 2011; Siemens, 2014). Each learning paradigm has developed various theories about educational goals and outcomes (Schunk, 2012). Each of these theories also offers a different perspective on the learning goals, motivational process, learning performance, transfer of knowledge process, the role of emotions, and implications for the teaching methods.
Behaviorism assumes that knowledge is a repertoire of behavioral responses to environmental stimuli (Shuell, 1986; Skinner, 1989). Thus, learning is considered to be a passive absorption of a predefined body of knowledge by the learner. According to this paradigm, learning requires repetition and learning motivation is extrinsic, involving positive and negative reinforcement. The teacher serves as a role model who transfers the correct behavioral response.
Cognitivism understands the acquisition of knowledge systems as actively constructed by learners based on pre-existing prior knowledge structures. Hence, the proponents of cognitivism view learning as an active, constructive, and goal-oriented process, which involves active assimilation and accommodation of new information to an existing body of knowledge. The learning motivation is intrinsic and learners should be capable of defining their own goals and motivating themselves to learn. Learning is supported by providing an environment that encourages discovery and assimilation or accommodation of knowledge (Shuell, 1986),RN23. Cognitivism views learning as more complex cognitive processes such as thinking, problem-solving, verbal information, concept formation, and information processing. It addresses the issues of how information is received, organized, stored, and retrieved by the mind. Knowledge acquisition is a mental activity consisting of internal coding and structuring by the learner. Digital media, including VR-based learning can strengthen cognitivist learning design (Dede, 2008). Cognitive strategies such as schematic organization, analogical reasoning, and algorithmic problem solving will fit learning tasks requiring an increased level of processing, e.g. classifications, rule or procedural executions (Ertmer & Newby, 1993) and be supported by digital media (Dede, 2008).
Constructivism posits that learning is an active, constructive process. Learners serve as information constructors who actively construct their subjective representations and comprehensions of reality. New information is linked to the prior knowledge of each learner and, thus, mental representations are subjective (Fosnot, 2013; Fosnot & Perry, 1996). Therefore, constructivists argue that the instructional learning design has to provide macro and micro support to assist the learners in constructing their knowledge and engaging them for meaningful learning. The macro support tools include related cases, information resources, cognitive tools, conversation, and collaboration tools, and social or contextual support. A micro strategy makes use of multimedia and principles such as the spatial contiguity principle, coherence principle, modality principle, and redundancy principle to strengthen the learning process. VR-based learning fits the constructivist learning design (Lee & Wong, 2008; Sharma, Agada, & Ruffin, 2013). Constructivist strategies such as situated learning, cognitive apprenticeships, and social negotiation are appropriate for learning tasks demanding high levels of processing, for instance, heuristic problem solving, personal selection, and monitoring of cognitive strategies (Ertmer & Newby, 1993).
Experientialism describes learning as following a cycle of experiential stages, from concrete experience, observation and reflection, and abstract conceptualization to testing concepts in new situations. Experientialism adopts the constructivist’s point of view to some extent—e.g., that learning should be drawn from a learner’s personal experience. The teacher takes on the role of a facilitator to motivate learners to address the various stages of the learning cycle (Kolb & Kolb, 2012).
Connectivism takes into account the digital-age by assuming that people process information by forming connections. This newly introduced paradigm suggests that people do not stop learning after completing their formal education. They continue to search for and gain knowledge outside of traditional education channels, such as job skills, networking, experience, and access to information, by making use of new technology tools (Siemens, 2014).