Posts Tagged ‘augmented reality’

VR and AR: Learners as Creators and World Builders of Our Immersive Future

Friday, December 15, 2017https://er.educause.edu/blogs/2017/12/vr-and-ar-learners-as-creators-and-world-builders-of-our-immersive-future

By creating engaging 360° tours, students are not only learning these new tools for themselves but are also helping local organizations see the possibility of VR for marketing and public relations.

some key takeaways from the projects that we have seen:

  • Let the students lead: In all of these projects, students are taking the initiative. The institutions are providing the technology, the space, organizational vision, and in some cases, academic credit. At NYU Tandon, students organized the entire conference, doing publicity, registration, catering, and scheduling (see figure 4). They brought in a diverse group of speakers from academic, tech, and startup backgrounds. The event included TED-style spotlights, talks, workshops, and demos.
  • Don’t compromise on space: Brown University’s Granoff Center for the Creative Arts is designed to encourage cross-discipline collaboration. The Tandon event used the main auditorium and the flagship NYU MakerSpace. Space influences behavior and is crucial in driving collaboration and active participation. In addition, to produce VR and AR/MR experiences students need access to high-end technology and, in some cases, motion-capture studios and 360° cameras.
  • Create opportunities for social impact: Many of these programs are open to the local community or have been designed to have an impact outside higher education. At Emporia State, students are using VR and 360° video to help local businesses. The Gaspee Affair VR experience at Brown University will become a resource for teaching middle and high school students.
  • Showcase student work: So often in education, the work students do in a course is only seen by others in the same class. Like the example at Texas A&M, all of these experiences have a connection with their campus or larger community. VR and AR engender a level of excitement that gets students engaged with each other and encourage peer learning. It’s worth it to seek out opportunities to bring this work to community events.

+++++++++
more on VR in education in this IMS blog

http://blog.stcloudstate.edu/ims?s=virtual+reality+education

Key Issues in Teaching and Learning Survey

The EDUCAUSE Learning Initiative has just launched its 2018 Key Issues in Teaching and Learning Survey, so vote today: http://www.tinyurl.com/ki2018.

Each year, the ELI surveys the teaching and learning community in order to discover the key issues and themes in teaching and learning. These top issues provide the thematic foundation or basis for all of our conversations, courses, and publications for the coming year. Longitudinally they also provide the way to track the evolving discourse in the teaching and learning space. More information about this annual survey can be found at https://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning.

ACADEMIC TRANSFORMATION (Holistic models supporting student success, leadership competencies for academic transformation, partnerships and collaborations across campus, IT transformation, academic transformation that is broad, strategic, and institutional in scope)

ACCESSIBILITY AND UNIVERSAL DESIGN FOR LEARNING (Supporting and educating the academic community in effective practice; intersections with instructional delivery modes; compliance issues)

ADAPTIVE TEACHING AND LEARNING (Digital courseware; adaptive technology; implications for course design and the instructor’s role; adaptive approaches that are not technology-based; integration with LMS; use of data to improve learner outcomes)

COMPETENCY-BASED EDUCATION AND NEW METHODS FOR THE ASSESSMENT OF STUDENT LEARNING (Developing collaborative cultures of assessment that bring together faculty, instructional designers, accreditation coordinators, and technical support personnel, real world experience credit)

DIGITAL AND INFORMATION LITERACIES (Student and faculty literacies; research skills; data discovery, management, and analysis skills; information visualization skills; partnerships for literacy programs; evaluation of student digital competencies; information evaluation)

EVALUATING TECHNOLOGY-BASED INSTRUCTIONAL INNOVATIONS (Tools and methods to gather data; data analysis techniques; qualitative vs. quantitative data; evaluation project design; using findings to change curricular practice; scholarship of teaching and learning; articulating results to stakeholders; just-in-time evaluation of innovations). here is my bibliographical overview on Big Data (scroll down to “Research literature”http://blog.stcloudstate.edu/ims/2017/11/07/irdl-proposal/ )

EVOLUTION OF THE TEACHING AND LEARNING SUPPORT PROFESSION (Professional skills for T&L support; increasing emphasis on instructional design; delineating the skills, knowledge, business acumen, and political savvy for success; role of inter-institutional communities of practices and consortia; career-oriented professional development planning)

FACULTY DEVELOPMENT (Incentivizing faculty innovation; new roles for faculty and those who support them; evidence of impact on student learning/engagement of faculty development programs; faculty development intersections with learning analytics; engagement with student success)

GAMIFICATION OF LEARNING (Gamification designs for course activities; adaptive approaches to gamification; alternate reality games; simulations; technological implementation options for faculty)

INSTRUCTIONAL DESIGN (Skills and competencies for designers; integration of technology into the profession; role of data in design; evolution of the design profession (here previous blog postings on this issue: http://blog.stcloudstate.edu/ims/2017/10/04/instructional-design-3/); effective leadership and collaboration with faculty)

INTEGRATED PLANNING AND ADVISING FOR STUDENT SUCCESS (Change management and campus leadership; collaboration across units; integration of technology systems and data; dashboard design; data visualization (here previous blog postings on this issue: http://blog.stcloudstate.edu/ims?s=data+visualization); counseling and coaching advising transformation; student success analytics)

LEARNING ANALYTICS (Leveraging open data standards; privacy and ethics; both faculty and student facing reports; implementing; learning analytics to transform other services; course design implications)

LEARNING SPACE DESIGNS (Makerspaces; funding; faculty development; learning designs across disciplines; supporting integrated campus planning; ROI; accessibility/UDL; rating of classroom designs)

MICRO-CREDENTIALING AND DIGITAL BADGING (Design of badging hierarchies; stackable credentials; certificates; role of open standards; ways to publish digital badges; approaches to meta-data; implications for the transcript; Personalized learning transcripts and blockchain technology (here previous blog postings on this issue: http://blog.stcloudstate.edu/ims?s=blockchain

MOBILE LEARNING (Curricular use of mobile devices (here previous blog postings on this issue:

http://blog.stcloudstate.edu/ims/2015/09/25/mc218-remodel/; innovative curricular apps; approaches to use in the classroom; technology integration into learning spaces; BYOD issues and opportunities)

MULTI-DIMENSIONAL TECHNOLOGIES (Virtual, augmented, mixed, and immersive reality; video walls; integration with learning spaces; scalability, affordability, and accessibility; use of mobile devices; multi-dimensional printing and artifact creation)

NEXT-GENERATION DIGITAL LEARNING ENVIRONMENTS AND LMS SERVICES (Open standards; learning environments architectures (here previous blog postings on this issue: http://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/; social learning environments; customization and personalization; OER integration; intersections with learning modalities such as adaptive, online, etc.; LMS evaluation, integration and support)

ONLINE AND BLENDED TEACHING AND LEARNING (Flipped course models; leveraging MOOCs in online learning; course development models; intersections with analytics; humanization of online courses; student engagement)

OPEN EDUCATION (Resources, textbooks, content; quality and editorial issues; faculty development; intersections with student success/access; analytics; licensing; affordability; business models; accessibility and sustainability)

PRIVACY AND SECURITY (Formulation of policies on privacy and data protection; increased sharing of data via open standards for internal and external purposes; increased use of cloud-based and third party options; education of faculty, students, and administrators)

WORKING WITH EMERGING LEARNING TECHNOLOGY (Scalability and diffusion; effective piloting practices; investments; faculty development; funding; evaluation methods and rubrics; interoperability; data-driven decision-making)

+++++++++++
learning and teaching in this IMS blog
http://blog.stcloudstate.edu/ims?s=teaching+and+learning

VR and students with special needs

Bibliography on virtual reality and students with physical and cognitive disabilities

Jeffs, T. L. (2009). Virtual Reality and Special Needs. Themes In Science And Technology Education2(1-2), 253-268.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ1131319%26site%3dehost-live%26scope%3dsite

Lahav, O., Sharkey, P., & Merrick, J. (2014). Virtual and augmented reality environments for people with special needs. International Journal Of Child Health And Human Development7(4), 337-338.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2015-10704-001%26site%3dehost-live%26scope%3dsite

Cai, Y., Chiew, R., Nay, Z. T., Indhumathi, C., & Huang, L. (2017). Design and development of VR learning environments for children with ASD. Interactive Learning Environments25(8), 1098-1109. doi:10.1080/10494820.2017.1282877

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d125723945%26site%3dehost-live%26scope%3dsite

Passig, D. (2011). The Impact of Immersive Virtual Reality on Educators’ Awareness of the Cognitive Experiences of Pupils with Dyslexia. Teachers College Record113(1), 181-204.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ913420%26site%3dehost-live%26scope%3dsite

Ke, F., & Im, T. (2013). Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism. Journal Of Educational Research106(6), 441-461. doi:10.1080/00220671.2013.832999

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d90465242%26site%3dehost-live%26scope%3dsite

Collins, J., Hoermann, S., & Regenbrecht, H. (2016). Comparing a finger dexterity assessment in virtual, video-mediated, and unmediated reality. International Journal Of Child Health And Human Development9(3), 333-341.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-009%26site%3dehost-live%26scope%3dsite

Epure, P., Gheorghe, C., Nissen, T., Toader, L. O., Macovei, A. N., Nielsen, S. M., & … Brooks, E. P. (2016). Effect of the Oculus Rift head mounted display on postural stability. International Journal Of Child Health And Human Development9(3), 343-350.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-010%26site%3dehost-live%26scope%3dsite

Sánchez, J., & Espinoza, M. (2016). Usability and redesign of a university entrance test based on audio for learners who are blind. International Journal Of Child Health And Human Development9(3), 379-387.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dpsyh%26AN%3d2016-53422-014%26site%3dehost-live%26scope%3dsite

Rizzo, A. A., Bowerly, T., Shahabi, C., Buckwalter, J. G., Klimchuk, D., & Mitura, R. (2004). Diagnosing Attention Disorders in a Virtual Classroom. Computer (00189162)37(6), 87-89.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d13425208%26site%3dehost-live%26scope%3dsite

Eden, S. (2008). The effect of 3D virtual reality on sequential time perception among deaf and hard-of-hearing children. European Journal Of Special Needs Education23(4), 349-363. doi:10.1080/08856250802387315

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d34716698%26site%3dehost-live%26scope%3dsite

Eden, S., & Bezer, M. (2011). Three-dimensions vs. two-dimensions intervention programs: the effect on the mediation level and behavioural aspects of children with intellectual disability. European Journal Of Special Needs Education26(3), 337-353. doi:10.1080/08856257.2011.593827

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d65025967%26site%3dehost-live%26scope%3dsite

Lorenzo, G., Lledó, A., Roig, R., Lorenzo, A., & Pomares, J. (2016). New Educational Challenges and Innovations: Students with Disability in Immersive Learning Environments. In Virtual Learning. InTech. https://doi.org/10.5772/65219

https://www.intechopen.com/books/virtual-learning/new-educational-challenges-and-innovations-students-with-disability-in-immersive-learning-environmen

+++++++++++++
more on virtual reality in this IMS blog
http://blog.stcloudstate.edu/ims?s=virtual+reality

effective presentations and AR

SORRY, POWERPOINT: THE SLIDE DECK OF THE FUTURE WILL BE IN AR

https://www.wired.com/story/prezi-augmented-reality/
augmented reality takeover. It’s played out at Snapchat and Facebook, at Google and Apple. Companies are using AR to design carssell furniture, make little digital sharks swim around your breakfast table. What if Prezi could apply that same technology to make better presentations?
the product isn’t ready for a public launch yet. Prezi has enlisted a select group of influencers to try out the AR tools and offer feedback before the company releases a beta version.

+++++++++++++++++++
more on effective presentations in this IMS blog
http://blog.stcloudstate.edu/ims?s=effective+presentations

teaching and learning spaces for VR and AR

Planning a Teaching and Learning Space for Virtual and Augmented Reality

Tuesday, November 14, 2017 1:00 – 2:00 p.m. EST

Planning a Teaching and Learning Space for Virtual and Augmented Reality

Dr. James P. Frazee is the Senior Academic Technology Officer and Director of Instructional Technology Services (ITS) at San Diego State University.

  • The “What”: Defining the Space
  • The “Why”: Making a Case
    • Incubator for research
    • Promotes experimentation
    • Leveraging partnerships with industry players
    • Opportunity to highlight technology
  • The “How”: Designing and Implementing
    • Designing the space

+++++++++++++
more on VR in this IMS blog

http://blog.stcloudstate.edu/ims?s=virtual+reality

VR headset future

VR’s future depends on you buying a dorky headset

Oculus, the VR company that Mark Zuckerberg bought for more than $2 billion, has a problem: It’s struggling to convince people to buy its gear.

https://www.cnet.com/news/vr-virtual-reality-future-depends-on-you-buying-a-dorky-headset-oculus-zuckerberg-playstation-vive/

Oculus Connect, starting Wednesday in San Jose, California. Facebook’s Oculus VR division promises discussions on how health care, movies and video games are adapting to this still nascent technology. One panel will explore how the disability community can benefit from VR gear and presentations.

Facebook chief competitors, Sony and HTC, followed suit. The PlayStation VR dropped to $400 from $500, and the Vive dropped to $599 from $799 all in the past three months.

Survios made Raw Data more widely available for Oculus, Vive and PlayStation VR. Survios is also looking beyond VR for customers, redesigning Raw Data to work in arcades as well.

Over the summer, Apple and Google announced new technologies called ARKit and ARCore, respectively, that are designed to help iPhones and iPads or any device powered by Google’s Android software marry computer-generated images with the real world.

A $2.99 app, Star Guide AR, highlights stars and constellations in the sky once you point your phone at them. Another, Ikea Place, previews furniture in your home with a tap. Walk around your living room and you can see the furniture you placed while looking through the screen on your phone. So far, both are available only for the iPhone.

App developers I spoke with say they’re excited by augmented reality and believe it may help spur people to buy VR systems as well.

Microsoft’s focusing on both AR and VR. In an October update to its Windows 10 software for PCs, the company is partnering with device makers like Lenovo, Dell, HP, Acer and Samsung to create headsets based on its designs. They’ll sell for as little as $300 each when they begin hitting store shelves Oct. 17.

++++++++++++
more on virtual reality in this IMS blog
http://blog.stcloudstate.edu/ims?s=virtual+reality

VR AR MR in education

7 Things You Should Know About AR/VR/MR

https://library.educause.edu/resources/2017/10/7-things-you-should-know-about-ar-vr-mr 
Augmented reality can be described as experiencing the real world with an overlay of additional computer generated content. In contrast, virtual reality immerses a user in an entirely simulated environment, while mixed or merged reality blends real and virtual worlds in ways through which the physical and the digital can interact. AR, VR, and MR offer new opportunities to create a psychological sense of immersive presence in an environment that feels real enough to be viewed, experienced, explored, and manipulated. These technologies have the potential to democratize learning by giving everyone access to immersive experiences that were once restricted to relatively few learners.
In Grinnell College’s Immersive Experiences Lab http://gciel.sites.grinnell.edu/, teams of faculty, staff, and students collaborate on research projects, then use 3D, VR, and MR technologies as a platform to synthesize and present their findings.
In terms of equity, AR, VR, and MR have the potential to democratize learning by giving all learners access to immersive experiences
downsides :
relatively little research about the most effective ways to use these technologies as instructional tools. Combined, these factors can be disincentives for institutions to invest in the equipment, facilities, and staffing that can be required to support these systems. AR, VR, and MR technologies raise concerns about personal privacy and data security. Further, at least some of these tools and applications currently fail to meet accessibility standards. The user experience in some AR, VR, and MR applications can be intensely emotional and even disturbing (my note: but can be also used for empathy literacy),
immersing users in recreated, remote, or even hypothetical environments as small as a molecule or as large as a universe, allowing learners to experience “reality” from multiple perspectives.

++++++++++++++++
more on VR, AR, MX in this IMS blog
http://blog.stcloudstate.edu/ims?s=virtual+reality

1 2 3 4