Machine Learning and the Cloud Rescue IT
How Machine Learning and the Cloud Can Rescue IT From the Plumbing Business
By Andrew Barbour Feb 19, 2019
Many educational institutions maintain their own data centers. “We need to minimize the amount of work we do to keep systems up and running, and spend more energy innovating on things that matter to people.”
what’s the difference between machine learning (ML) and artificial intelligence (AI)?
Jeff Olson: That’s actually the setup for a joke going around the data science community. The punchline? If it’s written in Python or R, it’s machine learning. If it’s written in PowerPoint, it’s AI.
machine learning is in practical use in a lot of places, whereas AI conjures up all these fantastic thoughts in people.
What is serverless architecture, and why are you excited about it?
Instead of having a machine running all the time, you just run the code necessary to do what you want—there is no persisting server or container. There is only this fleeting moment when the code is being executed. It’s called Function as a Service, and AWS pioneered it with a service called AWS Lambda. It allows an organization to scale up without planning ahead.
How do you think machine learning and Function as a Service will impact higher education in general?
The radical nature of this innovation will make a lot of systems that were built five or 10 years ago obsolete. Once an organization comes to grips with Function as a Service (FaaS) as a concept, it’s a pretty simple step for that institution to stop doing its own plumbing. FaaS will help accelerate innovation in education because of the API economy.
If the campus IT department will no longer be taking care of the plumbing, what will its role be?
I think IT will be curating the inter-operation of services, some developed locally but most purchased from the API economy.
As a result, you write far less code and have fewer security risks, so you can innovate faster. A succinct machine-learning algorithm with fewer than 500 lines of code can now replace an application that might have required millions of lines of code. Second, it scales. If you happen to have a gigantic spike in traffic, it deals with it effortlessly. If you have very little traffic, you incur a negligible cost.
++++++++
more on machine learning in this IMS blog
https://blog.stcloudstate.edu/ims?s=machine+learning