Posts Tagged ‘definitions’

learning paradigms

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778

p. 3

2.2. Learning paradigms

An understanding of the existing learning paradigms is essential for performing an analysis of the current state of VR applications in higher education. Thus, we introduce the main ideas behind the existing learning paradigms. Literature distinguishes between behaviorism, cognitivism, and constructivism (Schunk, 2012). Other scholars also include experiential learning (Kolb & Kolb, 2012) to this list and, recently, connectivism has been introduced as a new learning paradigm (Kathleen Dunaway, 2011; Siemens, 2014). Each learning paradigm has developed various theories about educational goals and outcomes (Schunk, 2012). Each of these theories also offers a different perspective on the learning goals, motivational process, learning performance, transfer of knowledge process, the role of emotions, and implications for the teaching methods.

Behaviorism assumes that knowledge is a repertoire of behavioral responses to environmental stimuli (Shuell, 1986; Skinner, 1989). Thus, learning is considered to be a passive absorption of a predefined body of knowledge by the learner. According to this paradigm, learning requires repetition and learning motivation is extrinsic, involving positive and negative reinforcement. The teacher serves as a role model who transfers the correct behavioral response.

Cognitivism understands the acquisition of knowledge systems as actively constructed by learners based on pre-existing prior knowledge structures. Hence, the proponents of cognitivism view learning as an active, constructive, and goal-oriented process, which involves active assimilation and accommodation of new information to an existing body of knowledge. The learning motivation is intrinsic and learners should be capable of defining their own goals and motivating themselves to learn. Learning is supported by providing an environment that encourages discovery and assimilation or accommodation of knowledge (Shuell, 1986),RN23. Cognitivism views learning as more complex cognitive processes such as thinking, problem-solving, verbal information, concept formation, and information processing. It addresses the issues of how information is received, organized, stored, and retrieved by the mind. Knowledge acquisition is a mental activity consisting of internal coding and structuring by the learner. Digital media, including VR-based learning can strengthen cognitivist learning design (Dede, 2008). Cognitive strategies such as schematic organization, analogical reasoning, and algorithmic problem solving will fit learning tasks requiring an increased level of processing, e.g. classifications, rule or procedural executions (Ertmer & Newby, 1993) and be supported by digital media (Dede, 2008).

Constructivism posits that learning is an active, constructive process. Learners serve as information constructors who actively construct their subjective representations and comprehensions of reality. New information is linked to the prior knowledge of each learner and, thus, mental representations are subjective (Fosnot, 2013; Fosnot & Perry, 1996). Therefore, constructivists argue that the instructional learning design has to provide macro and micro support to assist the learners in constructing their knowledge and engaging them for meaningful learning. The macro support tools include related cases, information resources, cognitive tools, conversation, and collaboration tools, and social or contextual support. A micro strategy makes use of multimedia and principles such as the spatial contiguity principle, coherence principle, modality principle, and redundancy principle to strengthen the learning process. VR-based learning fits the constructivist learning design (Lee & Wong, 2008; Sharma, Agada, & Ruffin, 2013). Constructivist strategies such as situated learning, cognitive apprenticeships, and social negotiation are appropriate for learning tasks demanding high levels of processing, for instance, heuristic problem solving, personal selection, and monitoring of cognitive strategies (Ertmer & Newby, 1993).

Experientialism describes learning as following a cycle of experiential stages, from concrete experience, observation and reflection, and abstract conceptualization to testing concepts in new situations. Experientialism adopts the constructivist’s point of view to some extent—e.g., that learning should be drawn from a learner’s personal experience. The teacher takes on the role of a facilitator to motivate learners to address the various stages of the learning cycle (Kolb & Kolb, 2012).

Connectivism takes into account the digital-age by assuming that people process information by forming connections. This newly introduced paradigm suggests that people do not stop learning after completing their formal education. They continue to search for and gain knowledge outside of traditional education channels, such as job skills, networking, experience, and access to information, by making use of new technology tools (Siemens, 2014).

can XR help students learn

Giving Classroom Experiences (Like VR) More … Dimension

https://www.insidehighered.com/digital-learning/article/2018/11/02/virtual-reality-other-3-d-tools-enhance-classroom-experiences

at a session on the umbrella concept of “mixed reality” (abbreviated XR) here Thursday, attendees had some questions for the panel’s VR/AR/XR evangelists: Can these tools help students learn? Can institutions with limited budgets pull off ambitious projects? Can skeptical faculty members be convinced to experiment with unfamiliar technology?

All four — one each from Florida International UniversityHamilton CollegeSyracuse University and Yale University — have just finished the first year of a joint research project commissioned by Educause and sponsored by Hewlett-Packard to investigate the potential for immersive technology to supplement and even transform classroom experiences.

Campus of the Future” report, written by Jeffrey Pomerantz

Yale has landed on a “hub model” for project development — instructors propose projects and partner with students with technological capabilities to tap into a centralized pool of equipment and funding. (My note: this is what I suggest in my Chapter 2 of Arnheim, Eliot & Rose (2012) Lib Guides)

Several panelists said they had already been getting started on mixed reality initiatives prior to the infusion of support from Educause and HP, which helped them settle on a direction

While 3-D printing might seem to lend itself more naturally to the hard sciences, Yale’s humanities departments have cottoned to the technology as a portal to answering tough philosophical questions.

institutions would be better served forgoing an early investment in hardware and instead gravitating toward free online products like UnityOrganon and You by Sharecare, all of which allow users to create 3-D experiences from their desktop computers.

+++++++++

Campus of the Future” report, written by Jeffrey Pomerantz

https://library.educause.edu/~/media/files/library/2018/8/ers1805.pdf?la=en

XR technologies encompassing 3D simulations, modeling, and production.

This project sought to identify

  • current innovative uses of these 3D technologies,
  • how these uses are currently impacting teaching and learning, and
  • what this information can tell us about possible future uses for these technologies in higher education.

p. 5 Extended reality (XR) technologies, which encompass virtual reality (VR) and augmented reality (AR), are already having a dramatic impact on pedagogy in higher education. XR is a general term that covers a wide range of technologies along a continuum, with the real world at one end and fully immersive simulations at the other.

p. 6The Campus of the Future project was an exploratory evaluation of 3D technologies for instruction and research in higher education: VR, AR, 3D scanning, and 3D printing. The project sought to identify interesting and novel uses of 3D technology

p. 7 HP would provide the hardware, and EDUCAUSE would provide the methodological expertise to conduct an evaluation research project investigating the potential uses of 3D technologies in higher education learning and research.

The institutions that participated in the Campus of the Future project were selected because they were already on the cutting edge of integrating 3D technology into pedagogy. These institutions were therefore not representative, nor were they intended to be representative, of the state of higher education in the United States. These institutions were selected precisely because they already had a set of use cases for 3D technology available for study

p. 9  At some institutions, the group participating in the project was an academic unit (e.g., the Newhouse School of Communications at Syracuse University; the Graduate School of Education at Harvard University). At these institutions, the 3D technology provided by HP was deployed for use more or less exclusively by students and faculty affiliated with the particular academic unit.

p. 10 definitions
there is not universal agreement on the definitions of these
terms or on the scope of these technologies. Also, all of these technologies
currently exist in an active marketplace and, as in many rapidly changing markets, there is a tendency for companies to invent neologisms around 3D technology.

A 3D scanner is not a single device but rather a combination of hardware and
software. There are generally two pieces of hardware: a laser scanner and a digital
camera. The laser scanner bounces laser beams off the surface of an object to
determine its shape and contours.

p. 11 definitions

Virtual reality means that the wearer is completely immersed in a computer
simulation. Several types of VR headsets are currently available, but all involve
a lightweight helmet with a display in front of the eyes (see figure 2). In some
cases, this display may simply be a smartphone (e.g., Google Cardboard); in other
cases, two displays—one for each eye—are integrated into the headset (e.g., HTC
Vive). Most commercially available VR rigs also include handheld controllers
that enable the user to interact with the simulation by moving the controllers
in space and clicking on finger triggers or buttons.

p. 12 definitions

Augmented reality provides an “overlay” of some type over the real world through
the use of a headset or even a smartphone.

In an active technology marketplace, there is a tendency for new terms to be
invented rapidly and for existing terms to be used loosely. This is currently
happening in the VR and AR market space. The HP VR rig and the HTC Vive
unit are marketed as being immersive, meaning that the user is fully immersed in
a simulation—virtual reality. Many currently available AR headsets, however, are
marketed not as AR but rather as MR (mixed reality). These MR headsets have a
display in front of the eyes as well as a pair of front-mounted cameras; they are
therefore capable of supporting both VR and AR functionality.

p. 13 Implementation

Technical difficulties.
Technical issues can generally be divided into two broad categories: hardware
problems and software problems. There is, of course, a common third category:
human error.

p. 15 the technology learning curve

The well-known diffusion of innovations theoretical framework articulates five
adopter categories: innovators, early adopters, early majority, late majority, and
laggards. Everett M. Rogers, Diffusion of Innovations, 5th ed. (New York: Simon and Schuster, 2003).

It is also likely that staff in the campus IT unit or center for teaching and learning already know who (at least some of) these individuals are, since such faculty members are likely to already have had contact with these campus units.
Students may of course also be innovators and early adopters, and in fact
several participating institutions found that some of the most creative uses of 3D technology arose from student projects

p. 30  Zeynep Tufekci, in her book Twitter and Tear Gas

definition: There is no necessary distinction between AR and VR; indeed, much research
on the subject is based on a conception of a “virtuality continuum” from entirely
real to entirely virtual, where AR lies somewhere between those ends of the
spectrum.  Paul Milgram and Fumio Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information Systems, vol. E77-D, no. 12 (1994); Steve Mann, “Through the Glass, Lightly,” IEEE Technology and Society Magazine 31, no. 3 (2012): 10–14.

For the future of 3D technology in higher education to be realized, that
technology must become as much a part of higher education as any technology:
the learning management system (LMS), the projector, the classroom. New
technologies and practices generally enter institutions of higher education as
initiatives. Several active learning classroom initiatives are currently under
way,36 for example, as well as a multi-institution open educational resources
(OER) degree initiative.37

p. 32 Storytelling

Some scholars have argued that all human communication
is based on storytelling;41 certainly advertisers have long recognized that
storytelling makes for effective persuasion,42 and a growing body of research
shows that narrative is effective for teaching even topics that are not generally
thought of as having a natural story, for example, in the sciences.43

p. 33 accessibility

The experience of Gallaudet University highlights one of the most important
areas for development in 3D technology: accessibility for users with disabilities.

p. 34 instructional design

For that to be the case, 3D technologies must be incorporated into the
instructional design process for building and redesigning courses. And for that
to be the case, it is necessary for faculty and instructional designers to be familiar
with the capabilities of 3D technologies. And for that to be the case, it may
not be necessary but would certainly be helpful for instructional designers to
collaborate closely with the staff in campus IT units who support and maintain
this hardware.

Every institution of higher
education has a slightly different organizational structure, of course, but these
two campus units are often siloed. This siloing may lead to considerable friction
in conducting the most basic organizational tasks, such as setting up meetings
and apportioning responsibilities for shared tasks. Nevertheless, IT units and
centers for teaching and learning are almost compelled to collaborate in order
to support faculty who want to integrate 3D technology into their teaching. It
is necessary to bring the instructional design expertise of a center for teaching
and learning to bear on integrating 3D technology into an instructor’s teaching (My note: and where does this place SCSU?) Therefore,
one of the most critical areas in which IT units and centers for teaching and
learning can collaborate is in assisting instructors to develop this integration
and to develop learning objects that use 3D technology. p. 35 For 3D technology to really gain traction in higher education, it will need to be easier for instructors to deploy without such a large support team.

p. 35 Sites such as Thingiverse, Sketchfab, and Google Poly are libraries of freely
available, user-created 3D models.

ClassVR is a tool that enables the simultaneous delivery of a simulation to
multiple headsets, though the simulation itself may still be single-user.

p. 37 data management:

An institutional repository is a collection of an institution’s intellectual output, often consisting of preprint journal articles and conference papers and the data sets behind them.49 An
institutional repository is often maintained by either the library or a partnership
between the library and the campus IT unit. An institutional repository therefore has the advantage of the long-term curatorial approach of librarianship combined with the systematic backup management of the IT unit. (My note: leaves me wonder where does this put SCSU)

Sharing data sets is critical for collaboration and increasingly the default for
scholarship. Data is as much a product of scholarship as publications, and there
is a growing sentiment among scholars that it should therefore be made public.50

++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+definition

blended and online learning

How much Online Content in Blended Learning?

http://www.hotlunchtray.com/much-online-content-blended-learning/

In 2007 The Sloan Consortium ( presently the Online Learning Consortium) asserted that when 30-79% of class content is available online that is a blended learning class.

"content

entire report here: http://www.onlinelearningsurvey.com/reports/blending-in.pdf

Choice within Online Content

Another often referenced definer of Blended Learning is The Christensen Institute.  Student control of Time, Place, and Path are important in this definition.

+++++++++++++++++++++++
more on blended learning in this IMS blog:
https://blog.stcloudstate.edu/ims?s=blended+learning

more on online learning in this IMS blog
https://blog.stcloudstate.edu/ims?s=online

Save