Video Storytelling in Social Media Marketing

Video Storytelling in Social Media Marketing

http://www.socialmediaexaminer.com/video-storytelling/

#1: Post Stories From Your Customers

#2: Create a Fictional Series

#3: Tell Personal Stories

#4: Shoot Documentary-Style Video

#5: Interview Guests

#6: Take Viewers Behind the Scenes

#7: Create Animated Stories

#8: Show Viewers How to Do Something

Other Stories to Tell With Video

There are a lot of interesting ways to integrate storytelling into your social videos. In addition to those featured above, here are some other stories that are well suited for video:

  • Create a single video or a series of videos to highlight humorous situations related to your business or industry.
  • If your company’s beginnings would make an interesting story, have the founder tell that story on video.
  • Are your employees involved in interesting activities or challenges? Consider featuring those stories in your social videos.
  • Tell a fictional but realistic story on video to educate viewers about your industry.
  • Find a way to combine reality TV–style video with something relevant to your audience.

Enabling BYOD

Enabling Bring Your Own Device

white paper by the Cisco

To help improve understanding of BYOD and its impacts on modern network environments, this white paper will further explore the many differences that exist between corporate and educational approaches to the technology.

In the education space, dealing with non-standard, user-managed devices has been and still remains the norm. Unfortunately, the variety of devices means a multitude of operating systems and software are encountered, with many “standards” being defined. As a result there is little consistency in the device type or the software being installed. Since the device is owned by the student and is a personal resource, it is often difficult or impossible to enforce a policy that prevents users from installing software. In addition, due to the nature of learning as opposed to a corporate environment, it is also difficult to put a restriction on certain classes of software since all may provide a worthwhile educational purpose.

providing a solution that unifies management and deployment polices across both wired and wireless devices is very desirable.

The Internet of Everything (IoE) has spurred a revolution in mobility. Collaboration anywhere, anytime and with any device is quickly becoming the rule instead of the exception. As a result it is now common for students to bring mobile devices such as smartphones, tablets and e-readers into the academic environment to support their educational endeavors.

The infrastructure supporting BYOD no longer has the sole purpose of providing a wireless radio signal within a given area. The focus is now about providing the appropriate bandwidth and quality to accommodate the ever-growing number of devices and ensure that an application provides a good end-user experience. In a sense, applications are now the major driving force behind the continuing evolution of BYOD. For example, a teacher accessing video in the classroom for educational purposes during class hours should have greater priority than a student in the same area accessing a gaming site for recreation.

A state-of-the-art BYOD infrastructure should now be capable of providing more than just generic, general-purpose wireless connectivity. In the classroom environment, the notion of “differentiated access” often resonates with faculty and staff. Once this has been determined, a policy can be applied to the user and their activity on the network.

Granular security can also be intelligently delivered.
Quality of Service (QoS) rate limiting has been available for some time, but now there are newer QoS techniques available.

Location-based services can provide their first interaction with the university. By delivering campus maps and directional information, location-enabled services can enhance the experience of these visitors and provide a positive image to them as well. As a visitor enters a particular building location, information could automatically be provided. In the case of a visiting student, information about the history of a building, departments contained within the building, or other resources could be presented to enhance a guided tour, or provide the perspective student the ability to have a self-directed tour of the campus facilities.

802.11ac Technology (https://en.wikipedia.org/wiki/IEEE_802.11ac)

Software Defined Networking (https://en.wikipedia.org/wiki/Software-defined_networking)

 

DGBL and digital literacies

Digital game-based learning levels up digital literacies

http://thinkspace.csu.edu.au/anotherbyteofknowledge/digital-game-based-learning-levels-up-digital-literacies/

My note: excellent Australian article, which presents a very strong point on digital literacies (metaliteracies, see URL below) from educators (versus library) perspective. Connected with game-based learning, it clearly renders the traditional perspective of information literacy as miniscules and the notion of digital literacy being “information literacy on steroids” as obsolete. It clearly shows that the “xxx-literacies” are clearly not a domain of the librarians and if the librarians do not wised up and allow other faculty who are “not librarians” to equally participate, they might well count with those faculty going on their own (as it is transparent from this article).

connections will be made between  digital game-based learning and digital literacies to show that digital game-based learning is a powerful pedagogy that incorporates the elements of digital literacies. Through the adoption of game-based learning, digital literacies can be taught in context. Digital literacies are the skills that connect the learning content (curriculum) and digital games are the platform that these digital literacies can be practised within a meaningful context.

Digital literacies is an umbrella term that includes a combination of literacies – visual literacy, media literacy, collaborative literacy, ICT literacy, information literacy – that are needed to take an active, participatory role in life, now and in the future (Hague & Payton, 2010, p. 2).

Bawden (2008), cites Gilster (1997), who defines digital literacy as “an ability to understand and use information from a variety of digital sources and regard it as literacy in the digital age” (p.18).

Jisc, identify in their Digital Literacy Guide that it is a concept that is contextual and it is not static.  Change is imminent as new technologies develop “at breakneck speeds” (Becker, 2011, p. 76), therefore, it can be inferred the digital literacies required to use these new technologies need to be adaptable and flexible to these changes (Haste, 2009).

Cooper, Lockyer & Brown (2013), highlight this plurality by using the term “multiliteracies” which can be understood as synonymous with digital literacies.  Cooper et al. (2013), explain multiliteracies is required as a “broader view of literacy” (p. 94), is needed as a result of the diverse range of communications tools, therefore, context is implied.  Ng (2012) also highlights this idea that digital literacy is “the multiplicity of literacies associated with the use of digital technologies” (p. 1066).  The combination of multiliteracies and technologies would also suggest that multimodality is an important element of digital literacy (McLoughlin, 2011) .

7 elements of digital literacy in their Developing Digital Literacies Guide (2014), which can be seen below.

DGBL and digital literacy

 

digital games (Pivec & Pivec, 2011), which can also be called computer games (Whitton, 2011), video games (Turkay, Hoffman, Kinzer, Chantes & Vicari, 2014) or serious games (Arnab et al., 2012) rather than gamification.

Digital game-based learning then is using digital games in the learning environment with the purpose of achieving learning aligned with learning theory.

Cognitive constructivism is a learning theory that game-based learning could be aligned (Orr & McGuinness, 2014; St-Pierre, 2011).  This learning theory builds upon the theories of Piaget and Bruner, therefore, an important consideration in the digital game-based classroom would be that choosing games needs to fit the age and level of intellectual development the students are at (St-Pierre, 2011).

A major focus of the socio-constructivist learning theory is that of Vygotsky’s Zone of Proximal Development (St-Pierre, 2011).  The learning is designed “just beyond what the learner can do” (Orr & McGuinness, 2014, p. 223) and takes them beyond where their knowledge already exists.

More on digital literacy (metaliteracy) and DGBL in this IMS blog:

http://blog.stcloudstate.edu/ims/2014/11/30/game-based-learning/

http://blog.stcloudstate.edu/ims/?s=gaming

http://blog.stcloudstate.edu/ims/?s=gaming

 

http://blog.stcloudstate.edu/ims/2015/02/20/digital-literacy-2/

http://blog.stcloudstate.edu/ims/?s=digital+literacy

http://blog.stcloudstate.edu/ims/2014/11/27/reframing-informatioan-literacy-as-a-metaliteracy/

Google Keep

Google Keep

http://www.freetech4teachers.com/2015/05/how-to-create-edit-and-share-notes-on.htm

After yesterday’s post about making the most of Google Keep I received a few emails from readers wanting to know a bit more about how Google Keep works. To answer those questions I recorded the short video that you see embedded below (click here if you cannot see the video).

alternatives to lecturing

50 Alternatives To Lecturing

Learning Models

1. Self-directed learning

2. Learning through play

3. Scenario-based learning

4. Game-based learning (http://blog.stcloudstate.edu/ims/?s=gaming)

5. Project-based learning (http://blog.stcloudstate.edu/ims/?s=project+based)

6. Peer-to-Peer instruction

7. School-to-school instruction (using Skype in the classroom, for example)

8. Learning through projects

9. Problem-based learning

10. Challenge-based learning

11. Inquiry-based learning

12. Mobile learning

13. Gamified learning (gamification)

14. Cross-curricular projects (teaching by topic: http://blog.stcloudstate.edu/ims/2015/03/24/education-reform-finland/)

15. Reciprocal Teaching

16. “Flipped-class” learning

17. Face-to-Face Driver blended learning

18. Rotation blended learning

19. Flex Blended Learning

20. “Online Lab” blended learning

21. Sync Teaching

23. HyFlex Learning

24. Self-guided MOOC

25. Traditional MOOC

26. Competency-Based Learning

27. Question-based learning

Literacy Strategies

28. Write-Around

29. Four Corners

30. Accountable Talk

31. RAFT Assignments

32. Fishbowl

33. Debate

34. Gallery Walk

35. Text Reduction

36. Concentric Circles

37. Traditional Concept-Mapping (teacher-given strategy–“fishbone” cause-effect analysis, for example)

38. Didactic, Personalized Concept Mapping (student designed and personalized for their knowledge-level and thinking patterns)

39. Mock Trial

40. Non-academic video + “academic” questioning

41. Paideia Seminar (http://www.paideia.org/, http://www.learnnc.org/lp/editions/paideia/, http://www.mtlsd.org/jefferson_middle/stuff/paideia%20seminar%20guidelines.pdf)

42. Symposium

43. Socratic Seminar (https://www.nwabr.org/sites/default/files/SocSem.pdf)

44. QFT Strategy

45. Concept Attainment

46. Directed Reading Thinking Activity

47. Paragraph Shrinking

48. FRAME Routine

49. Jigsaw Strategy

Other 

50. Content-Based Team-Building Activities

51. Learning Simulation

52. Role-Playing

53. Bloom’s Spiral

54. Virtual Field Trip (http://web.stcloudstate.edu/pmiltenoff/scw/)

55. Physical Field Trip

56. Digital Scavenger Hunt  (http://web.stcloudstate.edu/pmiltenoff/bi/)

57. Physical Scavenger Hunt

http://www.teachthought.com/teaching/50-alternatives-to-lecturing/

 

 

handbook of mobile learning

Routledge. (n.d.). Handbook of Mobile Learning (Hardback) – Routledge [Text]. Retrieved May 27, 2015, from http://www.routledge.com/books/details/9780415503693/

Crompton, H. (2013). A historical overview of mobile learning: Toward learner-centered education. Retrieved June 2, 2015, from https://www.academia.edu/5601076/A_historical_overview_of_mobile_learning_Toward_learner-centered_education

Crompton, Muilenburg and Berge’s definition for m-learning is “learning across multiple contexts, through social and content interactions, using personal electronic devices.”
The “context”in this definition encompasses m-learnng that is formalself-directed, and spontaneous learning, as well as learning that is context aware and context neutral.
therefore, m-learning can occur inside or outside the classroom, participating in a formal lesson on a mobile device; it can be self-directed, as a person determines his or her own approach to satisfy a learning goal; or spontaneous learning, as a person can use the devices to look up something that has just prompted an interest (Crompton, 2013, p. 83). (Gaming article Tallinn)Constructivist Learnings in the 1980s – Following Piage’s (1929), Brunner’s (1996) and Jonassen’s (1999) educational philosophies, constructivists proffer that knowledge acquisition develops through interactions with the environment. (p. 85). The computer was no longer a conduit for the presentation of information: it was a tool for the active manipulation of that information” (Naismith, Lonsdale, Vavoula, & Sharples, 2004, p. 12)Constructionist Learning in the 1980s – Constructionism differed from constructivism as Papert (1980) posited an additional component to constructivism: students learned best when they were actively involved in constructing social objects. The tutee position. Teaching the computer to perform tasks.Problem-Based learning in the 1990s – In the PBL, students often worked in small groups of five or six to pool knowledge and resources to solve problems. Launched the sociocultural revolution, focusing on learning in out of school contexts and the acquisition of knowledge through social interaction

Socio-Constructivist Learning in the 1990s. SCL believe that social and individual processes are independent in the co-construction of knowledge (Sullivan-Palinscar, 1998; Vygotsky, 1978).

96-97). Keegan (2002) believed that e-learning was distance learning, which has been converted to e-learning through the use of technologies such as the WWW. Which electronic media and tools constituted e-learning: e.g., did it matter if the learning took place through a networked technology, or was it simply learning with an electronic device?

99-100. Traxler (2011) described five ways in which m-learning offers new learning opportunities: 1. Contingent learning, allowing learners to respond and react to the environment and changing experiences; 2. Situated learning, in which learning takes place in the surroundings applicable to the learning; 3. Authentic learning;

Diel, W. (2013). M-Learning as a subfield of open and distance education. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.

  1. 15) Historical context in relation to the field of distance education (embedded librarian)
  2. 16 definition of independent study (workshop on mlearning and distance education
  3. 17. Theory of transactional distance (Moore)

Cochrane, T. (2013). A Summary and Critique of M-Learning Research and Practice. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.
( Galin class, workshop)

P 24

According to Cook and Sharples (2010) the development of M learning research has been characterized by three general faces a focus upon Devices Focus on learning outside the classroom He focus on the mobility of the learner

  1. 25

Baby I am learning studies focus upon content delivery for small screen devices and the PDA capabilities of mobile devices rather than leveraging the potential of mobile devices for collaborative learning as recommended by hope Joyner Mill Road and sharp P. 26 Large scale am learning project Several larger am learning projects have tended to focus on specific groups of learners rather than developing pedagogical strategies for the integration of am mlearning with him tertiary education in general

27

m learning research funding

In comparison am learning research projects in countries with smaller population sizes such as Australia and New Zealand are typiclly funded on a shoe string budget

28

M-learning research methodologies

I am learning research has been predominantly characterized by short term case studies focused upon The implementation of rapidly changing technologies with early adopters but with little evaluation reflection or emphasis on mainstream tertiary-education integration

 

p. 29 identifying the gaps in M learning research

 

lack of explicit underlying pedagogical theory Lack of transferable design frameworks

 

Cochrane, T. (2011).Proceedings ascilite 2011 Hobart:Full Paper 250 mLearning: Why? What? Where? How? http://www.ascilite.org/conferences/hobart11/downloads/papers/Cochrane-full.pdf
(Exploring mobile learning success factors http://files.eric.ed.gov/fulltext/EJ893351.pdf
https://prezi.com/kr94rajmvk9u/mlearning/
https://thomcochrane.wikispaces.com/MLearning+Praxis

Pachler, N., Bachmair, B., and Cook, J. (2013). A Sociocultural Ecological Frame for Mobile Learning. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.
(Tom video studio)

35 a line of argumentation that defines mobile devices such as mobile phones as cultural resources. Mobile cultural resources emerge within what we call a “bile complex‘, which consist of specifics structures, agency and cultural practices.

36 pedagogy looks for learning in the context of identify formation of learners within a wider societal context However at the beginning of the twentieth first century and economy oriented service function of learning driven by targets and international comparisons has started to occupy education systems and schools within them Dunning 2000 describes the lengthy transformation process from natural assets Land unskilled labor to tangible assets machinery to intangible created assets such as knowledge and information of all kinds Araya and Peters 2010 describe the development of the last 20 years in terms of faces from the post industrial economy to d information economy to the digital economy to the knowledge economy to the creative economy Cultural ecology can refer to the debate about natural resources we argue for a critical debate about the new cultural resources namely mobile devices and the services for us the focus must not be on the exploitation of mobile devices and services for learning but instead on the assimilation of learning with mobiles in informal contacts of everyday life into formal education

37

Ecology comes into being is there exists a reciprocity between perceiver and environment translated to M learning processes this means that there is a reciprocity between the mobile devices in the activity context of everyday life and the formal learning

45

Rather than focusing on the acquisition of knowledge in relation to externally defined notions of relevance increasingly in a market-oriented system individual faces the challenge of shape his/her knowledge out of his/her own sense of his/her world information is material which is selected by individuals to be transformed by them into knowledge to solve a problem in the life world

Crompton, H. (2013). A Sociocultural Ecological Frame for Mobile Learning. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.

p. 47 As philosophies and practice move toward learner-centered pedagogies, technology in a parallel move, is now able to provide new affordances to the learner, such as learning that is personalized, contextualized, and unrestricted by temporal and spatial constrains.

The necessity for m-learning to have a theory of its own, describing exactly what makes m-learning unique from conventional, tethered electronic learning and traditional learning.

48 . Definition and devices. Four central constructs. Learning pedagogies, technological devices, context and social interactions.

“learning across multiple contexts, through social and content interactions, using personal electronic devices.”

It is difficult, and ill advisable, to determine specifically which devices should be included in a definition of m-learning, as technologies are constantly being invented or redesigned. (my note against the notion that since D2L is a MnSCU mandated tool, it must be the one and only). One should consider m-learning as the utilization of electronic devices that are easily transported and used anytime and anywhere.

49 e-learning does not have to be networked learning: therefore, e-learnng activities could be used in the classroom setting, as the often are.

Why m-learning needs a different theory beyond e-learning. Conventional e-learning is tethered, in that students are anchored to one place while learning. What sets m-learning apart from conventional e-learning is the very lack of those special and temporal constrains; learning has portability, ubiquitous access and social connectivity.

50 dominant terms for m-learning should include spontaneous, intimate, situated, connected, informal, and personal, whereas conventional e-learning should include the terms computer, multimedia, interactive, hyperlinked, and media-rich environment.

51 Criteria for M-Learning
second consideration is that one must be cognizant of the substantial amount of learning taking place beyond the academic and workplace setting.

52 proposed theories

Activity theory: Vygotsky and Engestroem

Conversation theory: Pask 1975, cybernetic and dialectic framework for how knowledge is constructed. Laurillard (2007) although conversation is common for all forms of learning, m-learning can build in more opportunities for students to have ownership and control over what they are learning through digitally facilitated, location-specific activities.

53 multiple theories;

54 Context is central construct of mobile learning. Traxler (2011) described the role of context in m-learning as “context in the wider context”, as the notion of context becomes progressively richer. This theme fits with Nasimith et al situated theory, which describes the m-learning activities promoting authentic context and culture.

55. Connectivity
unlike e-learning, the learner is not anchored to a set place. it links to Vygotsky’s sociocultural approach.
Learning happens within various social groups and locations, providing a diverse range of connected  learning experiences. furthermore, connectivity is without temporal restraints, such as the schedules of educators.

55. Time
m-larning as “learning dispersed in time”

55. personalization
my note student-centered learning

Moura, A., Carvalho, A. (2013). Framework For Mobile Learning Integration Into Educational Contexts. In: Berge and Muilenburg (Eds.). Handbook of Mobile Learning.

p. 58 framework is based on constructivist approach, Activity theory, and the attention, relevance and confidence satisfaction (ARCS) model http://www.arcsmodel.com/#!
http://torreytrust.com/images/ITH_Trust.pdf

to set a didacticmodel that can be applied to m-learning requires looking at the characteristics of specific devi

https://www.researchgate.net/profile/Nadire_Cavus/publication/235912545_Basic_elements_and_characteristics_of_mobile_learning/links/02e7e526c1c0647142000000.pdf
https://eleed.campussource.de/archive/9/3704

education reform

How to reform education

two articles in the New York Times, which are relevant to SCSU and LRS

What to Learn in College to Stay One Step Ahead of Computers

http://nyti.ms/1ekXOyu

  • Two strains of thought seem to dominate the effort to deal with this problem. The first is that we teachers should define and provide to our students a certain kind of general, flexible, insight-bearing human learning that, we hope, cannot be by computers. The second is that we need to make education more business replaced-oriented, teaching about the real world and enabling a creative entrepreneurial process that, presumably, computers cannot duplicate. These two ideas are not necessarily in conflict.
  • Richard J. Murnane and Frank Levy in their book “The New Division of Labor”
  • the study certainly suggests that a college education needs to be broad and general, and not defined primarily by the traditional structure of separate departments staffed by professors
  • The developing redefinition of higher education should provide benefits that will continue for decades into the future. We will have to adapt as information technology advances. At the same time, we must continually re-evaluate what is inherently different between human and computer learning, and what is practical and useful to students for the long haul. And we will have to face the reality that the “art of living in the world” requires at least some elements of a business education.

Why More Education Won’t Fix Economic Inequality

http://nyti.ms/1ywwOzI

  • strengthening education so that more Americans can benefit from the advances of the 21st-century economy. This is a solution that conservatives, centrists and liberals alike can comfortably get behind.
  • Brad Hershbein, Melissa Kearney and Lawrence Summers o
  • Hamilton Project, a centrist research group operating with Wall Street funding and seeking to find third-way-style solutions to America’s problems that can unite left and right.
  • “Increasing the educational attainment of men without a college degree will increase their average earnings and their likelihood of being employed,” the authors write.
  • In other words, it’s worth pursuing more and better education for working-class Americans on its own terms, because it will improve their lives and economic potential. Inequality, meanwhile, is a deeper problem, and its potential solutions remain ideologically divisive.

grading

Game-Changing Grading Changes

http://www.techlearning.com/blogentry/9149

Grade the Product AND the Process

With Revision History, I’ve seen students work just two hours on a paper the night before it’s due and others spend considerable time and effort on a paper. Whatever the case may be, I can identify and address what I see in Revision History with a student to help them grow. My note: use wiki or Google Apps to be able to track changes in revision

Use Kaizena for Effective Feedback – Many teachers have discovered the awesome benefits of filming themselves and their lessons, but what about recording feedback? My note: use audio recording for feedback. a more positive place to learn because my students could now hear the intonation and inflection in my voice when I delivered feedback, not have their hearts broken by red ink. They could hear the positivity with which I reviewed their work and provided feedback.

Rethinking How We Grade Group Work

I had students submit group contracts which clearly stated when and where they would meet and who was responsible for completing what, when. This contract was used in our post-project meetings. By having clearly defined tasks and roles, each student was held accountable. Make them be specific. Instead of Tina will do research by Friday get them as close  to Tina will find five usable sources for the project and get them to Tom on the shared planning Doc by 3pm Friday.

Remember Revision History? It’s great for group projects because a Revision History is created for every person the Doc is shared with. Revision History can help a teacher see who contributed to group work and when because on any shared item in Google Drive, each individual is assigned their own color and timestamp. We can now better see how much each group member has contributed to an assignment. We can take this into consideration when grading, or, better yet, be proactive and intervene when a group’s shared planning Doc looks like one person is doing all the work

1) After a project, I gave students a Google Form where they could provide anonymous feedback on their peers efforts during the project. The Form also allowed students to grade these efforts using a rubric. I would then average the grades for each individual student and share the anonymous feedback at the post-group meetings. I would give them an opportunity to reflect on the feedback as a group and speak to the fairness of their averaged grade. Through this process we would come to an agreement on an individual grade for the project and a list of takeaways the could use to improve for next time.

Instructional Design

7 Things You Should Know About Developments in Instructional Design

http://www.educause.edu/library/resources/7-things-you-should-know-about-developments-instructional-design

Please read the entire EducCause article here: eli7120

discussion of IMS with faculty:

  • pedagogical theories
  • learning outcome
  • design activities
  • students’ multimedia assignments, which lead to online resources
  • collaboration with other departments for the students projects
  • moving the class to online environment (even if kept hybrid)

What is it?

the complexity of the learning environment is turning instructional design into a more dynamic activity, responding to changing educational models and expectations. Flipped classrooms, makerspaces, and competency-based learning are changing how instructors work with students, how students work with course content, and how mastery is verified. Mobile computing, cloud computing, and data-rich repositories have altered ideas about where and how learning takes place.

How does it work?

One consequence of these changes is that designers can find themselves filling a variety of roles. Today’s instructional designer might work with subject-matter experts, coders, graphic designers, and others. Moreover, the work of an instructional designer increasingly continues throughout the duration of a course rather than taking place upfront.

Who’s doing it?

The responsibility for designing instruction traditionally fell to the instructor of a course, and in many cases it continues to do so. Given the expanding role and landscape of technology—as well as the growing body of knowledge about learning and about educational activities and assessments— dedicated instructional designers are increasingly common and often take a stronger role.

Why is it significant?

The focus on student-centered learning, for example, has spurred the creation of complex integrated learning environments that comprise multiple instructional modules. Competency-based learning allows students to progress at their own pace and finish assignments, courses, and degree plans as time and skills permit. Data provided by analytics systems can help instructional designers predict which pedagogical approaches might be most effective and tailor learning experiences accordingly. The use of mobile learning continues to grow, enabling new kinds of learning experiences.

What are the downsides?

Given the range of competencies needed for the position, finding and hiring instructional designers who fit well into particular institutional cultures can be challenging to the extent that instructors hand over greater amounts of the design process to instructional designers, some of those instructors will feel that they are giving up control, which, in some cases, might appear to be simply the latest threat to faculty authority and autonomy. My note: and this is why SCSU Academic Technology is lead by faculty not IT staff. 

Where is it going?

In some contexts, instructional designers might work more directly with students, teaching them lifelong learning skills. Students might begin coursework by choosing from a menu of options, creating their own path through content, making choices about learning options, being more hands-on, and selecting best approaches for demonstrating mastery. Educational models that feature adaptive and personalized learning will increasingly be a focus of instructional design. My note: SCSU CETL does not understand instructional design tendencies AT ALL. Instead of grooming faculty to assume the the leadership role and fill out the demand for instructional design, it isolates and downgrades (keeping traditional and old-fashioned) instructional design to basic tasks of technicalities done by IT staff.

What are the implications for teaching and learning?

By helping align educational activities with a growing understanding of the conditions,
tools, and techniques that enable better learning, instructional designers can help higher education take full advantage of new and emerging models of education. Instructional
designers bring a cross-disciplinary approach to their work, showing faculty how learning activities used in particular subject areas might be effective in others. In this way, instructional
designers can cultivate a measure of consistency across courses and disciplines in how educational strategies and techniques are incorporated. Designers can also facilitate the
creation of inclusive learning environments that offer choices to students with varying strengths and preferences.

More on instructional design in this IMS blog:

http://blog.stcloudstate.edu/ims/2014/10/13/instructional-design/