Posts Tagged ‘XR extended reality’

Library Technology Conference 2019

#LTC2019

Intro to XR in Libraries from Plamen Miltenoff

keynote: equitable access to information

keynote spaker

https://sched.co/JAqk
the type of data: wikipedia. the dangers of learning from wikipedia. how individuals can organize mitigate some of these dangers. wikidata, algorithms.
IBM Watson is using wikipedia by algorythms making sense, AI system
youtube videos debunked of conspiracy theories by using wikipedia.

semantic relatedness, Word2Vec
how does algorithms work: large body of unstructured text. picks specific words

lots of AI learns about the world from wikipedia. the neutral point of view policy. WIkipedia asks editors present as proportionally as possible. Wikipedia biases: 1. gender bias (only 20-30 % are women).

conceptnet. debias along different demographic dimensions.

citations analysis gives also an idea about biases. localness of sources cited in spatial articles. structural biases.

geolocation on Twitter by County. predicting the people living in urban areas. FB wants to push more local news.

danger (biases) #3. wikipedia search results vs wkipedia knowledge panel.

collective action against tech: Reddit, boycott for FB and Instagram.

Mechanical Turk https://www.mturk.com/  algorithmic / human intersection

data labor: what the primary resources this companies have. posts, images, reviews etc.

boycott, data strike (data not being available for algorithms in the future). GDPR in EU – all historical data is like the CA Consumer Privacy Act. One can do data strike without data boycott. general vs homogeneous (group with shared identity) boycott.

the wikipedia SPAM policy is obstructing new editors and that hit communities such as women.

++++++++++++++++++

Twitter and Other Social Media: Supporting New Types of Research Materials

https://sched.co/JAWp

Nancy Herther Cody Hennesy

http://z.umn.edu/

twitter librarieshow to access at different levels. methods and methodological concerns. ethical concerns, legal concerns,

tweetdeck for advanced Twitter searches. quoting, likes is relevant, but not enough, sometimes screenshot

engagement option

social listening platforms: crimson hexagon, parsely, sysomos – not yet academic platforms, tools to setup queries and visualization, but difficult to algorythm, the data samples etc. open sources tools (Urbana, Social Media microscope: SMILE (social media intelligence and learning environment) to collect data from twitter, reddit and within the platform they can query Twitter. create trend analysis, sentiment analysis, Voxgov (subscription service: analyzing political social media)

graduate level and faculty research: accessing SM large scale data web scraping & APIs Twitter APIs. Jason script, Python etc. Gnip Firehose API ($) ; Web SCraper Chrome plugin (easy tool, Pyhon and R created); Twint (Twitter scraper)

Facepager (open source) if not Python or R coder. structure and download the data sets.

TAGS archiving google sheets, uses twitter API. anything older 7 days not avaialble, so harvest every week.

social feed manager (GWUniversity) – Justin Litman with Stanford. Install on server but allows much more.

legal concerns: copyright (public info, but not beyond copyrighted). fair use argument is strong, but cannot publish the data. can analyize under fair use. contracts supercede copyright (terms of service/use) licensed data through library.

methods: sampling concerns tufekci, 2014 questions for sm. SM data is a good set for SM, but other fields? not according to her. hashtag studies: self selection bias. twitter as a model organism: over-represnted data in academic studies.

methodological concerns: scope of access – lack of historical data. mechanics of platform and contenxt: retweets are not necessarily endorsements.

ethical concerns. public info – IRB no informed consent. the right to be forgotten. anonymized data is often still traceable.

table discussion: digital humanities, journalism interested, but too narrow. tools are still difficult to find an operate. context of the visuals. how to spread around variety of majors and classes. controversial events more likely to be deleted.

takedowns, lies and corrosion: what is a librarian to do: trolls, takedown,

++++++++++++++vr in library

Crague Cook, Jay Ray

the pilot process. 2017. 3D printing, approaching and assessing success or failure.  https://collegepilot.wiscweb.wisc.edu/

development kit circulation. familiarity with the Oculus Rift resulted in lesser reservation. Downturn also.

An experience station. clean up free apps.

question: spherical video, video 360.

safety issues: policies? instructional perspective: curating,WI people: user testing. touch controllers more intuitive then xbox controller. Retail Oculus Rift

app Scatchfab. 3modelviewer. obj or sdl file. Medium, Tiltbrush.

College of Liberal Arts at the U has their VR, 3D print set up.
Penn State (Paul, librarian, kiniseology, anatomy programs), Information Science and Technology. immersive experiences lab for video 360.

CALIPHA part of it is xrlibraries. libraries equal education. content provider LifeLiqe STEM library of AR and VR objects. https://www.lifeliqe.com/

+++++++++++++++++

Access for All:

https://sched.co/JAXn

accessibilityLeah Root

bloat code (e.g. cleaning up MS Word code)

ILLiad Doctype and Language declaration helps people with disabilities.

https://24ways.org/

 

+++++++++++++++++++

A Seat at the Table: Embedding the Library in Curriculum Development

https://sched.co/JAY5

embedded librarianembed library resources.

libraians, IT staff, IDs. help faculty with course design, primarily online, master courses. Concordia is GROWING, mostly because of online students.

solve issues (putting down fires, such as “gradebook” on BB). Librarians : research and resources experts. Librarians helping with LMS. Broadening definition of Library as support hub.

Workshop on XR at NerComp 2019

XR mission possible from Plamen Miltenoff

https://events.educause.edu/special-topic-events/nercomp-annual-conference/2019/agenda/xr-mission-possible-separate-registration-is-required

https://docs.google.com/document/d/1giTtWQST4FkryY8XA8jJ04Ow8uI4wJiRoYo7I1Ot1U4/edit#

https://docs.google.com/presentation/d/1BArsT4T0y73Ez9X_ZtYpJrUYYJmsKso2IMk_cAOM55Q/edit?usp=sharing

https://docs.google.com/document/d/1RMzYj2gzKClK-DJ5K7FIIVpUnr1563n7K52XmcpEgjQ/edit

 

LITAchat on XR

March 29th at 1pm Eastern/12pm Central

#LITAchat will discuss XR (eXtended Reality) in libraries.

Join our Twitter conversation about your approach to VR (Virtual Reality) AR (Augmented Reality) and MR (Mixed Reality) for library and campus purposes.

The @ala_lita twitter account will be moderating the chat.

Virtual Reality Health Risks

What Researchers Want Teachers to Know About Virtual Reality’s Health Risks

By Jenny Abamu     Feb 16, 2018

https://www.edsurge.com/news/2018-02-16-what-researchers-want-teachers-to-know-about-virtual-reality-s-health-risks

with Google ramping up sales of its Expeditions Kit, and Facebook giving away 500 free Oculus Rift headsets to schools in Arkansas, the number of teachers using VR tools in U.S. classrooms could jump to more than 15 percent by 2021, predicts Futuresource, a market research firm.

A recent study was done by Children and Virtual Reality, a collaboration between researchers, VR companies, universities and health organizations, found that using VR tools could have significant health impacts on children.

What the researchers found in the third phase of the study, published last October, was that usage of VR headsets could impact a child’s vision, balance and spatial awareness

++++++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+health

VR training workers

I explored the inside of a human nose and it convinced me that the real business in VR isn’t gaming, it’s all about training workers

https://www.businessinsider.com/htc-vive-releases-headset-that-shows-the-future-of-vr-is-enterprise-2018-11

Rosalie Chan

  • On Thursday, virtual reality company HTC VIVE announced its new headset called the Vive Focus, which is aimed at enterprises.
  • It can be used for business collaboration, training and education, such as teaching medical students about sleep apnea, showing car designers how to fix and prototype a car, and conducting remote meetings in a 3D virtual space.

Although virtual reality is typically associated with consumers, such as for video gaming, the technology is increasingly being adopted for use in professional settings. VR and augmented reality are projected to grow to $162 billion by 2020, and more products are targeting enterprise use.

What makes this hardware significant is that it’s much simpler and more portable for customers to use, says Dan O’Brien, General Manager of the Americas at HTC VIVE (My note: so he said…). Other VR headsets that only developers may use might involve expensive hardware and require users to stay in one place.

VIVE Sync. This can be used to help employees collaborate with each other in a virtual space, especially when they work remotely. Each employee’s avatar can share ideas, show presentations, import images, show videos and more all in a 3D virtual space (My note: Second Life tried this; and failed; Do you have any NEW ideas, Dan?).

+++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

can XR help students learn

Giving Classroom Experiences (Like VR) More … Dimension

https://www.insidehighered.com/digital-learning/article/2018/11/02/virtual-reality-other-3-d-tools-enhance-classroom-experiences

at a session on the umbrella concept of “mixed reality” (abbreviated XR) here Thursday, attendees had some questions for the panel’s VR/AR/XR evangelists: Can these tools help students learn? Can institutions with limited budgets pull off ambitious projects? Can skeptical faculty members be convinced to experiment with unfamiliar technology?

All four — one each from Florida International UniversityHamilton CollegeSyracuse University and Yale University — have just finished the first year of a joint research project commissioned by Educause and sponsored by Hewlett-Packard to investigate the potential for immersive technology to supplement and even transform classroom experiences.

Campus of the Future” report, written by Jeffrey Pomerantz

Yale has landed on a “hub model” for project development — instructors propose projects and partner with students with technological capabilities to tap into a centralized pool of equipment and funding. (My note: this is what I suggest in my Chapter 2 of Arnheim, Eliot & Rose (2012) Lib Guides)

Several panelists said they had already been getting started on mixed reality initiatives prior to the infusion of support from Educause and HP, which helped them settle on a direction

While 3-D printing might seem to lend itself more naturally to the hard sciences, Yale’s humanities departments have cottoned to the technology as a portal to answering tough philosophical questions.

institutions would be better served forgoing an early investment in hardware and instead gravitating toward free online products like UnityOrganon and You by Sharecare, all of which allow users to create 3-D experiences from their desktop computers.

+++++++++

Campus of the Future” report, written by Jeffrey Pomerantz

https://library.educause.edu/~/media/files/library/2018/8/ers1805.pdf?la=en

XR technologies encompassing 3D simulations, modeling, and production.

This project sought to identify

  • current innovative uses of these 3D technologies,
  • how these uses are currently impacting teaching and learning, and
  • what this information can tell us about possible future uses for these technologies in higher education.

p. 5 Extended reality (XR) technologies, which encompass virtual reality (VR) and augmented reality (AR), are already having a dramatic impact on pedagogy in higher education. XR is a general term that covers a wide range of technologies along a continuum, with the real world at one end and fully immersive simulations at the other.

p. 6The Campus of the Future project was an exploratory evaluation of 3D technologies for instruction and research in higher education: VR, AR, 3D scanning, and 3D printing. The project sought to identify interesting and novel uses of 3D technology

p. 7 HP would provide the hardware, and EDUCAUSE would provide the methodological expertise to conduct an evaluation research project investigating the potential uses of 3D technologies in higher education learning and research.

The institutions that participated in the Campus of the Future project were selected because they were already on the cutting edge of integrating 3D technology into pedagogy. These institutions were therefore not representative, nor were they intended to be representative, of the state of higher education in the United States. These institutions were selected precisely because they already had a set of use cases for 3D technology available for study

p. 9  At some institutions, the group participating in the project was an academic unit (e.g., the Newhouse School of Communications at Syracuse University; the Graduate School of Education at Harvard University). At these institutions, the 3D technology provided by HP was deployed for use more or less exclusively by students and faculty affiliated with the particular academic unit.

p. 10 definitions
there is not universal agreement on the definitions of these
terms or on the scope of these technologies. Also, all of these technologies
currently exist in an active marketplace and, as in many rapidly changing markets, there is a tendency for companies to invent neologisms around 3D technology.

A 3D scanner is not a single device but rather a combination of hardware and
software. There are generally two pieces of hardware: a laser scanner and a digital
camera. The laser scanner bounces laser beams off the surface of an object to
determine its shape and contours.

p. 11 definitions

Virtual reality means that the wearer is completely immersed in a computer
simulation. Several types of VR headsets are currently available, but all involve
a lightweight helmet with a display in front of the eyes (see figure 2). In some
cases, this display may simply be a smartphone (e.g., Google Cardboard); in other
cases, two displays—one for each eye—are integrated into the headset (e.g., HTC
Vive). Most commercially available VR rigs also include handheld controllers
that enable the user to interact with the simulation by moving the controllers
in space and clicking on finger triggers or buttons.

p. 12 definitions

Augmented reality provides an “overlay” of some type over the real world through
the use of a headset or even a smartphone.

In an active technology marketplace, there is a tendency for new terms to be
invented rapidly and for existing terms to be used loosely. This is currently
happening in the VR and AR market space. The HP VR rig and the HTC Vive
unit are marketed as being immersive, meaning that the user is fully immersed in
a simulation—virtual reality. Many currently available AR headsets, however, are
marketed not as AR but rather as MR (mixed reality). These MR headsets have a
display in front of the eyes as well as a pair of front-mounted cameras; they are
therefore capable of supporting both VR and AR functionality.

p. 13 Implementation

Technical difficulties.
Technical issues can generally be divided into two broad categories: hardware
problems and software problems. There is, of course, a common third category:
human error.

p. 15 the technology learning curve

The well-known diffusion of innovations theoretical framework articulates five
adopter categories: innovators, early adopters, early majority, late majority, and
laggards. Everett M. Rogers, Diffusion of Innovations, 5th ed. (New York: Simon and Schuster, 2003).

It is also likely that staff in the campus IT unit or center for teaching and learning already know who (at least some of) these individuals are, since such faculty members are likely to already have had contact with these campus units.
Students may of course also be innovators and early adopters, and in fact
several participating institutions found that some of the most creative uses of 3D technology arose from student projects

p. 30  Zeynep Tufekci, in her book Twitter and Tear Gas

definition: There is no necessary distinction between AR and VR; indeed, much research
on the subject is based on a conception of a “virtuality continuum” from entirely
real to entirely virtual, where AR lies somewhere between those ends of the
spectrum.  Paul Milgram and Fumio Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information Systems, vol. E77-D, no. 12 (1994); Steve Mann, “Through the Glass, Lightly,” IEEE Technology and Society Magazine 31, no. 3 (2012): 10–14.

For the future of 3D technology in higher education to be realized, that
technology must become as much a part of higher education as any technology:
the learning management system (LMS), the projector, the classroom. New
technologies and practices generally enter institutions of higher education as
initiatives. Several active learning classroom initiatives are currently under
way,36 for example, as well as a multi-institution open educational resources
(OER) degree initiative.37

p. 32 Storytelling

Some scholars have argued that all human communication
is based on storytelling;41 certainly advertisers have long recognized that
storytelling makes for effective persuasion,42 and a growing body of research
shows that narrative is effective for teaching even topics that are not generally
thought of as having a natural story, for example, in the sciences.43

p. 33 accessibility

The experience of Gallaudet University highlights one of the most important
areas for development in 3D technology: accessibility for users with disabilities.

p. 34 instructional design

For that to be the case, 3D technologies must be incorporated into the
instructional design process for building and redesigning courses. And for that
to be the case, it is necessary for faculty and instructional designers to be familiar
with the capabilities of 3D technologies. And for that to be the case, it may
not be necessary but would certainly be helpful for instructional designers to
collaborate closely with the staff in campus IT units who support and maintain
this hardware.

Every institution of higher
education has a slightly different organizational structure, of course, but these
two campus units are often siloed. This siloing may lead to considerable friction
in conducting the most basic organizational tasks, such as setting up meetings
and apportioning responsibilities for shared tasks. Nevertheless, IT units and
centers for teaching and learning are almost compelled to collaborate in order
to support faculty who want to integrate 3D technology into their teaching. It
is necessary to bring the instructional design expertise of a center for teaching
and learning to bear on integrating 3D technology into an instructor’s teaching (My note: and where does this place SCSU?) Therefore,
one of the most critical areas in which IT units and centers for teaching and
learning can collaborate is in assisting instructors to develop this integration
and to develop learning objects that use 3D technology. p. 35 For 3D technology to really gain traction in higher education, it will need to be easier for instructors to deploy without such a large support team.

p. 35 Sites such as Thingiverse, Sketchfab, and Google Poly are libraries of freely
available, user-created 3D models.

ClassVR is a tool that enables the simultaneous delivery of a simulation to
multiple headsets, though the simulation itself may still be single-user.

p. 37 data management:

An institutional repository is a collection of an institution’s intellectual output, often consisting of preprint journal articles and conference papers and the data sets behind them.49 An
institutional repository is often maintained by either the library or a partnership
between the library and the campus IT unit. An institutional repository therefore has the advantage of the long-term curatorial approach of librarianship combined with the systematic backup management of the IT unit. (My note: leaves me wonder where does this put SCSU)

Sharing data sets is critical for collaboration and increasingly the default for
scholarship. Data is as much a product of scholarship as publications, and there
is a growing sentiment among scholars that it should therefore be made public.50

++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+definition

Vendors for VR

LITA discussions on vendors for VR in academia

At WMU, the Libraries is partnering with our central OIT to host a VR lab in the main library.  My partnering co-director, Kevin, is really the subject matter expert but I’m managing a lot of the day-to-day operations.  Kevin is programming and experimenting with all kinds of hardware but we decided to use Oculus Rifts in our lab primarily because of the greater durability of the hand controllers (compared especially to the Vive).  We’re getting all of our games through the Oculus store and have plans to expand into Steam or another provider but haven’t done so yet.  We currently have 40+ titles available for gaming and educational purposes.  We also teach content creation using Unity, Maya, Blender, and a handful of other tools.

https://wmich.edu/vr and https://wmich.edu/library/services/vr

Happy to provide more information but hopefully this gives you a good start.
Best wishes,
Scooter

Scott Russell, Director of IT Services
University Libraries, Western Michigan University

+++++++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

VR resurgence

vr seasickness nauseaState’s universities envision VR resurgence

Chris O’Malley

https://indianapolis.crains.com/article/news/state%E2%80%99s-universities-envision-vr-resurgence

why the sudden interest in VR and AR after years of hype that failed to live up to expectations?

Heather Bellini, of Goldman Sachs Research, noted in a report last year that faster microprocessors and more powerful graphics cards have allowed more images per second to be delivered since the industry’s potential was hyped a decade ago.

There have also been advancements in AR gear, like glasses that allow vision of the real world but also have data or graphical images projected onto part of the glass.

As such, Goldman Sachs is projecting VR and AR to become an $80 billion market by 2025 – roughly equivalent to the size of the current PC market.

he big problems with VR is “motion to photon latency,” which is the time it takes to turn your head and the screen to refresh at the same rate.

++++++++++
more on XR in this IMS blog
https://blog.stcloudstate.edu/ims?s=extended+reality

https://blog.stcloudstate.edu/ims?s=virtual+reality+education

1 4 5 6 7