Scientists at the British Museum have developed pioneering imaging to discover how enterprising Egyptians used dyes on a child’s sock, recovered from a rubbish dump in ancient Antinoupolis in Roman Egypt, and dating from 300AD.
A new virtual reality (VR) training lab at the University of Waterloo’s School of Optometry and Vision Science, will help Canada’s next generation of optometrists learn how to diagnose vision problems and eye diseases more quickly and accurately.
The new lab, funded through an $800,000 investment by national eye care provider FYidoctors, At a total cost of $1.5 million, the FYidoctors Simulation Lab is the first of its kind in Canada and will ensure the School remains at the forefront in optometric education in North America.
Dr. Al Ulsifer, CEO and Chairman of FYidoctors and Waterloo alumnus, said that this investment isn’t just an investment in the University, but a stake in the future generation of optometrists.
The Equipment:
The lab will initially include 5 Eyesi® Binocular Indirect Ophthalmoscopes (BIO) are state of the art augmented reality simulator for training of retinal examinations and provides a highly realistic and dynamic 3D simulation of the anatomical structures of the eye and ophthalmoscope optics.
Phase two of the lab, to be unveiled at a later date, will include the addition of the Eyesi® Slit Lamp simulators. This technology will allow students to practice basic handling of the device and skills required to conduct a corneal exam, retinal exam and Gonioscopy & Tonometry.
Hahn, J. (2018). Virtual reality learning environments | Development of multi-user reference support experiences | Information and Learning Science | Ahead of Print. EmeraldInsight. Retrieved from https://www.emeraldinsight.com/eprint/AU2Q4SJGYQG5YTQ5A9RU/full
case study: an undergraduate senior projects computer science course collaboration whose aim was to develop textual browsing experiences, among other library reference functionality, within the HTC Vive virtual reality (VR) headset. In this case study, readers are introduced to applied uses of VR in service to library-based learning through the research and development of a VR reading room app with multi-user support. Within the VR reading room prototype, users are able to collaboratively explore the digital collections of HathiTrust, highlight text for further searching and discovery and receive consultative research support from a reference specialist through VR.
Library staff met with the project team weekly over the 16 weeks of both semesters to first scope out the functionality of the system and vet requirements.
The library research team further hypothesized that incorporating reference-like support in the VR environment can support library learning. There is ample evidence in the library literature which underscores the importance of reference interactions as learning and instructional experiences for university students
Educational benefits to immersive worlds include offering a deeper presence in engagement with rare or non-accessible artifacts. Sequeira and Morgado (2013, p. 2) describe their Virtual Archeology project as using “a blend of techniques and methods employed by historians and archaeologists using computer models for visualizing cultural artefacts and heritage sites”.
The higher-end graphics cards include devices such as the NVIDIA GeForceTM GTX 1060 or AMD RadeonTM RX 480, equivalent or better. The desktop system that was built for this project used the GeForce GTX 1070, which was slightly above the required minimum specifications.
Collaboration: Library as client.
Specific to this course collaboration, computer science students in their final year of study are given the option of several client projects on which to work. The Undergraduate Library has been a collaborator with senior computer science course projects for several years, beginning in 2012-2013 with mobile application design and chat reference software re-engineering (Hahn, 2015). (My note: Mark Gill, this is where and how Mehdi Mekni, you and I can collaborate)
The hurdles the students had the most trouble with was code integration – e.g. combining various individual software parts towards the end of the semester. The students also were challenged by the public HathiTrust APIs, as the system was developed to call the HathiTrust APIs from within the Unity programming environment and developing API calls in C#. This was a novel use of the HathiTrust search APIs for the students and a new area for the research team as well.
There are alternatives to Unity C# programming, notably WebVR, an open source specification for VR programming on the open web.
A-Frame has seen maturation as a platform agnostic and device agnostic software programming environment. The WebVR webpage notes that the specification supports HTC Vive, Oculus Rift, Samsung Gear VR, Google Daydream and Google Cardboard (WebVR Rocks, 2018). Open web platforms are consistent with library values and educational goals of sharing work that can be foundational in implementing VR learning experience both in VR environments and shareable on the web, too.
An interactive discussion on MOOCs, online learning, and the goal of 100 million learners by 2022
The Future Trends Forum welcomes
Anant Agarwal , the founder and CEO of edX, a non-profit venture created by Harvard University and the Massachusetts Institute of Technology, focused on transforming online and on-campus learning through groundbreaking methodologies.
He aims to help bring quality education to everyone, everywhere. Anant has also been a Professor of Electrical Engineering and Computer Science at MIT for 30 years.
why the sudden interest in VR and AR after years of hype that failed to live up to expectations?
Heather Bellini, of Goldman Sachs Research, noted in a report last year that faster microprocessors and more powerful graphics cards have allowed more images per second to be delivered since the industry’s potential was hyped a decade ago.
There have also been advancements in AR gear, like glasses that allow vision of the real world but also have data or graphical images projected onto part of the glass.
As such, Goldman Sachs is projecting VR and AR to become an $80 billion market by 2025 – roughly equivalent to the size of the current PC market.
he big problems with VR is “motion to photon latency,” which is the time it takes to turn your head and the screen to refresh at the same rate.