The Next 10 Years: Helping STEM Students Thrive series, on January 10th, from 12-1:30 PM ET. The topic will be learning spaces with the following guest speakers:
Jeanne L. Narum, Principal, Learning Spaces Collaboratory
Jeanne will discuss what she has learned about what works, why and how it works in achieving sustainable institutional transformation in the world of planning spaces for learning in the undergraduate setting.
Lisa Stephens, Sr. Strategist- SUNY Academic Innovation – University at Buffalo
Rebecca Rotundo, Instructional Technology Specialist, University at Buffalo
Lisa and Rebecca will share their experience in FLEXspace (Flexible Learning Environments eXchange) an open education repository project which has expanded to over 2,600+ users from 1,200+ educational institutions across 42 countries.
Xin Li, Associate University Librarian, Cornell
Xin will share information about the Library’s initiative to install a Portal on the Cornell campus in Sept. 2018, with the goal to engage faculty, students, and the community in live conversations with Portal users in different countries, cultures, or life circumstances, such as what others do for STEM education.
This collaboration between Cornell University and the University at Buffalo featuring the perspectives of national thought leaders and institutional representatives about expanding the participation of women in undergraduate STEM education at different scales.
This interactive, online series features a different topic per month. Each session kicks off with an introduction by our distinguished thought leaders followed by institutional representatives from Cornell University and the University at Buffalo who will share insights from their campuses. Participants may join the conversation, ask questions, share experiences, build networks and learn more about:
· Innovations that can expand female or underrepresented minority student participation and success in STEM undergraduate education.
· Effective evidence-based STEM teaching practices commonly adopted at research universities.
· Unique institutional and cultural challenges to achieving STEM diversity.
Significant Challenges Impeding Technology Adoption in K–12 Education
Improving Digital Literacy.
Schools are charged with developing students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online etiquette and digital rights and responsibilities in blended and online learning settings. Due to the multitude of elements comprising digital literacy, it is a challenge for schools to implement a comprehensive and cohesive approach to embedding it in curricula.
Rethinking the Roles of Teachers.
Pre-service teacher training programs are also challenged to equip educators with digital and social–emotional competencies, such as the ability to analyze and use student data, amid other professional requirements to ensure classroom readiness.
p. 28 Improving Digital Literacy
Digital literacy spans across subjects and grades, taking a school-wide effort to embed it in curricula. This can ensure that students are empowered to adapt in a quickly changing world
Education Overview: Digital Literacy Has to Encompass More Than Social Use
The American Library Association (ALA) defines digital literacy as “the ability to use information and communication technologies to find, evaluate, create, and communicate or share information, requiring both cognitive and technical skills.” While the ALA’s definition does align to some of the skills in “Participate”, it does not specifically mention the skills related to the “Open Practice.”
The library community’s digital and information literacy standards do not specifically include the coding, revision and remixing of digital content as skills required for creating digital information. Most digital content created for the web is “dynamic,” rather than fixed, and coding and remixing skills are needed to create new content and refresh or repurpose existing content. Leaving out these critical skills ignores the fact that library professionals need to be able to build and contribute online content to the ever-changing Internet.
p. 30 Rethinking the Roles of Teachers
Teachers implementing new games and software learn alongside students, which requires
a degree of risk on the teacher’s part as they try new methods and learn what works
p. 32 Teaching Computational Thinking
p. 36 Sustaining Innovation through Leadership Changes
shift the role of teachers from depositors of knowledge to mentors working alongside students;
p. 38 Important Developments in Educational Technology for K–12 Education
Consumer technologies are tools created for recreational and professional purposes and were not designed, at least initially, for educational use — though they may serve well as learning aids and be quite adaptable for use in schools.
Drones > Real-Time Communication Tools > Robotics > Wearable Technology
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching and learning, whether inside or outside the classroom.
> Games and Gamification > Location Intelligence > Makerspaces > Preservation and Conservation Technologies
Enabling technologies are those technologies that have the potential to transform what we expect of our devices and tools. The link to learning in this category is less easy to make, but this group of technologies is where substantive technological innovation begins to be visible. Enabling technologies expand the reach of our tools, making them more capable and useful
Affective Computing > Analytics Technologies > Artificial Intelligence > Dynamic Spectrum and TV White Spaces > Electrovibration > Flexible Displays > Mesh Networks > Mobile Broadband > Natural User Interfaces > Near Field Communication > Next Generation Batteries > Open Hardware > Software-Defined Networking > Speech-to-Speech Translation > Virtual Assistants > Wireless Powe
Internet technologies include techniques and essential infrastructure that help to make the technologies underlying how we interact with the network more transparent, less obtrusive, and easier to use.
Bibliometrics and Citation Technologies > Blockchain > Digital Scholarship Technologies > Internet of Things > Syndication Tools
Learning technologies include both tools and resources developed expressly for the education sector, as well as pathways of development that may include tools adapted from other purposes that are matched with strategies to make them useful for learning.
Adaptive Learning Technologies > Microlearning Technologies > Mobile Learning > Online Learning > Virtual and Remote Laboratories
Social media technologies could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category.
Crowdsourcing > Online Identity > Social Networks > Virtual Worlds
Visualization technologies run the gamut from simple infographics to complex forms of visual data analysis
3D Printing > GIS/Mapping > Information Visualization > Mixed Reality > Virtual Reality
p. 46 Virtual Reality
p. 48 AI
p. 50 IoT
+++++++++++++++
more on NMC Horizon Reports in this IMS blog
Seidel, V. P., & Fixson, S. K. (2013). Adopting Design Thinking in Novice Multidisciplinary Teams: The Application and Limits of Design Methods and Reflexive Practices: Adopting Design Thinking in Novice Teams. Journal of Product Innovation Management, 30, 19–33. https://doi.org/10.1111/jpim.12061
Razavi, M. N., & Iverson, L. (2007). Designing for privacy in personal learning spaces. New Review Of Hypermedia & Multimedia, 13(2), 163-185. doi:10.1080/13614560701709861
Jung, I., & Latchem, C. (2011). A model for e-education: Extended teaching spaces and extended learning spaces. British Journal Of Educational Technology, 42(1), 6-18. doi:10.1111/j.1467-8535.2009.00987.x
Topics: Assistive and adaptive technologies, Augmented reality, Learning spaces, Mobile learning, Tools
the Universal Design for Learning (UDL) framework, which aims to develop expert learners. In addition to removing barriers and making learning accessible to the widest varied of learners possible, UDL addresses many of the metacognitive and self-efficacy skills associated with becoming an expert learner, including:
Executive functions. These cognitive processes include initiation, goal setting, attention, planning and organization.
Comprehension skills. This skillset encompasses knowledge construction, making connections, developing strategies and monitoring understanding.
Engagement principles. These soft skills include coping, focus, resilience, effort, persistence, self-assessment and reflection.
QR codes
AR apps : two types of AR apps: those for experience and for creation. Experience AR apps, such as Star Walk, are designed to provide the user with an AR experience within a specific content or context. Creation AR apps, such as BlippAR and Aurasma, allow users to create their own AR experiences.
Posters : To support comprehension and metacognitive skills, images related to classroom topics, or posters related to a process could serve as the trigger image.
iBeacons : Beacon technology, such as iBeacon, shares some similarities with QR codes and AR, as it is a way to call up digital content from a specific spot in the physical world. However, unlike QR codes and AR, you do not have to point your device at a code or use a trigger image to call up content with iBeacon. Your device will automatically sync when it is near a beacon, a small device that emits a low-power Bluetooth signal, if you have an iBeacon-enabled app. The beacon then automatically launches digital content, such as a video, audio file or webpage. Beacon technology is well suited for center-based activities, as you can set up the app to trigger instructions for each center, exemplars of what the finished work will look like and/or prompts for the reflection when the center’s activity has been completed.
++++++++++++++++++++
More on QR codes in this IMS blog: