Searching for "electronic books"

reading teenagers electronic devices

https://www.latimes.com/opinion/story/2019-08-22/death-of-reading-high-school-cellphone

In the 1970s, teens read three times as many books as today. In 1980, 60% of high school seniors reported that they read a newspaper, magazine or book on a daily basis for pleasure; by 2016 that number had dropped to 16%. Teenagers are more likely to read books at 13 than 17.

 

++++++++++++
more on device distraction in this IMS blog
http://blog.stcloudstate.edu/ims?s=distraction

also on electronic devices in the classroom
http://blog.stcloudstate.edu/ims/2017/04/03/use-of-laptops-in-the-classroom/

multimedia books

http://www.freetech4teachers.com/2018/03/5-tools-for-creating-multimedia-books.html

5 Tools for Creating Multimedia Books – 2018-25eo7ji

LucidPress https://www.lucidpress.com/

https://www.apple.com/ibooks-author/

https://www.writereader.com/en

Book Creator

Book Creator – the simple way to create beautiful ebooks

MadMag

https://madmagz.com/

++++++++++++++

added Oct. 30, 2018

5 Ways to Make Multimedia Books

Storybird provides templates and artwork for creating digital stories.

Alphabet Organizer is a great little tool from Read Write Think

Widbook is a platform designed to help people collaboratively create multimedia books.

Book Creator

+++++++++++++
more on ebooks in this IMS blog
http://blog.stcloudstate.edu/ims?s=electronic+books

more on OER in this IMS blog
http://blog.stcloudstate.edu/ims?s=OER

PALS at CATT

Campus Academic Technology Teams Webinar:

Online Education Report:

https://mnscu.sharepoint.com/sites/SO-UG-Educational-Innovations/Shared%20Documents/CATTs/2017-11-28/Advancing%20Online%20Education%20-%20Full%20Report.pdf?slrid=9d6b319e-e02a-4000-c1b7-12461657a5be

PALS: Enhancing Library System Solutions

PALS is housed in Mankato, 40+ years, shared by all MnSCU institutions. smaller libraries with smaller staff benefit.

Funding: Centrally from the Chancellor Office and privately.

Ex Libris. Alma (management software) discovery software is Primo. Implementation from Sept 2017 to 2019

value-added services?  A valueadded service (VAS) is a popular telecommunications industry term for non-coreservices, or, in short, all services beyond standard voice calls and fax transmissions. However, it can be used in any service industry, for services available at little or no cost, to promote their primary business.

Value-added service – Wikipedia

The new library system: backroom processing: – acquisitions – resources management (phys + electr) – analytics / reports /APIs
fulfillment : circulation and ILL
Discovery (Primo)
– phys + electr
– institution, consortium, remote resources
advantanges:
Hosted apps
web-based staff interface (until now on Windows)
all in one vs four separate apps – staff efficiency, common services, student success?
electronic resource management
Electronic resource management (ERM) is the practices and techniques used by librarians and library staff to track the selection, acquisition, licensing, access, maintenance, usage, evaluation, retention, and de-selection of a library’s electronic information resources. These resources include, but are not limited to, electronic journalselectronic booksstreaming mediadatabasesdatasetsCD-ROMs, and computer softwarehttps://en.wikipedia.org/wiki/Electronic_resource_management
Primo – comprehensive discovery
one search point; phys + electr; integrated into central system; academic resources available in central index; analytics and reporting; library consortia
EZ Proxy – provides access to library resources off campus
Islandora – open source digital asset management solution tha preserves, manages, and provide access to docs, unique history (photos, publications); research, other resources
Islandora is considered for OER, link to course materials through D2L
Leganto – expensive ExLibris for D2L integration
+++++++++++++
Thurs, Nov 30 – continuation from Tues, Nov 28
Islandora. open source digital assessment tool. STCC is using Islandora
Primo is the discovery tool for campus only w subscription. PALS does not fund Primo. PALS does it through state-wide dbases.
ILL of electronic resources among campuses; the new system is making it easier.
your comments about the new system making electronic resources more available : does it mean that I will not have to go through my campus ILL persona can “borrow” directly? or it is too optimistic to expect that?
 Stephen Kelly: Tim Anderson has shared with me some thoughts on how Islandora can assist with archiving Open Educational Resources (OERs), but could you comment further on that for the benefit of everyone on the call? Answer: safe place to save OER. Drupal-based front end. Customizable. What is the connection to Primo
Stephen Kelly: Could it facilitate easier sharing of resources between institutions? For instance, if an OER was created at one institution and uploaded to Islandora, could it easily be populated for every other institution to access the materials as well?
Piggybacking on Stephen Kelly: are the account permissions similar to the average social media tool, where faculty can decide how “wide” the permission of h/er OER product is? E.g. a blog or YouTube / Kaltura can have: private / unlisted / public levels. Does Islandora function the same?
ownership of the OER.
copyright can be placed on each screen.

Emerging Trends and Impacts of the Internet of Things in Libraries

Emerging Trends and Impacts of the Internet of Things in Libraries

https://www.igi-global.com/gateway/book/244559

Chapters:

Holland, B. (2020). Emerging Technology and Today’s Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 1-33). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch001

The purpose of this chapter is to examine emerging technology and today’s libraries. New technology stands out first and foremost given that they will end up revolutionizing every industry in an age where digital transformation plays a major role. Major trends will define technological disruption. The next-gen of communication, core computing, and integration technologies will adopt new architectures. Major technological, economic, and environmental changes have generated interest in smart cities. Sensing technologies have made IoT possible, but also provide the data required for AI algorithms and models, often in real-time, to make intelligent business and operational decisions. Smart cities consume different types of electronic internet of things (IoT) sensors to collect data and then use these data to manage assets and resources efficiently. This includes data collected from citizens, devices, and assets that are processed and analyzed to monitor and manage, schools, libraries, hospitals, and other community services.

Makori, E. O. (2020). Blockchain Applications and Trends That Promote Information Management. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 34-51). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch002
Blockchain revolutionary paradigm is the new and emerging digital innovation that organizations have no choice but to embrace and implement in order to sustain and manage service delivery to the customers. From disruptive to sustaining perspective, blockchain practices have transformed the information management environment with innovative products and services. Blockchain-based applications and innovations provide information management professionals and practitioners with robust and secure opportunities to transform corporate affairs and social responsibilities of organizations through accountability, integrity, and transparency; information governance; data and information security; as well as digital internet of things.
Hahn, J. (2020). Student Engagement and Smart Spaces: Library Browsing and Internet of Things Technology. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 52-70). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch003
The purpose of this chapter is to provide evidence-based findings on student engagement within smart library spaces. The focus of smart libraries includes spaces that are enhanced with the internet of things (IoT) infrastructure and library collection maps accessed through a library-designed mobile application. The analysis herein explored IoT-based browsing within an undergraduate library collection. The open stacks and mobile infrastructure provided several years (2016-2019) of user-generated smart building data on browsing and selecting items in open stacks. The methods of analysis used in this chapter include transactional analysis and data visualization of IoT infrastructure logs. By analyzing server logs from the computing infrastructure that powers the IoT services, it is possible to infer in greater detail than heretofore possible the specifics of the way library collections are a target of undergraduate student engagement.
Treskon, M. (2020). Providing an Environment for Authentic Learning Experiences. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 71-86). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch004
The Loyola Notre Dame Library provides authentic learning environments for undergraduate students by serving as “client” for senior capstone projects. Through the creative application of IoT technologies such as Arduinos and Raspberry Pis in a library setting, the students gain valuable experience working through software design methodology and create software in response to a real-world challenge. Although these proof-of-concept projects could be implemented, the library is primarily interested in furthering the research, teaching, and learning missions of the two universities it supports. Whether the library gets a product that is worth implementing is not a requirement; it is a “bonus.”
Rashid, M., Nazeer, I., Gupta, S. K., & Khanam, Z. (2020). Internet of Things: Architecture, Challenges, and Future Directions. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 87-104). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch005
The internet of things (IoT) is a computing paradigm that has changed our daily livelihood and functioning. IoT focuses on the interconnection of all the sensor-based devices like smart meters, coffee machines, cell phones, etc., enabling these devices to exchange data with each other during human interactions. With easy connectivity among humans and devices, speed of data generation is getting multi-fold, increasing exponentially in volume, and is getting more complex in nature. In this chapter, the authors will outline the architecture of IoT for handling various issues and challenges in real-world problems and will cover various areas where usage of IoT is done in real applications. The authors believe that this chapter will act as a guide for researchers in IoT to create a technical revolution for future generations.
Martin, L. (2020). Cloud Computing, Smart Technology, and Library Automation. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 105-123). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch006
As technology continues to change, the landscape of the work of librarians and libraries continue to adapt and adopt innovations that support their services. Technology also continues to be an essential tool for dissemination, retrieving, storing, and accessing the resources and information. Cloud computing is an essential component employed to carry out these tasks. The concept of cloud computing has long been a tool utilized in libraries. Many libraries use OCLC to catalog and manage resources and share resources, WorldCat, and other library applications that are cloud-based services. Cloud computing services are used in the library automation process. Using cloud-based services can streamline library services, minimize cost, and the need to have designated space for servers, software, or other hardware to perform library operations. Cloud computing systems with the library consolidate, unify, and optimize library operations such as acquisitions, cataloging, circulation, discovery, and retrieval of information.
Owusu-Ansah, S. (2020). Developing a Digital Engagement Strategy for Ghanaian University Libraries: An Exploratory Study. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 124-139). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch007
This study represents a framework that digital libraries can leverage to increase usage and visibility. The adopted qualitative research aims to examine a digital engagement strategy for the libraries in the University of Ghana (UG). Data is collected from participants (digital librarians) who are key stakeholders of digital library service provision in the University of Ghana Library System (UGLS). The chapter reveals that digital library services included rare collections, e-journal, e-databases, e-books, microfilms, e-theses, e-newspapers, and e-past questions. Additionally, the research revealed that the digital library service patronage could be enhanced through outreach programmes, open access, exhibitions, social media, and conferences. Digital librarians recommend that to optimize digital library services, literacy programmes/instructions, social media platforms, IT equipment, software, and website must be deployed. In conclusion, a DES helps UGLS foster new relationships, connect with new audiences, and establish new or improved brand identity.
Nambobi, M., Ssemwogerere, R., & Ramadhan, B. K. (2020). Implementation of Autonomous Library Assistants Using RFID Technology. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 140-150). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch008
This is an interesting time to innovate around disruptive technologies like the internet of things (IoT), machine learning, blockchain. Autonomous assistants (IoT) are the electro-mechanical system that performs any prescribed task automatically with no human intervention through self-learning and adaptation to changing environments. This means that by acknowledging autonomy, the system has to perceive environments, actuate a movement, and perform tasks with a high degree of autonomy. This means the ability to make their own decisions in a given set of the environment. It is important to note that autonomous IoT using radio frequency identification (RFID) technology is used in educational sectors to boost the research the arena, improve customer service, ease book identification and traceability of items in the library. This chapter discusses the role, importance, the critical tools, applicability, and challenges of autonomous IoT in the library using RFID technology.
Priya, A., & Sahana, S. K. (2020). Processor Scheduling in High-Performance Computing (HPC) Environment. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 151-179). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch009
Processor scheduling is one of the thrust areas in the field of computer science. The future technologies use a huge amount of processing for execution of their tasks like huge games, programming software, and in the field of quantum computing. In real-time, many complex problems are solved by GPU programming. The primary concern of scheduling is to reduce the time complexity and manpower. Several traditional techniques exit for processor scheduling. The performance of traditional techniques is reduced when it comes to the huge processing of tasks. Most scheduling problems are NP-hard in nature. Many of the complex problems are recently solved by GPU programming. GPU scheduling is another complex issue as it runs thousands of threads in parallel and needs to be scheduled efficiently. For such large-scale scheduling problems, the performance of state-of-the-art algorithms is very poor. It is observed that evolutionary and genetic-based algorithms exhibit better performance for large-scale combinatorial and internet of things (IoT) problems.
Kirsch, B. (2020). Virtual Reality in Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 180-193). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch010
Librarians are beginning to offer virtual reality (VR) services in libraries. This chapter reviews how libraries are currently using virtual reality for both consumption and creation purposes. Virtual reality tools will be compared and contrasted, and recommendations will be given for purchasing and circulating headsets and VR equipment. Google Tour Creator and a smartphone or 360-degree camera can be used to create a virtual tour of the library and other virtual reality content. These new library services will be discussed along with practical advice and best practices for incorporating virtual reality into the library for instructional and entertainment purposes.
Heffernan, K. L., & Chartier, S. (2020). Augmented Reality Gamifies the Library: A Ride Through the Technological Frontier. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 194-210). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch011
Two librarians at a University in New Hampshire attempted to integrate gamification and mobile technologies into the exploration of, and orientation to, the library’s services and resources. From augmented reality to virtual escape rooms and finally an in-house app created by undergraduate, campus-based, game design students, the library team learned much about the triumphs and challenges that come with attempting to utilize new technologies to reach users in the 21st century. This chapter is a narrative describing years of various attempts, innovation, and iteration, which have led to the library team being on the verge of introducing an app that could revolutionize campus discovery and engagement.
Miltenoff, P. (2020). Video 360 and Augmented Reality: Visualization to Help Educators Enter the Era of eXtended Reality. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 211-225). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch012
The advent of all types of eXtended Reality (XR)—VR, AR, MR—raises serious questions, both technological and pedagogical. The setup of campus services around XR is only the prelude to the more complex and expensive project of creating learning content using XR. In 2018, the authors started a limited proof-of-concept augmented reality (AR) project for a library tour. Building on their previous research and experience creating a virtual reality (VR) library tour, they sought a scalable introduction of XR services and content for the campus community. The AR library tour aimed to start us toward a matrix for similar services for the entire campus. They also explored the attitudes of students, faculty, and staff toward this new technology and its incorporation in education, as well as its potential and limitations toward the creation of a “smart” library.

School Safety and Student Wellbeing

CALL FOR CHAPTER PROPOSALS
Proposal Submission Deadline: February 12, 2019
Leveraging Technology for the Improvement of School Safety and Student Wellbeing
A book edited by Dr. Stephanie Huffman, Dr. Stacey Loyless, Dr. Shelly Allbritton, and Dr. Charlotte Green (University of Central Arkansas)

Introduction
Technology permeates all aspects of today’s school systems. An Internet search on technology in schools can generate millions of website results. The vast majority of these websites (well over 8,000,000 results for one simple search) focuses on advice, activities, and uses of technology in the classroom. Clearly teaching and learning with technology dominates the literature and conversations on how technology should or could be used in classroom settings. A search on school safety and technology can produce more than 3,000,000 results with many addressing technological tools such as video cameras, entry control devices, weapon detectors, and other such hardware. However, in recent times, cyberbullying appears to dominate the Internet conversations in references to school safety. With an increase in school violence in the past two decades, school safety is a fundamental concern in our nation’s schools. Policy makers, educators, parents, and students are seeking answers in how best to protect the physical, emotional, and social well-being of all children.

 

Objective of the Book
The proposed edited book covers the primary topic of P-12 school safety and the use of technology and technology used for fostering an environment in which all students can be academically successful and thrive as global citizens.  School safety is defined as the physical, social, and emotional well-being of children. The book will comprise empirical, conceptual and case based (practical application) research that craft an overall understanding of the issues in creating a “safe” learning environment and the role technology can and should play; where a student’s well-being is valued and protected from external and internal entities, equitable access is treasured as a means for facilitating the growth of the whole student, and policy, practices, and procedures are implemented to build a foundation to transform the culture and climate of the school into an inclusive nurturing environment.

 

Target Audience
The target audience is leadership and education scholars, leadership practitioners, and technology coordinators.  This book will be used as a collective body of work for the improvement of K-12 schools and as a tool for improving leadership and teacher preparation programs. School safety is a major concern for educators.  Technology has played a role in creating unsafe environments for children; however it also is an avenue for addressing the challenges of school safety

Recommended topics include, but are not limited to, the following:

Section I – Digital Leadership

  • Technology as a Climate and Cultural Transformation Tool
    • School Leadership in the Digital Age: Building a Shared Vision for all Aspects of Learning and Teaching
  • Ensuring Equity within a “One to One” Technology Framework
    • Infrastructure within Communities
    • Accessible WiFi for Low SES Students
    • Developing Culturally Responsive Pedagogy
  • Professional Development for School Leaders

Section II – Well Being

  • Social Media and School Safety: Inputs and Outputs
    • Tip lines: Crime, Bullying, Threats
    • Communication and Transparency
    • Platform for Social Justice
  • Teaching Strategies to Promote Healthy Student Interactions in Cyberspace (Digital Citizenship?)
    • Building Capacity and Efficacy, Platform to lower incidence of Cyber-Bullying, Boosting Instructional Engagement
  • Literacy and Preparedness for the Influence and Consequence of Digital Media Marketing Campaigns directed toward Children, Adolescents, and Teens.
  • Pioneering Innovative Technology Program in Curriculum: Fostering “Belonging” beyond Athletics & Arts.

Section III- Infrastructure Safety

  • Campus/Facility Safety and Security
    • Rural Schools vs. Urban Schools
    • Digital A/V Systems
    • Background Check – Visitor Registration (i.e. Raptor)
  • Network Security Systems and Protocols
    • User Filtering and Monitoring
    • Firewalls
  • Policy
    • Appropriate use policies
    • Digital Citizenship
    • Web development policy
    • Privacy
    • Intellectual Property & Copyright

Section IV – Academic Success

  • Professional Development for Classroom Teachers
    • Pedagogical Integration of Technology
    • Instructional Coaching for Student Engagement
    • Increase Rigor with Technology
    • Competence in the Blended/Hybrid/Flipped Classroom
  • Technology to enhance learning for all
    • Assistive Technology
    • Accessibility issues
    • Internet access for Low SES Students in the Blended/Hybrid/Flipped Classroom
  • Personal Learning Design
    • Differentiation for Student Efficacy
    • Strategies for Increasing Depth of Knowledge
    • Design Qualities for Enhanced Engagement

Submission Procedure
Researchers and practitioners are invited to submit on or before February 12, 2019, a chapter proposal of 1,000 to 2,000 words clearly explaining the purpose, methodology, and a brief summary findings of his or her proposed chapter. Authors will be notified by March 12, 2019 about the status of their proposals and sent chapter guidelines. Full chapters are expected to be submitted by June 12, 2019, and all interested authors must consult the guidelines for manuscript submissions at http://www.igi-global.com/publish/contributor-resources/before-you-write/ prior to submission. See Edited Chapter Template. All submitted chapters will be reviewed on a double-blind review basis. Contributors may also be requested to serve as reviewers for this project.

Note: There are no submission or acceptance fees for manuscripts submitted to this book publication, Leveraging Technology for the Improvement of School Safety and Student Wellbeing. All manuscripts are accepted based on a double-blind peer review editorial process.

All proposals should be submitted through the eEditorial Discovery®TM online submission manager. USE THE FOLLOWING LINK TO SUBMIT YOUR PROPOSAL.  https://www.igi-global.com/publish/call-for-papers/call-details/3709

Publisher
This book is scheduled to be published by IGI Global (formerly Idea Group Inc.), an international academic publisher of the “Information Science Reference” (formerly Idea Group Reference), “Medical Information Science Reference,” “Business Science Reference,” and “Engineering Science Reference” imprints. IGI Global specializes in publishing reference books, scholarly journals, and electronic databases featuring academic research on a variety of innovative topic areas including, but not limited to, education, social science, medicine and healthcare, business and management, information science and technology, engineering, public administration, library and information science, media and communication studies, and environmental science. For additional information regarding the publisher, please visit http://www.igi-global.com. This publication is anticipated to be released in 2020.

Important Dates
February 12, 2019: Proposal Submission Deadline
March 12, 2019: Notification of Acceptance
June 12, 2019: Full Chapter Submission
August 10, 2019: Review Results Returned
August 10, 2019: Final Acceptance Notification
September 7, 2019: Final Chapter Submission

Inquiries can be forwarded to
Dr. Stephanie Huffman
University of Central Arkansas
steph@uca.edu or 501-450-5430

Accessible Media, Web and Technology Conference

Accessing Higher Ground – Accessible Media, Web and Technology Conference

Virtual Agenda November 14-16, 2018

++++++++++++++++++

Not So Fast: Implementing Accessibility Reviews in a University’s IT Software Review Process

  • Crystal Tenan, IT Accessibility Coordinator, NC State University
  • Bill Coker, Software Licensing Manager, NC State University

Summary

In this presentation, we will provide an overview of NC State’s IT Purchase Compliance process and focus on the accessibility review process. We will discuss the process of implementation, important considerations for working with the campus community and vendors, and the impact of the IT Purchase Compliance process on campus.

Abstract

Before a university purchases software, it should review the software to ensure it complies with university standards and follows Federal and State guidelines for security and accessibility. Without review, there is a higher risk that purchases put sensitive university data at risk, do not meet the needs of the campus population with disabilities, or require integration with enterprise level applications.

In a joint effort between the Office of Information Technology, the Office of General Counsel and the Purchasing Department, NC State University implemented a process to review purchases of software prior to issuing a purchase requisition.

In this presentation, we will provide an overview of NC State’s IT Purchase Compliance process and focus on the accessibility review process. We will discuss the process of implementation, important considerations for working with the campus community and vendors, and the impact of the IT Purchase Compliance process on campus.

Keypoints

  1. Participants will learn the importance of software reviews prior to purchasing.
  2. Participants will be exposed to an example format of how to structure a software review process.
  3. Participants will learn techniques for collaborating with various campus departments for software reviews.

(handouts available: ask me)

+++++++++

Math Accessibility in Word, Canvas, Conversion and More!

  • Paul Brown, Vice President, Texthelp
  • Rachel Kruzel, Assistive Technology & Accommodations Specialist, Augsburg University

Rachel Kruzel: Free and Low Cost Accessibility Tools (March 2018) https://vimeo.com/259224118

Link to Resources at Augsburg: http://www.augsburg.edu/class/groves/assistive-technology/

Session Details

  • Length of Session: 1-hr
  • Format: Lecture
  • Expertise Level: Beginner
  • Type of session: General Conference

Summary

This session will overview Texthelp’s exciting math accessibility program, EquatIO. Learn how students and professors easily insert math into Word, Canvas, and more as well as make STEM textbook conversion a much easier process. Augsburg’s Rachel Kruzel will provide an inside look into how EquatIO is making math accessible across her campus.

Abstract

EquatIO is Texthelp’s game-changing math software program that gives students and professors multiple means of producing, engaging with, and expressing math with ease. This session will overview how to easily insert math into Microsoft Word, Canvas, and other programs as well as how it can save valuable time and resources in STEM textbook conversion. The program’s core features including math-to-speech, speech-to-math, math prediction, math OCR capabilities and many other tools will be demonstrated, helping empower students in this traditionally challenging area. Attendees will not only learn the program, but also how they can gain free access to its premium features as well as assist their students in utilizing the freemium and premium tools.

Keypoints

  1. Math accessibility is here!
  2. EquatIO is a digital math solution for all students and staff.
  3. Save time and resources in STEM textbook conversion.

Disability Areas

All Areas, Cognitive/Learning, Vision

Topic Areas

Alternate Format, Assistive Technology, eBooks, Faculty Instruction/Accessible Course Design, Including Accessibility in Curriculum, Information Technology, Uncategorized, Web/Media Access

Speaker Bio(s)

Paul Brown

Paul Brown has been in education for 20 years as a teacher, technology coach, manager, and currently is a Vice President at Texthelp. Paul’s team oversees the successful implementation of the Read&Write and EquatIO product lines. Paul is a Cleveland Browns fan for life and asks for your pity ahead of time. He and his family live in Edina, MN.

Rachel Kruzel

Rachel Kruzel, ATP, is the Assistive Technology & Accommodations Specialist at Augsburg University in Minneapolis, Minnesota, and is a RESNA Certified Assistive Technology Practitioner (ATP). She has over 8 years of experience working in in the CLASS Office (Disability Resources) focusing on assistive technology, educational technology, transitioning from K-12 to higher education, academic accommodations implementation, and digital, electronic, and web accessibility. Rachel has presented both regionally and nationally on a variety of topics about assistive technology, as well as accessibility, transition, assistive technology tools such as the QIAT-PS and specific software program demonstrations and trainings, as well as general consultation with students, parents, schools, and organizations. She also provides consulting and direct consumer support through assistive technology consultation and the implementation process.

++++++++++++++++

“We don’t have enough staff assigned to making IT accessible!”

Summary

How often do we hear people say this or feel this way ourselves? In this session the speaker will engage with attendees on promising practices for making the most of limited resources toward a more accessible IT environment on campus.

Abstract

How often do we hear people say this or feel this way ourselves? In this session the speaker will engage with attendees on promising practices for making the most of limited resources toward a more accessible IT environment on campus. Topics will included but not be limited to convening a high level task force of key stakeholders on campus, developing policies and guidelines, offering training on accessibility within other training opportunities, presenting at regularly occurring meetings and special interest groups, developing partnerships, supporting a group of IT accessibility liaisons to extend the reach of central services, securing funds to proactively caption videos and remediate inaccessible documents (particularly those that are high impact/use), providing online resources for specific target groups, and purchasing accessibility tools for campus-wide use. The speaker will provide examples and the audience will contribute their own ideas, experiences, and lessons learned.

Keypoints

  1. Organizations promoting accessible IT on campuses are often under staffed.
  2. Promising practices have been developed at some schools for maximizing the impact of available resources.
  3. Promising practices have been developed at some schools for maximizing the impact of available resources.

Disability Areas

All Areas

Topic Areas

Administrative/Campus Policy, Information Technology, Uncategorized

Speaker Bio(s)

Sheryl Burgstahler

Dr. Sheryl Burgstahler founded and directs the DO-IT (Disabilities, Opportunities, Internetworking, and Technology) Center and the ATC (Access Technology Center) as part of her role as Director of Accessible Technology Services at the University of Washington (UW). These centers promote (1) the support the success of students with disabilities in postsecondary education and careers and (2) the development of facilities, IT, services, and learning activities that are welcoming and accessible to individuals with disabilities. The ATC focuses efforts at the UW; the DO-IT Center reaches national and international audiences with the support of federal, state, corporate, foundation, and private funds. Dr. Burgstahler is an affiliate professor in the UW College of Education. She developed and taught the Accessibility and Compliance in Online Education online course offered by Rutgers University and currently teaches graduate courses in applications of universal design in higher education at City University of New York and Saint Louis University.

(handouts available: ask me)

++++++++++++++++++

Evaluating and Repairing Word and PowerPoint Files

Summary

In this hands-on workshop, learn to evaluate and repair common accessibility issues in Microsoft Word and PowerPoint.

Abstract

Both Word and PowerPoint contain a very useful accessibility checker that can identify many potential accessibility issues within a document. However, like any automated checker, there are also many issues that it cannot detect–accessibility evaluation is always a combination of evaluation tools and manual checks.

During this workshop, participants will practice evaluating and repairing many common accessibility issues of Word and PowerPoint files. We will use practice files and a printable evaluation checklist to evaluate Word docs and Power Point slides.

Keypoints

  1. Learn to use the built-in Microsoft Office Accessibility Checker
  2. Identify accessibility issues that must be analyzed manually
  3. Practice evaluating and repairing the accessibility of Word and PowerPoint files

Disability Areas

All Areas

Topic Areas

Uncategorized, Web/Media Access

Speaker Bio(s)

Jonathan Whiting

o: Jonathan Whiting is the Director of Training at WebAIM, based at Utah State University. His main passion is helping others learn to make the web more accessible to people with disabilities. Jonathan is also currently involved in the GOALS Project, a program to assist institutions of Higher Education in improving their accessibility system-wide. With a Master’s Degree in Instructional Technology and over fifteen years of experience in the field of web accessibility, Jonathan has published dozens of articles, tutorials, and other instructional resources. He has traveled extensively to train thousands of web developers and other professionals who develop or maintain web content.

(handouts available: ask me)

+++++++++++++++++++++

Powerful Presentation Skills for the Accessibility Professional

  • Christa Miller, Director of Inclusive Media Design, Virginia Tech

Summary

As subject matter experts in disabilities and accessibility, we are often called upon to provide training and professional development to others. However, it is uncommon for us to receive formal training in this area ourselves. Through discussion and small group activities, participants will explore and practice techniques for giving presentations

Abstract

As accessibility and disability professionals we are well equipped with the content knowledge needed to provide motivation, or justification on the what, why and how of accessibility. Unfortunately, we are often called upon to provide this to experts in a wide range of unrelated fields who do not intrinsically know what it means “to be accessible”. Not only is the audience challenging to reach, but the content challenges the audience on multiple levels. That being said, by using best practices for training adult learners, accessibility training can become a pleasure.

This session aims to provide techniques and practice on critical presentation skills for accessibility professionals including but not limited to: increasing audience engagement, developing powerful slides and visuals, checking your work for accessibility, and practicing before presenting.

Keypoints

  1. Presentations by accessibility professionals should exemplify best practice for accessibility
  2. Successful presentations are part performance and part technical know-how
  3. Accessibility presentations should contain more application and practice than background information

Disability Areas

All Areas

Topic Areas

Administrative/Campus Policy, Faculty Instruction/Accessible Course Design

Speaker Bio(s)

Christa Miller

Christa Miller is a proud Virginia Tech Hokie and is currently the Director of Inclusive Media Design. She first became interested in assistive technologies (AT) while earning her BS in Electrical Engineering. Her passion for accessible technology and universal design then led her to pursue her MS in Industrial Systems Engineering, concentrating in Human Factors Engineering.

Between 2006 and 2018, Christa has worked in many roles for Assistive Technologies, part of Technology-enhanced Learning and Online Strategies (TLOS). Notable among these was as the lead Braille Transcriber for Braille Services, an initiative to provide in-house production of Braille materials for the University for which she received the Excellence in Access and Inclusion Award in 2012. Her unique knowledge of the tools and technologies needed to produce Braille for Science, Technology, Engineering, and Mathematics (STEM) courses has led her to consult with disability service providers from many other post-secondary institutions and share that knowledge at national conferences.

In her current role, Christa has enjoyed co-leading a several professional development programs aimed at providing Teaching Faculty, Instructors and Graduate Teaching Assistants with the knowledge, skills and confidence necessary to create inclusive learning environments.

(handouts available: ask me)

++++++++++++++++

IT Colleagues: from Accessibility Newbies into Accessibility Auditors

  • Kristen Dabney, Assistive Technology Instruction Specialist, Tufts University

Summary

Tufts Student Accessibility Services office created accessibility testing guidelines designed to help IT professionals complete basic accessibility audits for digital products before they are purchased.

Abstract

As Tufts implemented its accessible procurement protocol, the need for a streamlined accessibility audit process became crucial. For a university to be proactive and evaluate product accessibility before purchase, a comprehensive auditing system must be in place. These audits (completed by our SAS-trained IT team) provide a more in-depth view than that described by a vendor’s VPAT. This simple to use guide enhanced campus-wide buy-in while also making forward progress on procurement audits. Attendees will learn the process used to initiate and develop these guidelines, the arguments successfully used to get the procurement process firmly in the IT office, the training process for IT auditors and best practices for sustainability beyond the initial training workshop. This session will conclude with a walk though of an example application using the guidelines developed by Tufts Student Accessibility Services office.

Keypoints

  1. Training guide for IT professionals new to testing accessibility
  2. Quick walk through Accessibility Audit process
  3. Accessibility Review Instructions + Vendor Accessibility Report Checklist (WCAG 2.1 standards)

Disability Areas

All Areas

Topic Areas

Administrative/Campus Policy, Assistive Technology, Information Technology, Uncategorized

Speaker Bio(s)

Kristen Dabney

Kristen Dabney graduated from Grinnell College with a degree in Physics, and later from University of Connecticut with a Postsecondary Disability Services Certification since the Physics degree wasn’t saying “I’m interested in accessibility” loud enough. She currently works as an Assistive Technology Instruction Specialist at Tufts University.

(handouts available: ask me)

+++++++++++++++++++

Social media and accessibility

  • Gian Wild, Ms, AccessibilityOz

Summary

Gian Wild goes through the accessibility issues of each of the four main social media sites (Facebook, Twitter, YouTube and LinkedIn) and discusses ways that you can make sure your social media content is accessible.

Abstract

Social media accessibility is an incredibly important tool in modern society. It is not just the young who access social media, with close to 30% of people over the age of 65 interacting on social networking sites, and 50% of people aged 50 – 64. As the percentage of recruiters who use LinkedIn is now 95%, social media is becoming an essential part of negotiating the current working environment. The main reason why social media is not accessible is that social networking sites and apps are almost continually refreshed. Facebook sometimes changes twice a day. This, coupled with a lack of a formal testing process, means that what may be accessible today may be literally gone tomorrow.

Keypoints

  1. Social media networks cannot be relied upon to be accessible
  2. A number of easy things you can do to make your social media more accessible
  3. The most improved and the most accessible social media networks of 2018

Disability Areas

All Areas

Topic Areas

Uncategorized, Web/Media Access

Speaker Bio(s)

Gian Wild

Gian works in the area of web accessibility: making sure web sites and mobile apps can be used by people with disabilities. She spent six years contributing to the international set of web accessibility guidelines used around the world and is also the CEO and Founder of AccessibilityOz. With offices in Australia and the United States, AccessibilityOz has been operating for five years. Its clients include the Department of Prime Minister and Cabinet, Gold Coast 2018 Commonwealth Games, Optus, Seek and Foxtel. A 2017 Australian of the Year award nominee, Gian splits her time between Australia the US. A regular speaker at conferences around the world, in 2015 she presented to the United Nations on the importance of web accessibility at the Conference of State Parties to the Convention on the Rights of Persons with Disabilities.

(handouts available: ask me)

+++++++++++++++++

I Was Wrong! Build Your Successful Accessibility Program by Learning from My Mistakes

Angela Hooker, Microsoft

Summary

Whether or not you’re new to the field, when you manage an accessibility program, you can fall into common traps–but there’s no need to! Learn from my observations and old mistakes! Get tips for running a successful program and avoiding poor management choices, poor policy, poor planning, and more that can hinder your program.

Abstract

So, you’re leading an accessibility program…how’s that working out?

If you’re a new accessibility program manager or a seasoned pro, you can still make rookie mistakes. I sure have, and that’s after over 16 years of running accessibility and user experience programs!

Has your laid back nature defeated your process-driven “evil twin”? Does your site’s written content defeat the accessibility features that your other team members created? Are you unsure why your developers still “don’t get it”? Do your leaders avoid you and conversations about accessibility, except to say that “It’s great!”? Or perhaps your web management direction–when it comes to overall content, design, and development choices–doesn’t quite support the needs of your audience, and you’re not sure where things are going wrong.

My experience from the corporate and government sectors will help you plan your program, whether it’s for a higher education, corporate, or government environment. Get on track with process, program management, setting proper expectations, and more to help you drive great user experiences and real accessibility across your organization.

Keypoints

  1. Learn the common mistakes in creating and sustaining an accessibility program and how to avoid them.
  2. Understand the importance of setting boundaries for accepting and establishing program responsibilities.
  3. Get tips to manage the overall content, design, development, and testing–which drive your program’s success.

Disability Areas

All Areas

Topic Areas

Uncategorized, Web/Media Access

Speaker Bio(s)

Angela Hooker

Angela Hooker is a Senior Accessibility Product Manager at Microsoft, where she’s built a center of expertise for accessibility, user experience, and universal design. She’s brought her web management, development, design, accessibility, and editorial and content management expertise to the government and private sector for over 20 years. Angela also advocates for role-based accessibility and believes that teaching people how to incorporate principles of accessibility in their everyday work creates a sustainable program and produces the most accessible user experiences. In addition to accessibility and universal design, she supports plain language and web standards. Angela speaks on and writes about accessibility, user experience, and plain language.

(handouts available: ask me)

+++++++++++++++++++++

Trending Tech Tools: What’s New, What’s Improved & What’s on the Horizon for Assistive Technology & Accessibility Tools

  • Rachel Kruzel, Assistive Technology & Accommodations Specialist, Augsburg University

Summary

The field of Assistive Technology and Accessibility is constantly changing. Tech giants are making more frequent updates to their products. As a result, knowing the latest updates is essential. Assistive Technology and Accessibility software updates from major tech companies such as Texthelp, Sonocent, and Microsoft, as well as free and low cost tools to support students on campus will be featured and shown.

Abstract

Both the Assistive Technology and Accessibility fields are constantly changing. Software companies are soliciting user feedback continuously and deciding which suggestions are the most important to develop and update. These updates and developments are released every six to twelve weeks. Much of this AT is central for students to access courses and curriculum in an accessible way. This presentation will focus on the most recent updates from the major assistive technology companies who are making waves in the tech field. The latest releases from companies like Texthelp, Sonocent, Microsoft, as well as other tech giants will be shown. Free and low cost assistive technology tools that are on the cutting edge or are strong supports for students will be featured in this session as well. Participants will leave with updates to tools they are using to support students on their campuses and ideas on how to use these tools on campus to implement both Assistive Technology and Accessibility.

Keypoints

  1. Assistive technology companies are releasing product updates every six to twelve weeks on average.
  2. Latest updates and features to commonly used Assistive Technology tools in higher education will be shown.
  3. Both for-purchase and free/low cost assistive technology tools can be easily implemented to support students.

Disability Areas

All Areas

Topic Areas

Assistive Technology, Uncategorized

Speaker Bio(s)

Rachel Kruzel

Rachel Kruzel, ATP, is the Assistive Technology & Accommodations Specialist at Augsburg University in Minneapolis, Minnesota, and is a RESNA Certified Assistive Technology Practitioner (ATP). She has over 8 years of experience working in in the CLASS Office (Disability Resources) focusing on assistive technology, educational technology, transitioning from K-12 to higher education, academic accommodations implementation, and digital, electronic, and web accessibility. Rachel has presented both regionally and nationally on a variety of topics about assistive technology, as well as accessibility, transition, assistive technology tools such as the QIAT-PS and specific software program demonstrations and trainings, as well as general consultation with students, parents, schools, and organizations. She also provides consulting and direct consumer support through assistive technology consultation and the implementation process.

(handouts available: ask me)

++++++++++++++++

The Big Ten Academic Alliance’s Shared Approach to Procurement and Vendor Relations

  • Bill Welsh, Rutgers University
  • Charlie Collick, Director of IT Accessibility, Rutgers University
  • Nate Evans, Manager, Digital Content & Accessibility, Michigan State University

Summary

Learn how the Big Ten Academic Alliance is working together to develop policies, processes and procedures for procurement of accessible IT as well as assisting each other with managing vendor relationships that can foster better product accessibility within the Big 10. Also, each presenter will share their own institutions practices in this area.

Abstract

The Big Ten Academic Alliance are working together through a CIO sponsored group called the Information Technology Accessibility Group to leverage their coalition in regards to the accessibility of IT products purchased. The presenters will provide insight into their current collaborative efforts and share the four goals that the ITAG/Procurement Working Group is developing to improve best practices and shared basic standards for accessibility in IT procurement processes. This partnership has identified the following four goals to address IT accessibility: 1.Education & Marketing 2. Shared Solicitation Requirements for IT purchases 3. Standardize Evaluation 4. Leverage the BTAA purchasing power to work with vendors to improve accessibility and develop shared repository of IT accessibility evaluations. Participants will discover methods of alignment, and see how shared approaches to vendor relationship management can leverage economy of scale and foster vendor commitment.

Keypoints

  1. Product accessibility best practices
  2. Establishing product accessibility repositories
  3. There are resources available in this arena for others to utilize and assist in developing

Disability Areas

All Areas

Topic Areas

Administrative/Campus Policy, Information Resources, Information Technology, Uncategorized

Speaker Bio(s)

Bill Welsh

Bill is the Associate VP of Rutgers Access and Disability Resources. He has worked at Rutgers since 2013. Previously, he worked at Penn State University (1999-2013) and Drexel University (1994-1999) as Director of Disability Services

Charlie Collick

Charlie is the Director of IT Accessibility at Rutgers University. He is responsible for the accessibility of all enterprise academic and administrative technology and digital content. He also serves as Director of Software Site Licensing where he is responsible for vetting all central funded technology purchases for the University and the distribution of the licenses to staff, faculty, and students. Charlie has been an employee of Rutgers OIT since 2008. Before serving in his current role, Charlie was the Acting Director of Teaching and Learning with Technology where he lead a team of instructional designers, education technologists, and LMS support staff. His professional experience includes accessibility, instructional design, instructional technology, functional management, organizational development, strategic planning, and technology procurement. His broad technical background spans general IT, applications and systems support, web design and development, and the delivery of related services.

Nate Evans

Nate works with students, faculty, staff, and administrators across the institution to help create more inclusive environments, and shape better digital experiences. He leads Michigan State University’s digital accessibility program, and the Digital Content & Accessibility team to provide central support and resources, and to measure digital accessibility improvement.

(handouts available: ask me)

+++++++++++++++++

Not Another Lecture-Style Presentation

  • Brad Held, Accessible Technology Coordinator, University of Central Fl

Summary

Disability Professionals struggle to garner interest for their presentations or workshops. Just getting faculty or staff to register for their training doesn’t guarantee that the topics will be practiced. In this presentation, the presenter will share tips for designing a memorable educational experience that doesn’t involve a projector/clicker.

Abstract

As accessible technology experts, we often find it difficult to fill the seats at our presentations. This might be because of the topics we discussed are overwhelmingly complicated to understand, or because attendees do not believe enough students are affected by our subject matter. Regardless of the reason, the attendee doesn’t always leave with a lasting memory of how they can create access to their environment. What if we could take some of the visual elements of our technology and incorporate it with inclusive principles, then design an experience that is FUN? Based on the popular escape room game concept, you can challenge teams to be locked in a room full of barriers. Have them escape by identifying and removing the barriers within the room with more accessible approaches within the time allotted. UCF will share their design secrets for creating an escape room activity that will have your entire institution buzzing. The presentation will end with an interactive demonstration.

Keypoints

  1. How to create a different activity other than a lecture style presentation
  2. Designing a memorable experience involving accessibility.
  3. Incorporating accessible technology and inclusive principle.

Disability Areas

All Areas

Topic Areas

Other, Uncategorized

Speaker Bio(s)

Brad Held

Brad Held has been the Assistant Director – Accessible Technology for the Student Accessibility Services office at University of Central Florida (UCF) for the past four years. He earned his Bachelor’s degree in Applied Biotechnology at the University of Georgia in 2006. Prior to arriving at UCF, Brad worked in Assistive Technology for almost ten years: four years in a public school K-12 setting with Gwinnett County Public Schools in Georgia and five years in higher-education at The University of Georgia and The University of South Carolina. He is certified in Assistive Technology Applications. Aside from helping UCF students received academic supports, Brad also has a learning disability. Brad uses his personal experience to aid students in being active participants in the accommodation process.

++++++++++++++++++

Interactive 3d printed tactile campus maps

  • Holly Lawson, Assistant Professor, Portland State University
  • Shiri Azenkot, Assistant Professor, Cornell Tech
  • Lei Shi, PhD Student, Cornell Tech
  • Michael Cantino, Research Assistant, Portland State University

Summary

This presentation introduces the Markit and Talkit iOS software, which enables an individual to add text or audio annotations to a 3d printed model. Presenters share the use of this toolkit with 3d printed tactile maps.

Abstract

Recent advances in 3d printing technology have made tactile models more available to individuals who are visually impaired. With grant funding from the National Science Foundation, we have developed and field-tested iOS technology that empowers individuals to modify models by adding audio or text annotations. Using this technology, a modified model can provide voice output or display a description of a model component when it is touched by a user. In this session, we will introduce the 3d printing technology and its application with 3d printed tactile maps for use with individuals with visual impairments at Portland State University and Portland Community College.

Keypoints

  1. interactive 3d printed models can provide greater access to campus environments than traditional tactile maps
  2. interactive 3d printed maps can be customized to include wayfinding information most pertinent to the user
  3. the use of interactive 3d printed models is a cost effective solution for institutes of higher education

Disability Areas

Mobility, Vision

Topic Areas

Assistive Technology, Uncategorized

Speaker Bio(s)

Holly Lawson

Dr. Holly Lawson is an Assistant Professor at Portland State University and

the coordinator of the Visually Impaired Learner program. Since 1994, she has worked in the VIL field, beginning as a residential instructor for the Texas School for the Blind and Visually Impaired and then the Peace Corps in Morocco. Her master’s and PhD are from the University of Arizona where she held several positions in teaching and research. She came to PSU in 2014, having previously worked as an assistant professor and the coordinator for the Virginia Consortium of Teacher Preparation in Vision Impairment at George Mason University.

Shiri Azenkot

Dr. Shiri Azenkot is an Assistant Professor at the Jacobs Technion-Cornell Institute at Cornell Tech, Cornell University, and a field member in the Information Science Department. She is also an affiliate faculty member in the Computer Science Department at the Technion–Israel Institute of Technology. Currently, her research is funded by the NSF, AOL, Verizon, and Facebook. Before arriving at Cornell Tech, she was a PhD student in Computer Science & Engineering at the University of Washington, where she was advised by Richard Ladner and Jacob Wobbrock. Shiri has received the UW graduate medal (awarded to just one PhD candidate at the university each year), a National Science Foundation Graduate Research Fellowship, and an AT&T Labs Graduate Fellowship.

Lei Shi

Lei Shi is a fourth-year Ph.D. student at Cornell University and an AOL fellow at Cornell Tech, where he is advised by Shiri Azenkot. His research interests lie in the fields of accessibility, human-computer interaction, and design. Specifically, he explores how to combine 3D printing technologies and innovative design to help people. Previously, Lei got his bachelor degree in Electrical Engineering from Zhejiang University, with a double degree in Industrial Design.

Michael Cantino

Michael Cantino worked in K-12 special education for 11 years before coming to Portland Community College in 2017. During that time, he specialized in supporting students with behavioral challenges, Autism Spectrum Disorder, and students with visual impairments. Michael is a Library of Congress certified braille transcriber and is skilled in the production of tactile graphics and 3D models for visually impaired learners. At PCC, Michael provides a broad range of supports for students experiencing disabilities, with a focus on assistive technology, alternative formats, and in-class supports. In addition to his work at Portland Community College, Michael is also a Research Assistant at Portland State University where he is studying the use of interactive 3D models to support visually impaired learners.

(handouts available: ask me)

+++++++++++++++++++

The Power of PDF

Instructional designers, document developers, analysts QA

Naveesha  and Sachun Gupta

++++++++++
more on UDL in this IMS blog
http://blog.stcloudstate.edu/ims?s=udl

publish metrics ranking and citation info

EdTech Research – Where to Publish, How to Share (Part 2): Journal Metrics, Rankings and Citation Information

EdTech Research – Where to Publish, How to Share (Part 1): Journal Overview

electronic journals

International Review of Research in Open and Distributed Learning (IRRODL)

Publisher / Organization: Athabasca University Press

Year founded: 2000

Description: The International Review of Research in Open and Distributed Learning disseminates original research, theory, and best practice in open and distributed learning worldwide.

First Monday

Publisher / Organization: The University of Illinois at Chicago- University Library

Year founded: 1996

Description: First Monday is among the very first open access journals in the EdTech field. The journal’s subject matter encompasses the full range of Internet issues, including educational technologies, social media and web search. Contributors are urged via author guidelines to use simple explanations and less complex sentences and to be mindful that a large proportion of their readers are not part of academia and do not have English as a first language.

URL: http://firstmonday.org/

International Journal of Educational Technology in Higher Education(ETHE)

Publisher / Organization: Springer (from 2013)

Academic Management: University of Catalonia (UOC)

Year founded: 2004

Description: This journal aims to: provide a vehicle for scholarly presentation and exchange of information between professionals, researchers and practitioners in the technology-enhanced education field; contribute to the advancement of scientific knowledge regarding the use of technology and computers in higher education; and inform readers about the latest developments in the application of information technologies (ITs) in higher education learning, training, research and management.

URL: https://educationaltechnologyjournal.springeropen.com/

Online Learning (formerly JOLT / JALN)

Publisher / Organization: Online Learning Consortium

Year founded: 1997

Description: Online Learning promotes the development and dissemination of new knowledge at the intersection of pedagogy, emerging technology, policy, and practice in online environments. The journal has been published for over 20 years as the Journal of Asynchronous Learning Networks (JALN) and recently merged with the Journal of Online Learning and Teaching (JOLT).

URL: https://olj.onlinelearningconsortium.org/

Journal of Educational Technology & Society

Publisher / Organization: International Forum of Educational Technology & Society

Year founded:1998

Description: Educational Technology & Society seeks academic articles on the issues affecting the developers of educational systems and educators who implement and manage these systems. Articles should discuss the perspectives of both communities – the programmers and the instructors. The journal is currently still accepting submissions for ongoing special issues, but will cease publication in the future as the editors feel that the field of EdTech is saturated with high quality publications.

URL: http://www.ds.unipi.gr/et&s/index.php

Australasian Journal of Educational Technology

Publisher / Organization: Ascilite (Organization) & PKP Publishing Services Network

Year founded: 1985

Description: The Australasian Journal of Educational Technology aims to promote research and scholarship on the integration of technology in tertiary education, promote effective practice, and inform policy. The goal is to advance understanding of educational technology in post-school education settings, including higher and further education, lifelong learning, and training.

URL: https://ajet.org.au/index.php/AJET

Print Journals

The Internet and Higher Education

Publisher / Organization: Elsevier Ltd.

YEAR FOUNDED: 1998

DESCRIPTION: The Internet and Higher Education is devoted to addressing contemporary issues and future developments related to online learning, teaching, and administration on the Internet in post-secondary settings. Articles should significantly address innovative deployments of Internet technology in instruction and report on research to demonstrate the effects of information technology on instruction in various contexts in higher education.

URL: https://www.journals.elsevier.com/the-internet-and-higher-education

British Journal of Educational Technology

Publisher / Organization: British Educational Research Association (BERA)

YEAR FOUNDED: 1970

DESCRIPTION: The journal publishes theoretical perspectives, methodological developments and empirical research that demonstrate whether and how applications of instructional/educational technology systems, networks, tools and resources lead to improvements in formal and non-formal education at all levels, from early years through to higher, technical and vocational education, professional development and corporate training.

LINK: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-8535

Computers & Education

Publisher / Organization: Elsevier Ltd.

Year founded: 1976

Description: Computers & Education aims to increase knowledge and understanding of ways in which digital technology can enhance education, through the publication of high quality research, which extends theory and practice.

URL: https://www.journals.elsevier.com/computers-and-education/

Tech Trends

Publisher / Organization: Springer US

Year founded: 1985

Description: TechTrends targets professionals in the educational communication and technology field. It provides a vehicle that fosters the exchange of important and current information among professional practitioners. Among the topics addressed are the management of media and programs, the application of educational technology principles and techniques to instructional programs, and corporate and military training.

URL: https://link.springer.com/journal/11528

International Journal on E-Learning (IJEL)

Year founded: 2002

Description: Advances in technology and the growth of e-learning to provide educators and trainers with unique opportunities to enhance learning and teaching in corporate, government, healthcare, and higher education. IJEL serves as a forum to facilitate the international exchange of information on the current research, development, and practice of e-learning in these sectors.

Led by an Editorial Review Board of leaders in the field of e-Learning, the Journal is designed for the following audiences: researchers, developers, and practitioners in corporate, government, healthcare, and higher education. IJEL is a peer-reviewed journal.

URL: http://www.aace.org/pubs/ijel/

Journal of Computers in Mathematics and Science Teaching (JCMST)

Year founded: 1981

Description: JCMST is a highly respected scholarly journal which offers an in-depth forum for the interchange of information in the fields of science, mathematics, and computer science. JCMST is the only periodical devoted specifically to using information technology in the teaching of mathematics and science.

URL: https://www.aace.org/pubs/jcmst/

Just as researchers build reputation over time that can be depicted (in part) through quantitative measures such as h-index and i10-index, journals are also compared based on the number of citations they receive..

Journal of Interactive Learning Research (JILR)

Year founded: 1997

Description: The Journal of Interactive Learning Research (JILR) publishes papers related to the underlying theory, design, implementation, effectiveness, and impact on education and training of the following interactive learning environments: authoring systems, cognitive tools for learning computer-assisted language learning computer-based assessment systems, computer-based training computer-mediated communications, computer-supported collaborative learning distributed learning environments, electronic performance support systems interactive learning environments, interactive multimedia systems interactive simulations and games, intelligent agents on the Internet intelligent tutoring systems, microworlds, virtual reality based learning systems.

URL: http://learntechlib.org/j/JILR/

Journal of Educational Multimedia and Hypermedia (JEMH)

Year founded: 1996

Description: JEMH is designed to provide a multi-disciplinary forum to present and discuss research, development and applications of multimedia and hypermedia in education. It contributes to the advancement of the theory and practice of learning and teaching in environments that integrate images, sound, text, and data.

URL: https://www.aace.org/pubs/jemh/

Journal of Technology and Teacher Education (JTATE)

Publisher / Organization: Society for Information Technology and Teacher Education (SITE)

Year founded: 1997

Description: JTATE serves as a forum for the exchange of knowledge about the use of information technology in teacher education. Journal content covers preservice and inservice teacher education, graduate programs in areas such as curriculum and instruction, educational administration, staff development instructional technology, and educational computing.

URL: https://www.aace.org/pubs/jtate/

Journal on Online Learning Research (JOLR)

Publisher / Organization: Association for the Advancement of Computing in Education (AACE)

YEAR FOUNDED: 2015

DESCRIPTION: The Journal of Online Learning Research (JOLR) is a peer-reviewed, international journal devoted to the theoretical, empirical, and pragmatic understanding of technologies and their impact on primary and secondary pedagogy and policy in primary and secondary (K-12) online and blended environments. JOLR is focused on publishing manuscripts that address online learning, catering particularly to the educators who research, practice, design, and/or administer in primary and secondary schooling in online settings. However, the journal also serves those educators who have chosen to blend online learning tools and strategies in their face-to-face classroom.

URL: https://www.aace.org/pubs/jolr/

 

++++++++++++++
part 2

The most commonly used index to measure the relative importance of journals is the annual Journal Citation Reports (JCR). This report is published by Clarivate Analytics (previously Thomson Reuters).

SCImago

SCImago Journal Rank (SJR indicator) measures the influence of journals based on the number of citations the articles in the journal receive and the importance or prestige of the journals where such citations come from. The SJR indicator is a free journal metric which uses an algorithm similar to PageRank and provides an open access alternative to the journal impact factor in the Web of Science Journal Citation Report. The portal draws from the information contained in the Scopus database (Elsevier B.V.).

Google Scholar Journal Rank

Introduced by Google in 2004, Scholar is a freely accessible search engine that indexes the full text or metadata of scholarly publications across an array of publishing formats and disciplines.

Scopus Journal Metrics

Introduced by Elsevier in 2004, Scopus is an abstract and citation database that covers nearly 18,000 titles from more than 5,000 publishers. It offers journal metrics that go beyond just journals to include most serial titles, including supplements, special issues and conference proceedings. Scopus offers useful information such as the total number of citations, the total number of articles published, and the percent of articles cited.

Anne-Wil Harzing:

Citations are not just a reflection of the impact that a particular piece of academic work has generated. Citations can be used to tell stories about academics, journals and fields of research, but they can also be used to distort stories”.

Harzing, A.-W. (2013). The publish or perish book: Your guide to effective and responsible citation analysis. http://harzing.com/popbook/index.htm

ResearchGate

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. The community was founded in May 2008. Today it has over 14 million members.

Google Scholar

Google Scholar allows users to search for digital or physical copies of articles, whether online or in libraries. It indexes “full-text journal articles, technical reports, preprints, theses, books, and other documents, including selected Web pages that are deemed to be ‘scholarly. It comprises an estimated 160 million documents.

Academia.edu

Academia.edu is a social-networking platform for academics to share research papers. You can upload your own work, and follow the updates of your peers. Founded in 2008, the network currently has 59 million users, and adding 20 million documents.

ORCID

The ORCHID (Open Researcher and Contributor ID) is a nonproprietary alphanumeric code to uniquely identify scientific and other academic authors and contributors. It provides a persistent identity for humans, similar to content-related entities on digital networks that utilize digital object identifiers (DOIs). The organization offers an open and independent registry intended to be the de facto standard for contributor identification in research and academic publishing.

SCOPUS

The Scopus Author Identifier assigns a unique number to groups of documents written by the same author via an algorithm that matches authorship based on a certain criteria. If a document cannot be confidently matched with an author identifier, it is grouped separately. In this case, you may see more than one entry for the same author.

 

+++++++++++++++++
more on metrics in this iMS blog

http://blog.stcloudstate.edu/ims?s=metrics

Academic libraries teaching and learning outcomes

Chad, K., & Anderson, H. (2017). The new role of the library in teaching and learning outcomes (p. ). Higher Education Library Technology. https://doi.org/10.13140/rg.2.2.14688.89606/1
p. 4 “Modern university libraries require remote access for large numbers of concurrent users, with fewer authentication steps and more flexible digital rights management (DRM) to satisfy student demand”. They found the most frequent problem was that core reading list titles were not available to libraries as e-books.
p. 5 Overcoming the “textbook taboo”
In the US, academic software firm bepress notes that, in response to increased student textbook costs: “Educators, institutions, and even state legislators are turning their attention toward Open Educational Resources (OER)” in order to save students money while increasing engagement and retention. As a result bepress has developed its infrastructure to host and share OER within and across institutions.21 The UMass Library Open Education Initiative estimates it has saved the institution over $1.3 million since its inception in 2011. 22 Other textbook initiatives include SUNY Open Textbooks, developed by the State University of New York Libraries, which has already published 18 textbooks, and OpenStax, developed by Rice University.
p.5. sceptics about OER rapid progress still see potential in working with publishers.
Knowledge Unlatched 23 is an example of this kind of collaboration: “We believe that by working together libraries and publishers can create a sustainable route to Open Access for scholarly books.” Groups of libraries contribute to fund publication though a crowdfunding platform. The consortium pays a fixed upfront fee for the publisher to publish the book online under a Creative Commons license.
p.6.Technology: from library systems to educational technology.The rise of the library centric reading list system
big increase in the number of universities in the UK, Australia and New Zealand deploying library reading lists solutions.The online reading list can be seen as a sort of course catalogue that gives the user a (sometimes week-by-week) course/module view on core resources and provides a link to print holdings information or the electronic full text. It differs significantly from the integrated library system (ILS) ‘course reserve’ module, notably by providing access to materials beyond the items in the library catalogue. Titles can be characterised, for example as ‘recommended’ or ‘essential’ reading and citations annotated.
Reading list software brings librarians and academics together into a system where they must cooperate to be effective. Indeed some librarians claim that the reading list system is a key library tool for transforming student learning.
Higher education institutions, particularly those in Australia, New Zealand and some other parts of Europe (including the UK) are more likely to operate a reading list model, supplying students with a (sometimes long) list of recommended titles.
p.8. E-book platforms (discusses only UK)
p.9. Data: library management information to learning analytics
p.10. Leadership
“Strong digital leadership is a key feature of effective educational organisations and its absence can be a significant barrier to progress. The digital agenda is therefore a leadership issue”. 48 (Rebooting learning for the digital age: What next for technology-enhanced higher education? Sarah Davies, Joel Mullan, Paul Feldman. Higher Education Policy Institute (HEPI) Report 93. February 2017. )
A merging of LibTech and EdTech
The LITA discussion is under RE: [lita-l] Anyone Running Multiple Discovery Layers?
http://helibtech.com/Reading_Resource+lists
from Ken Varnum: https://search.lib.umich.edu/everything

+++++++++++++
more on academic library in this IMS blog
http://blog.stcloudstate.edu/ims?s=academic+library

students and etext

Student Engagement with E-Texts: What the Data Tell Us

by Serdar Abaci, Joshua Quick and Anastasia Morrone Monday, October 9, 2017

https://er.educause.edu/articles/2017/10/student-engagement-with-etexts-what-the-data-tell-us

  • This case study of Indiana University’s e-text initiative reports on students’ actual use of and engagement with digital textbooks.
  • In a typical semester, students read more in the first four weeks and less in later weeks except during major assessment times; in a typical week, most reading occurs between 5:00 p.m. and 2:00 a.m. from Monday to Thursday, indicating that students use e-texts mainly as a self-study resource.
  • Highlighting was the markup feature most used by students, whereas use of the other interactive markup features (shared notes, questions, and answers) was minimal, perhaps because of students’ lack of awareness of these features.
  • Research found that higher engagement with e-texts (reading and highlighting) correlated with higher course grades.

Although cost savings is often cited as a key advantage of electronic textbooks (aka, e-textbooks or simply e-texts), e-texts also provide powerful markup and interaction tools. For these tools to improve student learning, however, their adoption is critically important.
Indiana U etext initiative

The Indiana University e-texts program, which began in 2009, has four primary goals:

  1. Drive down the cost of materials for students
  2. Provide high-quality materials of choice
  3. Enable new tools for teaching and learning
  4. Shape the terms of sustainable models that work for students, faculty, and authors

To date, student savings on textbooks amount to $21,673,338. However, we recognize that many students do not pay the full list price for paper textbooks when they purchase online, buy used copies, or recoup some of their costs when they resell their texts after the semester is over.
herefore, we divide the calculated savings by two and report that total as a more accurate representation of student savings. Consequently, we claim that students have saved about $11 million since IU’s e-texts program started in spring 2012.

In addition to printing through the e-text platform, students can purchase a print-on-demand (PoD) copy of an e-text for an additional fee.

One downside of e-texts is that students lease their textbook for a limited time instead of owning it. This lease generally lasts a semester or six months, and students lose their access afterwards. However, with IU’s e-text model, students get access to the textbook before the first day of class and maintain their access until they graduate from Indiana University. That is, students can go back to the e-texts after their course to review or reference the content in the book. This could be especially important if the e-text course is a prerequisite for another course.

 

+++++++++++++++++++
more on etext and ebooks in this IMS blog
http://blog.stcloudstate.edu/ims?s=ebook

IRDL proposal

Applications for the 2018 Institute will be accepted between December 1, 2017 and January 27, 2018. Scholars accepted to the program will be notified in early March 2018.

Title:

Learning to Harness Big Data in an Academic Library

Abstract (200)

Research on Big Data per se, as well as on the importance and organization of the process of Big Data collection and analysis, is well underway. The complexity of the process comprising “Big Data,” however, deprives organizations of ubiquitous “blue print.” The planning, structuring, administration and execution of the process of adopting Big Data in an organization, being that a corporate one or an educational one, remains an elusive one. No less elusive is the adoption of the Big Data practices among libraries themselves. Seeking the commonalities and differences in the adoption of Big Data practices among libraries may be a suitable start to help libraries transition to the adoption of Big Data and restructuring organizational and daily activities based on Big Data decisions.
Introduction to the problem. Limitations

The redefinition of humanities scholarship has received major attention in higher education. The advent of digital humanities challenges aspects of academic librarianship. Data literacy is a critical need for digital humanities in academia. The March 2016 Library Juice Academy Webinar led by John Russel exemplifies the efforts to help librarians become versed in obtaining programming skills, and respectively, handling data. Those are first steps on a rather long path of building a robust infrastructure to collect, analyze, and interpret data intelligently, so it can be utilized to restructure daily and strategic activities. Since the phenomenon of Big Data is young, there is a lack of blueprints on the organization of such infrastructure. A collection and sharing of best practices is an efficient approach to establishing a feasible plan for setting a library infrastructure for collection, analysis, and implementation of Big Data.
Limitations. This research can only organize the results from the responses of librarians and research into how libraries present themselves to the world in this arena. It may be able to make some rudimentary recommendations. However, based on each library’s specific goals and tasks, further research and work will be needed.

 

 

Research Literature

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”
– Dan Ariely, 2013  https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Big Data is becoming an omnipresent term. It is widespread among different disciplines in academia (De Mauro, Greco, & Grimaldi, 2016). This leads to “inconsistency in meanings and necessity for formal definitions” (De Mauro et al, 2016, p. 122). Similarly, to De Mauro et al (2016), Hashem, Yaqoob, Anuar, Mokhtar, Gani and Ullah Khan (2015) seek standardization of definitions. The main connected “themes” of this phenomenon must be identified and the connections to Library Science must be sought. A prerequisite for a comprehensive definition is the identification of Big Data methods. Bughin, Chui, Manyika (2011), Chen et al. (2012) and De Mauro et al (2015) single out the methods to complete the process of building a comprehensive definition.

In conjunction with identifying the methods, volume, velocity, and variety, as defined by Laney (2001), are the three properties of Big Data accepted across the literature. Daniel (2015) defines three stages in big data: collection, analysis, and visualization. According to Daniel, (2015), Big Data in higher education “connotes the interpretation of a wide range of administrative and operational data” (p. 910) and according to Hilbert (2013), as cited in Daniel (2015), Big Data “delivers a cost-effective prospect to improve decision making” (p. 911).

The importance of understanding the process of Big Data analytics is well understood in academic libraries. An example of such “administrative and operational” use for cost-effective improvement of decision making are the Finch & Flenner (2016) and Eaton (2017) case studies of the use of data visualization to assess an academic library collection and restructure the acquisition process. Sugimoto, Ding & Thelwall (2012) call for the discussion of Big Data for libraries. According to the 2017 NMC Horizon Report “Big Data has become a major focus of academic and research libraries due to the rapid evolution of data mining technologies and the proliferation of data sources like mobile devices and social media” (Adams, Becker, et al., 2017, p. 38).

Power (2014) elaborates on the complexity of Big Data in regard to decision-making and offers ideas for organizations on building a system to deal with Big Data. As explained by Boyd and Crawford (2012) and cited in De Mauro et al (2016), there is a danger of a new digital divide among organizations with different access and ability to process data. Moreover, Big Data impacts current organizational entities in their ability to reconsider their structure and organization. The complexity of institutions’ performance under the impact of Big Data is further complicated by the change of human behavior, because, arguably, Big Data affects human behavior itself (Schroeder, 2014).

De Mauro et al (2015) touch on the impact of Dig Data on libraries. The reorganization of academic libraries considering Big Data and the handling of Big Data by libraries is in a close conjunction with the reorganization of the entire campus and the handling of Big Data by the educational institution. In additional to the disruption posed by the Big Data phenomenon, higher education is facing global changes of economic, technological, social, and educational character. Daniel (2015) uses a chart to illustrate the complexity of these global trends. Parallel to the Big Data developments in America and Asia, the European Union is offering access to an EU open data portal (https://data.europa.eu/euodp/home ). Moreover, the Association of European Research Libraries expects under the H2020 program to increase “the digitization of cultural heritage, digital preservation, research data sharing, open access policies and the interoperability of research infrastructures” (Reilly, 2013).

The challenges posed by Big Data to human and social behavior (Schroeder, 2014) are no less significant to the impact of Big Data on learning. Cohen, Dolan, Dunlap, Hellerstein, & Welton (2009) propose a road map for “more conservative organizations” (p. 1492) to overcome their reservations and/or inability to handle Big Data and adopt a practical approach to the complexity of Big Data. Two Chinese researchers assert deep learning as the “set of machine learning techniques that learn multiple levels of representation in deep architectures (Chen & Lin, 2014, p. 515). Deep learning requires “new ways of thinking and transformative solutions (Chen & Lin, 2014, p. 523). Another pair of researchers from China present a broad overview of the various societal, business and administrative applications of Big Data, including a detailed account and definitions of the processes and tools accompanying Big Data analytics.  The American counterparts of these Chinese researchers are of the same opinion when it comes to “think about the core principles and concepts that underline the techniques, and also the systematic thinking” (Provost and Fawcett, 2013, p. 58). De Mauro, Greco, and Grimaldi (2016), similarly to Provost and Fawcett (2013) draw attention to the urgent necessity to train new types of specialists to work with such data. As early as 2012, Davenport and Patil (2012), as cited in Mauro et al (2016), envisioned hybrid specialists able to manage both technological knowledge and academic research. Similarly, Provost and Fawcett (2013) mention the efforts of “academic institutions scrambling to put together programs to train data scientists” (p. 51). Further, Asomoah, Sharda, Zadeh & Kalgotra (2017) share a specific plan on the design and delivery of a big data analytics course. At the same time, librarians working with data acknowledge the shortcomings in the profession, since librarians “are practitioners first and generally do not view usability as a primary job responsibility, usually lack the depth of research skills needed to carry out a fully valid” data-based research (Emanuel, 2013, p. 207).

Borgman (2015) devotes an entire book to data and scholarly research and goes beyond the already well-established facts regarding the importance of Big Data, the implications of Big Data and the technical, societal, and educational impact and complications posed by Big Data. Borgman elucidates the importance of knowledge infrastructure and the necessity to understand the importance and complexity of building such infrastructure, in order to be able to take advantage of Big Data. In a similar fashion, a team of Chinese scholars draws attention to the complexity of data mining and Big Data and the necessity to approach the issue in an organized fashion (Wu, Xhu, Wu, Ding, 2014).

Bruns (2013) shifts the conversation from the “macro” architecture of Big Data, as focused by Borgman (2015) and Wu et al (2014) and ponders over the influx and unprecedented opportunities for humanities in academia with the advent of Big Data. Does the seemingly ubiquitous omnipresence of Big Data mean for humanities a “railroading” into “scientificity”? How will research and publishing change with the advent of Big Data across academic disciplines?

Reyes (2015) shares her “skinny” approach to Big Data in education. She presents a comprehensive structure for educational institutions to shift “traditional” analytics to “learner-centered” analytics (p. 75) and identifies the participants in the Big Data process in the organization. The model is applicable for library use.

Being a new and unchartered territory, Big Data and Big Data analytics can pose ethical issues. Willis (2013) focusses on Big Data application in education, namely the ethical questions for higher education administrators and the expectations of Big Data analytics to predict students’ success.  Daries, Reich, Waldo, Young, and Whittinghill (2014) discuss rather similar issues regarding the balance between data and student privacy regulations. The privacy issues accompanying data are also discussed by Tene and Polonetsky, (2013).

Privacy issues are habitually connected to security and surveillance issues. Andrejevic and Gates (2014) point out in a decision making “generated by data mining, the focus is not on particular individuals but on aggregate outcomes” (p. 195). Van Dijck (2014) goes into further details regarding the perils posed by metadata and data to the society, in particular to the privacy of citizens. Bail (2014) addresses the same issue regarding the impact of Big Data on societal issues, but underlines the leading roles of cultural sociologists and their theories for the correct application of Big Data.

Library organizations have been traditional proponents of core democratic values such as protection of privacy and elucidation of related ethical questions (Miltenoff & Hauptman, 2005). In recent books about Big Data and libraries, ethical issues are important part of the discussion (Weiss, 2018). Library blogs also discuss these issues (Harper & Oltmann, 2017). An academic library’s role is to educate its patrons about those values. Sugimoto et al (2012) reflect on the need for discussion about Big Data in Library and Information Science. They clearly draw attention to the library “tradition of organizing, managing, retrieving, collecting, describing, and preserving information” (p.1) as well as library and information science being “a historically interdisciplinary and collaborative field, absorbing the knowledge of multiple domains and bringing the tools, techniques, and theories” (p. 1). Sugimoto et al (2012) sought a wide discussion among the library profession regarding the implications of Big Data on the profession, no differently from the activities in other fields (e.g., Wixom, Ariyachandra, Douglas, Goul, Gupta, Iyer, Kulkami, Mooney, Phillips-Wren, Turetken, 2014). A current Andrew Mellon Foundation grant for Visualizing Digital Scholarship in Libraries seeks an opportunity to view “both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets (Hwangbo, 2014).

The importance of the library with its traditional roles, as described by Sugimoto et al (2012) may continue, considering the Big Data platform proposed by Wu, Wu, Khabsa, Williams, Chen, Huang, Tuarob, Choudhury, Ororbia, Mitra, & Giles (2014). Such platforms will continue to emerge and be improved, with librarians as the ultimate drivers of such platforms and as the mediators between the patrons and the data generated by such platforms.

Every library needs to find its place in the large organization and in society in regard to this very new and very powerful phenomenon called Big Data. Libraries might not have the trained staff to become a leader in the process of organizing and building the complex mechanism of this new knowledge architecture, but librarians must educate and train themselves to be worthy participants in this new establishment.

 

Method

 

The study will be cleared by the SCSU IRB.
The survey will collect responses from library population and it readiness to use and use of Big Data.  Send survey URL to (academic?) libraries around the world.

Data will be processed through SPSS. Open ended results will be processed manually. The preliminary research design presupposes a mixed method approach.

The study will include the use of closed-ended survey response questions and open-ended questions.  The first part of the study (close ended, quantitative questions) will be completed online through online survey. Participants will be asked to complete the survey using a link they receive through e-mail.

Mixed methods research was defined by Johnson and Onwuegbuzie (2004) as “the class of research where the researcher mixes or combines quantitative and qualitative research techniques, methods, approaches, concepts, or language into a single study” (Johnson & Onwuegbuzie, 2004 , p. 17).  Quantitative and qualitative methods can be combined, if used to complement each other because the methods can measure different aspects of the research questions (Sale, Lohfeld, & Brazil, 2002).

 

Sampling design

 

  • Online survey of 10-15 question, with 3-5 demographic and the rest regarding the use of tools.
  • 1-2 open-ended questions at the end of the survey to probe for follow-up mixed method approach (an opportunity for qualitative study)
  • data analysis techniques: survey results will be exported to SPSS and analyzed accordingly. The final survey design will determine the appropriate statistical approach.

 

Project Schedule

 

Complete literature review and identify areas of interest – two months

Prepare and test instrument (survey) – month

IRB and other details – month

Generate a list of potential libraries to distribute survey – month

Contact libraries. Follow up and contact again, if necessary (low turnaround) – month

Collect, analyze data – two months

Write out data findings – month

Complete manuscript – month

Proofreading and other details – month

 

Significance of the work 

While it has been widely acknowledged that Big Data (and its handling) is changing higher education (http://blog.stcloudstate.edu/ims?s=big+data) as well as academic libraries (http://blog.stcloudstate.edu/ims/2016/03/29/analytics-in-education/), it remains nebulous how Big Data is handled in the academic library and, respectively, how it is related to the handling of Big Data on campus. Moreover, the visualization of Big Data between units on campus remains in progress, along with any policymaking based on the analysis of such data (hence the need for comprehensive visualization).

 

This research will aim to gain an understanding on: a. how librarians are handling Big Data; b. how are they relating their Big Data output to the campus output of Big Data and c. how librarians in particular and campus administration in general are tuning their practices based on the analysis.

Based on the survey returns (if there is a statistically significant return), this research might consider juxtaposing the practices from academic libraries, to practices from special libraries (especially corporate libraries), public and school libraries.

 

 

References:

 

Adams Becker, S., Cummins M, Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., … Wolfson, N. (2017). NMC Horizon Report: 2017 Library Edition.

Andrejevic, M., & Gates, K. (2014). Big Data Surveillance: Introduction. Surveillance & Society, 12(2), 185–196.

Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125

Bail, C. A. (2014). The cultural environment: measuring culture with big data. Theory and Society, 43(3–4), 465–482. https://doi.org/10.1007/s11186-014-9216-5

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press.

Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and academic scholarship. First Monday, 18(10). Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/4879

Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.

Chen, X. W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514–525. https://doi.org/10.1109/ACCESS.2014.2325029

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proc. VLDB Endow., 2(2), 1481–1492. https://doi.org/10.14778/1687553.1687576

Daniel, B. (2015). Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. https://doi.org/10.1111/bjet.12230

Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., … Chuang, I. (2014). Privacy, Anonymity, and Big Data in the Social Sciences. Commun. ACM, 57(9), 56–63. https://doi.org/10.1145/2643132

De Mauro, A. D., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644(1), 97–104. https://doi.org/10.1063/1.4907823

Dumbill, E. (2012). Making Sense of Big Data. Big Data, 1(1), 1–2. https://doi.org/10.1089/big.2012.1503

Eaton, M. (2017). Seeing Library Data: A Prototype Data Visualization Application for Librarians. Publications and Research. Retrieved from http://academicworks.cuny.edu/kb_pubs/115

Emanuel, J. (2013). Usability testing in libraries: methods, limitations, and implications. OCLC Systems & Services: International Digital Library Perspectives, 29(4), 204–217. https://doi.org/10.1108/OCLC-02-2013-0009

Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261. https://doi.org/10.1177/2043820613513121

Harper, L., & Oltmann, S. (2017, April 2). Big Data’s Impact on Privacy for Librarians and Information Professionals. Retrieved November 7, 2017, from https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47(Supplement C), 98–115. https://doi.org/10.1016/j.is.2014.07.006

Hwangbo, H. (2014, October 22). The future of collaboration: Large-scale visualization. Retrieved November 7, 2017, from http://usblogs.pwc.com/emerging-technology/the-future-of-collaboration-large-scale-visualization/

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and Variety.

Miltenoff, P., & Hauptman, R. (2005). Ethical dilemmas in libraries: an international perspective. The Electronic Library, 23(6), 664–670. https://doi.org/10.1108/02640470510635746

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015

Power, D. J. (2014). Using ‘Big Data’ for analytics and decision support. Journal of Decision Systems, 23(2), 222–228. https://doi.org/10.1080/12460125.2014.888848

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508

Reilly, S. (2013, December 12). What does Horizon 2020 mean for research libraries? Retrieved November 7, 2017, from http://libereurope.eu/blog/2013/12/12/what-does-horizon-2020-mean-for-research-libraries/

Reyes, J. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80. https://doi.org/10.1007/s11528-015-0842-1

Schroeder, R. (2014). Big Data and the brave new world of social media research. Big Data & Society, 1(2), 2053951714563194. https://doi.org/10.1177/2053951714563194

Sugimoto, C. R., Ding, Y., & Thelwall, M. (2012). Library and information science in the big data era: Funding, projects, and future [a panel proposal]. Proceedings of the American Society for Information Science and Technology, 49(1), 1–3. https://doi.org/10.1002/meet.14504901187

Tene, O., & Polonetsky, J. (2012). Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of Technology and Intellectual Property, 11, [xxvii]-274.

van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society; Newcastle upon Tyne, 12(2), 197–208.

Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010

Weiss, A. (2018). Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals. Rowman & Littlefield Publishers. Retrieved from https://rowman.com/ISBN/9781538103227/Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals

West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 4, 1–0.

Willis, J. (2013). Ethics, Big Data, and Analytics: A Model for Application. Educause Review Online. Retrieved from https://docs.lib.purdue.edu/idcpubs/1

Wixom, B., Ariyachandra, T., Douglas, D. E., Goul, M., Gupta, B., Iyer, L. S., … Turetken, O. (2014). The current state of business intelligence in academia: The arrival of big data. CAIS, 34, 1.

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Wu, Z., Wu, J., Khabsa, M., Williams, K., Chen, H. H., Huang, W., … Giles, C. L. (2014). Towards building a scholarly big data platform: Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital Libraries (pp. 117–126). https://doi.org/10.1109/JCDL.2014.6970157

 

+++++++++++++++++
more on big data





1 2 3 4