LITA listserv exchange on “Raspberry PI Counter for Library Users”
On 7/10/20, 10:05 AM, “lita-l-request@lists.ala.org on behalf of Hammer, Erich F” <lita-l-request@lists.ala.org on behalf of erich@albany.edu> wrote:
Jason,
I think that is a very interesting project. If I understand how it works (comparing reference images to live images), it should still work if a “fuzzy” or translucent filter were placed on the lens as a privacy measure, correct? You could even make the fuzzy video publicly accessible to prove to folks that privacy is protected.
If that’s the case, IMHO, it really is a commercially viable idea and it would have a market far beyond libraries. Open source code and hardware designs and sales of pre-packaged hardware and support. Time for some crowdsource funding! 🙂
My note:
In 2018, following the university president’s call for ANY possible savings, the library administrator was send a proposal requesting information regarding the license for the current library counters and proposing the save the money for the license by creating an in-house Arduino counter. The blueprints for such counter were share (as per another LITA listserv exchange). SCSU Physics professor agreement to lead the project was secured as well as the opportunity for SCSU Physics students to develop the project as part of their individual study plan. The proposal was never addressed neither by the middle nor the upper management.
breakdown of IoT functionality, from Deloitte. They give 5 general types of services that IoT “things” can do:
Internal state: Heartbeat- and ping-like broadcasts of health, potentially including diagnostics and additional status reporting (for example, battery level, CPU/memory utilization, strength of network signal, up-time or software/platform version).
Location: Communication of physical location via GPS, GSM, triangulation or proximity techniques
Physical attributes: Monitoring the world surrounding the device, including altitude, orientation, temperature, humidity, radiation, air quality, noise and vibration
Functional attributes: Higher-level intelligence rooted in the device’s purpose for describing business process or workload attributes
Actuation services: Ability to remotely trigger, change or stop physical properties or actions on the device.
Examples of IoT in action
There are some pretty well-known IoT products that some of you already use, including:
Nest Thermostat (and others). These allow you to control your AC from your phone, anywhere that you can connect to the Internet.
Smart lights: Same concept, but for lights. You can turn lights on/off from your phone. Phillips Hue is an example of this
Bluetooth Trackers – Tile (https://www.thetileapp.com/) is an example of a Bluetooth Tracker. Put one on that thing you always lose (i.e., car keys). The next time you lose those keys, you can find them again via an app on your phone.
Smart Home appliances – things like Google Home, Amazon Echo, and Apple HomeKit.
Smart power switches – Belkin’s Wemo Insight Wi-Fi Smart Plug is an example. They let you turn the plug (and therefore anything connected to it) on and off, set schedules for the plug, monitor energy consumption and use, etc. You can also connect it to Amazon Alexa and Google Home for hands-free voice control
Health and exercise trackers – Fitbits “fit” into this category, too.
How does IoT affect libraries?
Here are some ways libraries are already incorporating IoT technology into their libraries:
Smart Building Technology: As libraries retrofit their buildings with newer technology (or build new buildings/branches), they are starting to see more IoT-based technology. For example, some libraries can can adjust heating, cooling and lights from a smartphone app. Some newer building monitoring and security systems can be monitored via mobile apps.
RFID: RFID technology (sensors in books) is a type of IoT technology, and has been around for awhile.
Beacon Technology: There are at least two library-focused companies experimenting with Beacon technology (Capira Technologies and Bluubeam).
People counters: Check out Jason Griffey’s Measure the Future project. Here’s what he says about Measure the Future: “Imagine having a Google-Analytics-style dashboard for your library building: number of visits, what patrons browsed, what parts of the library were busy during which parts of the day, and more. Measure the Future is working to make that happen by using open-hardware based sensors that can collect data about building usage that is now invisible. Making these invisible occurrences explicit will allow librarians to make strategic decisions that create more efficient and effective experiences for their patrons.”
Library classes! Libraries are also teaching classes about the Internet of Things. These include classes focused on introducing patrons to IoT technology, and classes that focus on an aspect of IoT, like a class on making things with Arduinos or how to use your new Fitbit.
peer-reviewed http://scsu.mn/2e8mdNh – permanent link to the SCSU online database search (Arduino + Education)
Almeida Cavalcante, M. (2013). Novas tecnologias no estudo de ondas sonoras. Caderno Brasileiro De Ensino De Física, 30(3), 579-613.
Almeida Cavalcante, M., Tavares Rodrigues, T. T., & Andrea Bueno, D. (2013). CONTROLE REMOTO: PRINCIPIO DE FUNCIONAMENTO (parte 1 de 2). Caderno Brasileiro De Ensino De Física, 30(3), 554-565.
Atkin, K. (2016). Construction of a simple low-cost teslameter and its use with arduino and MakerPlot software. Physics Education, 51(2), 1-1.
Galeriu, C., Edwards, S., & Esper, G. (2014). An arduino investigation of simple harmonic motion. Physics Teacher, 52(3), 157-159.
Galeriu, C., Letson, C., & Esper, G. (2015). An arduino investigation of the RC circuit. Physics Teacher, 53(5), 285-288.
Grinias, J. P., Whitfield, J. T., Guetschow, E. D., & Kennedy, R. T. (2016). An inexpensive, open-source USB arduino data acquisition device for chemical instrumentation. Journal of Chemical Education, 93(7), 1316-1319.
Kuan, W., Tseng, C., Chen, S., & Wong, C. (2016). Development of a computer-assisted instrumentation curriculum for physics students: Using LabVIEW and arduino platform. Journal of Science Education and Technology, 25(3), 427-438.
Kubínová, Š., & Šlégr, J. (2015). Physics demonstrations with the arduino board. Physics Education, 50(4), 472-474.
Kubínová, Š., & Šlégr, J. (2015). ChemDuino: Adapting arduino for low-cost chemical measurements in lecture and laboratory. Journal of Chemical Education, 92(10), 1751-1753.
Kubínova´, S., & S?le´gr, J. (2015). ChemDuino: Adapting arduino for low-cost chemical measurements in lecture and laboratory. Journal of Chemical Education, 92(10), 1751-1753.
López-Rodríguez, F. M., & Cuesta, F. (2016). Andruino-A1: Low-cost educational mobile robot based on android and arduino. Journal of Intelligent & Robotic Systems, 81(1), 63-76.
McClain, R. L. (2014). Construction of a photometer as an instructional tool for electronics and instrumentation. Journal of Chemical Education, 91(5), 747-750.
Musik, P. (2010). Development of computer-based experiment in physics for charging and discharging of a capacitor. Annual International Conference on Computer Science Education: Innovation & Technology, , I111-I116.
Pagliuca, G., Arduino, L. S., Barca, L., & Burani, C. (2008). Fully transparent orthography, yet lexical reading aloud: The lexicality effect in italian. Language and Cognitive Processes, 23(3), 422-433.
Park, S., Kim, W., & Seo, S. (2015). Development of the educational arduino module using the helium gas airship. Modern Physics Letters B, 29(6), -1.
Pereira, A. M., Santos, A. C. F., & Amorim, H. S. (2016). Estatística de contagem com a plataforma arduino. Caderno Brasileiro De Ensino De Física, 38(4), 1-8.
Sulpizio, S., Arduino, L. S., Paizi, D., & Burani, C. (2013). Stress assignment in reading italian polysyllabic pseudowords. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1), 51-68.
Teikari, P., Najjar, R. P., Malkki, H., Knoblauch, K., Dumortier, D., Gronfier, C., et al. (2012). An inexpensive arduino-based LED stimulator system for vision research. Journal of Neuroscience Methods, 211(2), 227-236.
Walzik, M. P., Vollmar, V., Lachnit, T., Dietz, H., Haug, S., Bachmann, H., et al. (2015). A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosensors & Bioelectronics, 64, 639-649.
Zachariadou, K., Yiasemides, K., & Trougkakos, N. (2012). A low-cost computer-controlled arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells. European Journal of Physics, 33(6), 1599-1610.
Zubrycki, I., & Granosik, G. (2014). Introducing modern robotics with ros and arduino, including case studies. Journal of Automation, Mobile Robotics & Intelligent Systems, 8(1), 69-75.
Пионкевич, В. А. (2016). ИНСТРУМЕНТЫ ДЛЯ ОБУЧЕНИЯ СОВРЕМЕННЫМ СРЕДСТВАМ ЦИФРОВЫХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НЕТРАДИЦИОННЫМИ ИСТОЧНИКАМИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ НА ОСНОВЕ МИКРОКОНТРОЛЛЕРОВ. Bulletin of Irkutsk State Technical University / Vestnik of Irkutsk State Technical University, (6), 136-145.