Posts Tagged ‘augmented reality’

AR and PokemonGo

GOTTACATCHEMALL:EXPLORING POKEMON GO IN SEARCH OF LEARNING ENHANCEMENT OBJECTS
Annamaria Cacchione, Emma Procter-Legg and Sobah Abbas Petersen
Universidad Complutense de Madrid, Facultad de Filologia, Av.da Complutense sn, 28040 Madrid, Spain Independent; Abingdon, Oxon, UK SINTEF Technology and Society, Trondheim, Norway
https://www.academia.edu/30254871/_GOTTACATCHEMALL_EXPLORING_POKEMON_GO_IN_SEARCH_OF_LEARNING_ENHANCEMENT_OBJECTS
KEYWORDS
Pokemon Go, MALL, Learning, Augmented Reality, Gamification, Situated learning
ABSTRACT
The Augmented Reality Game, Pokemon Go, took the world by storm in the summer of 2016. City landscapes were decorated with amusing, colourful objects called Pokemon, and the holiday activities were enhanced by catching these wonderful creatures. In light of this, it is inevitable for mobile language learning researchers to reflect on the impact oft his game on learning and how it may be leveraged to enhance the design of mobile and ubiquitous technologies for mobile and situated language learning. This paper analyses the game Pokemon Go and the players’ experiences accordingto a framework developed for evaluating mobile language learning and discusses how Pokemon Go can help to meetsome of the challenges faced by earlier research activities.
A comparison between PG and Geocashing will illustrate the evolution of the concept of location-based games a concept that is very close to that of situated learning that we have explored in several previous works. 
Pokémon Go is a free, location-based augmented reality game developed for mobile devices. Players useGPS on their mobile device to locate, capture, battle, and train virtual creatures (a.k.a. Pokémon), whichappear on screen overlaying the image seen through the device’s camera. This makes it seem like thePokemon are in the same real-world location as the player
“Put simply, augmented reality is a technology that overlays computer generated visuals over the real worldthrough a device camera bringing your surroundings to life and interacting with sensors such as location and heart rate to provide additional information” (Ramirez, 2014).
Apply the evaluation framework developed in 2015 for mobile learning applications(Cacchione, Procter-Legg, Petersen, & Winter, 2015). The framework is composed of a set offactors of different nature neuroscientific, technological, organisational and pedagogical and aim to provide a comprehensive account  of what plays a major role in ensuring effective learning via mobile devices

storytelling AR and VR tools

Unleash the Power of Storytelling With These New AR and VR Tools

By Jaime Donally (Columnist)     Apr 4, 2018

Teachers can bring VR stories into the classroom in many different ways for meaningful learning experiences. Imagine a scavenger hunt where students narrate a story based on what they find. Or consider using objects they see to identify vocabulary words or recognize letters. Students should have purpose in their viewing and it should directly connect to standards.

Starting with virtual reality, stories in apps such as Google Spotlight Storiesand YouTube 360 videos have been popular from the start.

Similar to the new movie, Ready Player One, they provide an intense experience where the viewer feels like they are in the center of the story.

Using a mobile device or tablet, the student can start the story and look around the scene based on their interest, rather than the cameras focus. New apps such as Baobab VR have continued to appear with more interactions and engagement.

A creative way to have your students create their own virtual stories is using the app Roundme. Upload your 360 image and add directional sound, links and content. Upload portals to walk the viewer into multiple scenes and then easily share the stories by link to the story.

Newer augmented reality apps that work with ARKit have taken another approach to storytelling.  Augmented Stories and My Hungry Caterpillar.Qurious, a company that is working on a release blending gaming, making and storytelling in one app.

Storyfab, turns our students into the directors of the show

A new AR book, SpyQuest, has moved the immersive experience a big step forward as it helps define the story by bringing the images to life. Through the camera lens on a device, the stories make students the agents in an adventure into the world of espionage. The augmented reality experiences on the images use the accompanying app to scan the scene and provide further insight into the story.

+++++++++++++
more on storytelling in this IMS blog
https://blog.stcloudstate.edu/ims?s=digital+storytelling

more on VR and storytelling in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+storytelling

 

IM 554 discussion on GBL 2018

Course title: IM 554 Developing Skills for Online Teaching and Learning

Topic for this week: Game-based learning, Virtual Reliability, and Augmented Reality
Audience: IM Graduate students working for K12 schools or in business

7:20 to 8:20 PM, Thursday, March 29.  Instructor: Yun Claire Park

  1. What did we learn from last year: https://blog.stcloudstate.edu/ims/2017/02/22/im554-discussion-gbl/
    1. definitions and delineation of gaming and gamification
    2. the connection to BYOD
  2. What do we want to learn this year/today?
    1. more on gaming and gamification
    2. more on realities
      1. what is VR – virtual reality

Virtual reality (VR) is “a computer technology that uses virtual reality headsets or multi-
projected environments, sometimes in combination with physical environments or props, to
generate realistic images, sounds and other sensations that simulate a user's physical presence in a virtual or imaginary environment” (“Virtual Reality” n.d.) VR is accomplished by using headsets, such as HTC Vive, Oculus Rift, PlayStation VR, and Samsung Gear VR. The use of the headsets creates (and enhances) digitally constructed “reality,” thus providing excellent opportunities for simulations and learning through training and practice. Among a myriad of other definitions, Noor (2016, 34) describes Virtual Reality (VR) as “a computer-generated environment that can simulate physical presence in places in the real world or imagined worlds. The user wears a headset and through specialized software and sensors is immersed in 360- degree views of simulated worlds.”

from our book chapter: Video 360: The new type of visualization to help patrons enter the era of VR, AR and Mixed Reality (under review).

what is AR – augmented reality

“Augmented Reality (AR) supplements the physical environment with computer-generated sensory input such as sound, video, graphics, or other useful information – essentially overlaying the digital information on top of the physical world. Some consider the smartphone popular game “Pokemon Go” a form of consumer AR.”

from my book Chapter 12: VR, AR and Video 360: A Case Study Towards New Realities in Education by Plamen Miltenoff (under review)

what is MR – mixed reality

mixed reality

 

 

 

https://commons.wikimedia.org/wiki/Category:Mixed_reality#/media/File:Mixed_Reality_Scale.png

  1. Video 360
    1. how to create non-expensive VR = Video 360 degrees

A two-dimensional flat frame

 

 

 

A two-dimensional flat frame

Consumer types of cameras

Consumer types of cameras

++++++++++++++
More information on GBL in this IMS blog:
https://blog.stcloudstate.edu/ims?s=%22game-based+learning%22

more on VR in education in this IMS blog:
https://blog.stcloudstate.edu/ims?s=virtual+reality+education

more on AE in this IMS blog
https://blog.stcloudstate.edu/ims?s=augmented+reality

immersive learning

VR and AR: Learners as Creators and World Builders of Our Immersive Future

Friday, December 15, 2017https://er.educause.edu/blogs/2017/12/vr-and-ar-learners-as-creators-and-world-builders-of-our-immersive-future

By creating engaging 360° tours, students are not only learning these new tools for themselves but are also helping local organizations see the possibility of VR for marketing and public relations.

some key takeaways from the projects that we have seen:

  • Let the students lead: In all of these projects, students are taking the initiative. The institutions are providing the technology, the space, organizational vision, and in some cases, academic credit. At NYU Tandon, students organized the entire conference, doing publicity, registration, catering, and scheduling (see figure 4). They brought in a diverse group of speakers from academic, tech, and startup backgrounds. The event included TED-style spotlights, talks, workshops, and demos.
  • Don’t compromise on space: Brown University’s Granoff Center for the Creative Arts is designed to encourage cross-discipline collaboration. The Tandon event used the main auditorium and the flagship NYU MakerSpace. Space influences behavior and is crucial in driving collaboration and active participation. In addition, to produce VR and AR/MR experiences students need access to high-end technology and, in some cases, motion-capture studios and 360° cameras.
  • Create opportunities for social impact: Many of these programs are open to the local community or have been designed to have an impact outside higher education. At Emporia State, students are using VR and 360° video to help local businesses. The Gaspee Affair VR experience at Brown University will become a resource for teaching middle and high school students.
  • Showcase student work: So often in education, the work students do in a course is only seen by others in the same class. Like the example at Texas A&M, all of these experiences have a connection with their campus or larger community. VR and AR engender a level of excitement that gets students engaged with each other and encourage peer learning. It’s worth it to seek out opportunities to bring this work to community events.

+++++++++
more on VR in education in this IMS blog

https://blog.stcloudstate.edu/ims?s=virtual+reality+education

Key Issues in Teaching and Learning Survey

The EDUCAUSE Learning Initiative has just launched its 2018 Key Issues in Teaching and Learning Survey, so vote today: http://www.tinyurl.com/ki2018.

Each year, the ELI surveys the teaching and learning community in order to discover the key issues and themes in teaching and learning. These top issues provide the thematic foundation or basis for all of our conversations, courses, and publications for the coming year. Longitudinally they also provide the way to track the evolving discourse in the teaching and learning space. More information about this annual survey can be found at https://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning.

ACADEMIC TRANSFORMATION (Holistic models supporting student success, leadership competencies for academic transformation, partnerships and collaborations across campus, IT transformation, academic transformation that is broad, strategic, and institutional in scope)

ACCESSIBILITY AND UNIVERSAL DESIGN FOR LEARNING (Supporting and educating the academic community in effective practice; intersections with instructional delivery modes; compliance issues)

ADAPTIVE TEACHING AND LEARNING (Digital courseware; adaptive technology; implications for course design and the instructor’s role; adaptive approaches that are not technology-based; integration with LMS; use of data to improve learner outcomes)

COMPETENCY-BASED EDUCATION AND NEW METHODS FOR THE ASSESSMENT OF STUDENT LEARNING (Developing collaborative cultures of assessment that bring together faculty, instructional designers, accreditation coordinators, and technical support personnel, real world experience credit)

DIGITAL AND INFORMATION LITERACIES (Student and faculty literacies; research skills; data discovery, management, and analysis skills; information visualization skills; partnerships for literacy programs; evaluation of student digital competencies; information evaluation)

EVALUATING TECHNOLOGY-BASED INSTRUCTIONAL INNOVATIONS (Tools and methods to gather data; data analysis techniques; qualitative vs. quantitative data; evaluation project design; using findings to change curricular practice; scholarship of teaching and learning; articulating results to stakeholders; just-in-time evaluation of innovations). here is my bibliographical overview on Big Data (scroll down to “Research literature”https://blog.stcloudstate.edu/ims/2017/11/07/irdl-proposal/ )

EVOLUTION OF THE TEACHING AND LEARNING SUPPORT PROFESSION (Professional skills for T&L support; increasing emphasis on instructional design; delineating the skills, knowledge, business acumen, and political savvy for success; role of inter-institutional communities of practices and consortia; career-oriented professional development planning)

FACULTY DEVELOPMENT (Incentivizing faculty innovation; new roles for faculty and those who support them; evidence of impact on student learning/engagement of faculty development programs; faculty development intersections with learning analytics; engagement with student success)

GAMIFICATION OF LEARNING (Gamification designs for course activities; adaptive approaches to gamification; alternate reality games; simulations; technological implementation options for faculty)

INSTRUCTIONAL DESIGN (Skills and competencies for designers; integration of technology into the profession; role of data in design; evolution of the design profession (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/10/04/instructional-design-3/); effective leadership and collaboration with faculty)

INTEGRATED PLANNING AND ADVISING FOR STUDENT SUCCESS (Change management and campus leadership; collaboration across units; integration of technology systems and data; dashboard design; data visualization (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=data+visualization); counseling and coaching advising transformation; student success analytics)

LEARNING ANALYTICS (Leveraging open data standards; privacy and ethics; both faculty and student facing reports; implementing; learning analytics to transform other services; course design implications)

LEARNING SPACE DESIGNS (Makerspaces; funding; faculty development; learning designs across disciplines; supporting integrated campus planning; ROI; accessibility/UDL; rating of classroom designs)

MICRO-CREDENTIALING AND DIGITAL BADGING (Design of badging hierarchies; stackable credentials; certificates; role of open standards; ways to publish digital badges; approaches to meta-data; implications for the transcript; Personalized learning transcripts and blockchain technology (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=blockchain

MOBILE LEARNING (Curricular use of mobile devices (here previous blog postings on this issue:

https://blog.stcloudstate.edu/ims/2015/09/25/mc218-remodel/; innovative curricular apps; approaches to use in the classroom; technology integration into learning spaces; BYOD issues and opportunities)

MULTI-DIMENSIONAL TECHNOLOGIES (Virtual, augmented, mixed, and immersive reality; video walls; integration with learning spaces; scalability, affordability, and accessibility; use of mobile devices; multi-dimensional printing and artifact creation)

NEXT-GENERATION DIGITAL LEARNING ENVIRONMENTS AND LMS SERVICES (Open standards; learning environments architectures (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/; social learning environments; customization and personalization; OER integration; intersections with learning modalities such as adaptive, online, etc.; LMS evaluation, integration and support)

ONLINE AND BLENDED TEACHING AND LEARNING (Flipped course models; leveraging MOOCs in online learning; course development models; intersections with analytics; humanization of online courses; student engagement)

OPEN EDUCATION (Resources, textbooks, content; quality and editorial issues; faculty development; intersections with student success/access; analytics; licensing; affordability; business models; accessibility and sustainability)

PRIVACY AND SECURITY (Formulation of policies on privacy and data protection; increased sharing of data via open standards for internal and external purposes; increased use of cloud-based and third party options; education of faculty, students, and administrators)

WORKING WITH EMERGING LEARNING TECHNOLOGY (Scalability and diffusion; effective piloting practices; investments; faculty development; funding; evaluation methods and rubrics; interoperability; data-driven decision-making)

+++++++++++
learning and teaching in this IMS blog
https://blog.stcloudstate.edu/ims?s=teaching+and+learning

1 2 3 4 5 7