Research from the Yale Center of Teaching and Learning highlights the ups and downs of classroom tech use, including the juxtaposition of increased engagement from using familiar platforms for assignments and decreased motivation and grades from limitless internet exposure, eSchool News reports.
Educators must ensure a cautious approach to tech use that doesn’t make students overly reliant upon it to complete tasks and solve problems, using social networking and collaborative platforms as a means to an end rather than the be-all solution.
Before adopting and implementing it, educators should consider how any given piece of classroom technology will improve studying, what the possible pitfalls are and how to avoid them, how it will help meet goals or close gaps, and how it will improve workflow, according to eSchool News.
Please have also materials, which might help you organize our thoughts and expedite your Chapter 2 writing….
Do you agree with (did you use) the following observations:
The purpose of the review of the literature is to prove that no one has studied the gap in the knowledge outlined in Chapter 1. The subjects in the Review of Literature should have been introduced in the Background of the Problem in Chapter 1. Chapter 2 is not a textbook of subject matter loosely related to the subject of the study. Every research study that is mentioned should in some way bear upon the gap in the knowledge, and each study that is mentioned should end with the comment that the study did not collect data about the specific gap in the knowledge of the study as outlined in Chapter 1.
The review should be laid out in major sections introduced by organizational generalizations. An organizational generalization can be a subheading so long as the last sentence of the previous section introduces the reader to what the next section will contain. The purpose of this chapter is to cite major conclusions, findings, and methodological issues related to the gap in the knowledge from Chapter 1. It is written for knowledgeable peers from easily retrievable sources of the most recent issue possible.
Empirical literature published within the previous 5 years or less is reviewed to prove no mention of the specific gap in the knowledge that is the subject of the dissertation is in the body of knowledge. Common sense should prevail. Often, to provide a history of the research, it is necessary to cite studies older than 5 years. The object is to acquaint the reader with existing studies relative to the gap in the knowledge and describe who has done the work, when and where the research was completed, and what approaches were used for the methodology, instrumentation, statistical analyses, or all of these subjects.
If very little literature exists, the wise student will write, in effect, a several-paragraph book report by citing the purpose of the study, the methodology, the findings, and the conclusions. If there is an abundance of studies, cite only the most recent studies. Firmly establish the need for the study. Defend the methods and procedures by pointing out other relevant studies that implemented similar methodologies. It should be frequently pointed out to the reader why a particular study did not match the exact purpose of the dissertation.
The Review of Literature ends with a Conclusion that clearly states that, based on the review of the literature, the gap in the knowledge that is the subject of the study has not been studied. Remember that a “summary” is different from a “conclusion.” A Summary, the final main section, introduces the next chapter.
When conducting qualitative data, how many people should be interviewed? Is there a minimum or a max
Here is my take on it:
Simple question, not so simple answer.
It depends.
Generally, the number of respondents depends on the type of qualitative inquiry: case study methodology, phenomenological study, ethnographic study, or ethnomethodology. However, a rule of thumb is for scholars to achieve saturation point–that is the point in which no fresh information is uncovered in response to an issue that is of interest to the researcher.
If your qualitative method is designed to meet rigor and trustworthiness, thick, rich data is important. To achieve these principles you would need at least 12 interviews, ensuring your participants are the holders of knowledge in the area you intend to investigate. In grounded theory you could start with 12 and interview more if your data is not rich enough.
In IPA the norm tends to be 6 interviews.
You may check the sample size in peer reviewed qualitative publications in your field to find out about popular practice. In all depends on the research problem, choice of specific qualitative approach and theoretical framework, so the answer to your question will vary from few to few dozens.
How many interviews are needed in a qualitative research?
There are different views in literature and no one agreed to the exact number. Here I reviewed some mostly cited references. Based Creswell (2014), it is estimated that 16 participants will provide rich and detailed data. There are a couple of researchers agreed on 10–15 in-depth interviews are sufficient (Guest, Bunce & Johnson 2006; Baker & Edwards 2012).
your methodological choices need to reflect your ontological position and understanding of knowledge production, and that’s also where you can argue a strong case for smaller qualitative studies, as you say. This is not only a problem for certain subjects, I think it’s a problem in certain departments or journals across the board of social science research, as it’s a question of academic culture.
here more serious literature and research (in case you need to cite in Chapter 3)
Sample Size and Saturation in PhD Studies Using Qualitative Interviews
Gaskell, George (2000). Individual and Group Interviewing. In Martin W. Bauer & George Gaskell (Eds.), Qualitative Researching With Text, Image and Sound. A Practical Handbook (pp. 38-56). London: SAGE Publications.
Savolainen, Jukka 1994: “The Rationality of Drawing Big Conclusions Based on Small Samples.” Social Forces 72:1217-24. (http://www.jstor.org/pss/2580299).
Small, M.(2009) ‘How many cases do I need ? On science and the logic of case selection in field-based research’ Ethnography 10(1) 5-38
Williams,M. (2000) ‘Interpretivism and generalisation ‘ Sociology 34(2) 209-224
where you have several documents from the Graduate school and myself to start building your understanding and vocabulary regarding your quantitative, qualitative or mixed method research.
It has been agreed that before you go to the Statistical Center (Randy Kolb), it is wise to be prepared and understand the terminology as well as the basics of the research methods.
Please have an additional list of materials available through the SCSU library and the Internet. They can help you further with building a robust foundation to lead your research:
Books on intro to stat modeling available at the library. I understand the major pain borrowing books from the SCSU library can constitute, but you can use the titles and the authors and see if you can borrow them from your local public library
I also sought and shared with you “visual” explanations of the basics terms and concepts. Once you start looking at those, you should be able to further research (e.g. YouTube) and find suitable sources for your learning style.
I (and the future cohorts) will deeply appreciate if you remember to share those “suitable sources for your learning style” either by sharing in this Google Group thread and/or sharing in the comments section of the blog entry: https://blog.stcloudstate.edu/ims/2017/07/10/intro-to-stat-modeling. Your Facebook group page is also a good place to discuss among ourselves best practices to learn and use research methods for your chapter 3.
Watching the video, you may remember the same #BooleanSearch techniques from our BI (bibliography instruction) session of last semester.
Considering the fact of preponderance of information in 2017: your Chapter 2 is NOT ONLY about finding information regrading your topic.
Your Chapter 2 is about proving your extensive research of the existing literature.
The techniques presented in the short video will arm you with methods to dig deeper and look further.
If you would like to do a decent job exploring all corners of the vast area called Internet, please consider other search engines similar to Google Scholar:
Applications for the 2018 Institute will be accepted between December 1, 2017 and January 27, 2018. Scholars accepted to the program will be notified in early March 2018.
Title:
Learning to Harness Big Data in an Academic Library
Abstract (200)
Research on Big Data per se, as well as on the importance and organization of the process of Big Data collection and analysis, is well underway. The complexity of the process comprising “Big Data,” however, deprives organizations of ubiquitous “blue print.” The planning, structuring, administration and execution of the process of adopting Big Data in an organization, being that a corporate one or an educational one, remains an elusive one. No less elusive is the adoption of the Big Data practices among libraries themselves. Seeking the commonalities and differences in the adoption of Big Data practices among libraries may be a suitable start to help libraries transition to the adoption of Big Data and restructuring organizational and daily activities based on Big Data decisions. Introduction to the problem. Limitations
The redefinition of humanities scholarship has received major attention in higher education. The advent of digital humanities challenges aspects of academic librarianship. Data literacy is a critical need for digital humanities in academia. The March 2016 Library Juice Academy Webinar led by John Russel exemplifies the efforts to help librarians become versed in obtaining programming skills, and respectively, handling data. Those are first steps on a rather long path of building a robust infrastructure to collect, analyze, and interpret data intelligently, so it can be utilized to restructure daily and strategic activities. Since the phenomenon of Big Data is young, there is a lack of blueprints on the organization of such infrastructure. A collection and sharing of best practices is an efficient approach to establishing a feasible plan for setting a library infrastructure for collection, analysis, and implementation of Big Data.
Limitations. This research can only organize the results from the responses of librarians and research into how libraries present themselves to the world in this arena. It may be able to make some rudimentary recommendations. However, based on each library’s specific goals and tasks, further research and work will be needed.
Big Data is becoming an omnipresent term. It is widespread among different disciplines in academia (De Mauro, Greco, & Grimaldi, 2016). This leads to “inconsistency in meanings and necessity for formal definitions” (De Mauro et al, 2016, p. 122). Similarly, to De Mauro et al (2016), Hashem, Yaqoob, Anuar, Mokhtar, Gani and Ullah Khan (2015) seek standardization of definitions. The main connected “themes” of this phenomenon must be identified and the connections to Library Science must be sought. A prerequisite for a comprehensive definition is the identification of Big Data methods. Bughin, Chui, Manyika (2011), Chen et al. (2012) and De Mauro et al (2015) single out the methods to complete the process of building a comprehensive definition.
In conjunction with identifying the methods, volume, velocity, and variety, as defined by Laney (2001), are the three properties of Big Data accepted across the literature. Daniel (2015) defines three stages in big data: collection, analysis, and visualization. According to Daniel, (2015), Big Data in higher education “connotes the interpretation of a wide range of administrative and operational data” (p. 910) and according to Hilbert (2013), as cited in Daniel (2015), Big Data “delivers a cost-effective prospect to improve decision making” (p. 911).
The importance of understanding the process of Big Data analytics is well understood in academic libraries. An example of such “administrative and operational” use for cost-effective improvement of decision making are the Finch & Flenner (2016) and Eaton (2017) case studies of the use of data visualization to assess an academic library collection and restructure the acquisition process. Sugimoto, Ding & Thelwall (2012) call for the discussion of Big Data for libraries. According to the 2017 NMC Horizon Report “Big Data has become a major focus of academic and research libraries due to the rapid evolution of data mining technologies and the proliferation of data sources like mobile devices and social media” (Adams, Becker, et al., 2017, p. 38).
Power (2014) elaborates on the complexity of Big Data in regard to decision-making and offers ideas for organizations on building a system to deal with Big Data. As explained by Boyd and Crawford (2012) and cited in De Mauro et al (2016), there is a danger of a new digital divide among organizations with different access and ability to process data. Moreover, Big Data impacts current organizational entities in their ability to reconsider their structure and organization. The complexity of institutions’ performance under the impact of Big Data is further complicated by the change of human behavior, because, arguably, Big Data affects human behavior itself (Schroeder, 2014).
De Mauro et al (2015) touch on the impact of Dig Data on libraries. The reorganization of academic libraries considering Big Data and the handling of Big Data by libraries is in a close conjunction with the reorganization of the entire campus and the handling of Big Data by the educational institution. In additional to the disruption posed by the Big Data phenomenon, higher education is facing global changes of economic, technological, social, and educational character. Daniel (2015) uses a chart to illustrate the complexity of these global trends. Parallel to the Big Data developments in America and Asia, the European Union is offering access to an EU open data portal (https://data.europa.eu/euodp/home ). Moreover, the Association of European Research Libraries expects under the H2020 program to increase “the digitization of cultural heritage, digital preservation, research data sharing, open access policies and the interoperability of research infrastructures” (Reilly, 2013).
The challenges posed by Big Data to human and social behavior (Schroeder, 2014) are no less significant to the impact of Big Data on learning. Cohen, Dolan, Dunlap, Hellerstein, & Welton (2009) propose a road map for “more conservative organizations” (p. 1492) to overcome their reservations and/or inability to handle Big Data and adopt a practical approach to the complexity of Big Data. Two Chinese researchers assert deep learning as the “set of machine learning techniques that learn multiple levels of representation in deep architectures (Chen & Lin, 2014, p. 515). Deep learning requires “new ways of thinking and transformative solutions (Chen & Lin, 2014, p. 523). Another pair of researchers from China present a broad overview of the various societal, business and administrative applications of Big Data, including a detailed account and definitions of the processes and tools accompanying Big Data analytics. The American counterparts of these Chinese researchers are of the same opinion when it comes to “think about the core principles and concepts that underline the techniques, and also the systematic thinking” (Provost and Fawcett, 2013, p. 58). De Mauro, Greco, and Grimaldi (2016), similarly to Provost and Fawcett (2013) draw attention to the urgent necessity to train new types of specialists to work with such data. As early as 2012, Davenport and Patil (2012), as cited in Mauro et al (2016), envisioned hybrid specialists able to manage both technological knowledge and academic research. Similarly, Provost and Fawcett (2013) mention the efforts of “academic institutions scrambling to put together programs to train data scientists” (p. 51). Further, Asomoah, Sharda, Zadeh & Kalgotra (2017) share a specific plan on the design and delivery of a big data analytics course. At the same time, librarians working with data acknowledge the shortcomings in the profession, since librarians “are practitioners first and generally do not view usability as a primary job responsibility, usually lack the depth of research skills needed to carry out a fully valid” data-based research (Emanuel, 2013, p. 207).
Borgman (2015) devotes an entire book to data and scholarly research and goes beyond the already well-established facts regarding the importance of Big Data, the implications of Big Data and the technical, societal, and educational impact and complications posed by Big Data. Borgman elucidates the importance of knowledge infrastructure and the necessity to understand the importance and complexity of building such infrastructure, in order to be able to take advantage of Big Data. In a similar fashion, a team of Chinese scholars draws attention to the complexity of data mining and Big Data and the necessity to approach the issue in an organized fashion (Wu, Xhu, Wu, Ding, 2014).
Bruns (2013) shifts the conversation from the “macro” architecture of Big Data, as focused by Borgman (2015) and Wu et al (2014) and ponders over the influx and unprecedented opportunities for humanities in academia with the advent of Big Data. Does the seemingly ubiquitous omnipresence of Big Data mean for humanities a “railroading” into “scientificity”? How will research and publishing change with the advent of Big Data across academic disciplines?
Reyes (2015) shares her “skinny” approach to Big Data in education. She presents a comprehensive structure for educational institutions to shift “traditional” analytics to “learner-centered” analytics (p. 75) and identifies the participants in the Big Data process in the organization. The model is applicable for library use.
Being a new and unchartered territory, Big Data and Big Data analytics can pose ethical issues. Willis (2013) focusses on Big Data application in education, namely the ethical questions for higher education administrators and the expectations of Big Data analytics to predict students’ success. Daries, Reich, Waldo, Young, and Whittinghill (2014) discuss rather similar issues regarding the balance between data and student privacy regulations. The privacy issues accompanying data are also discussed by Tene and Polonetsky, (2013).
Privacy issues are habitually connected to security and surveillance issues. Andrejevic and Gates (2014) point out in a decision making “generated by data mining, the focus is not on particular individuals but on aggregate outcomes” (p. 195). Van Dijck (2014) goes into further details regarding the perils posed by metadata and data to the society, in particular to the privacy of citizens. Bail (2014) addresses the same issue regarding the impact of Big Data on societal issues, but underlines the leading roles of cultural sociologists and their theories for the correct application of Big Data.
Library organizations have been traditional proponents of core democratic values such as protection of privacy and elucidation of related ethical questions (Miltenoff & Hauptman, 2005). In recent books about Big Data and libraries, ethical issues are important part of the discussion (Weiss, 2018). Library blogs also discuss these issues (Harper & Oltmann, 2017). An academic library’s role is to educate its patrons about those values. Sugimoto et al (2012) reflect on the need for discussion about Big Data in Library and Information Science. They clearly draw attention to the library “tradition of organizing, managing, retrieving, collecting, describing, and preserving information” (p.1) as well as library and information science being “a historically interdisciplinary and collaborative field, absorbing the knowledge of multiple domains and bringing the tools, techniques, and theories” (p. 1). Sugimoto et al (2012) sought a wide discussion among the library profession regarding the implications of Big Data on the profession, no differently from the activities in other fields (e.g., Wixom, Ariyachandra, Douglas, Goul, Gupta, Iyer, Kulkami, Mooney, Phillips-Wren, Turetken, 2014). A current Andrew Mellon Foundation grant for Visualizing Digital Scholarship in Libraries seeks an opportunity to view “both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets (Hwangbo, 2014).
The importance of the library with its traditional roles, as described by Sugimoto et al (2012) may continue, considering the Big Data platform proposed by Wu, Wu, Khabsa, Williams, Chen, Huang, Tuarob, Choudhury, Ororbia, Mitra, & Giles (2014). Such platforms will continue to emerge and be improved, with librarians as the ultimate drivers of such platforms and as the mediators between the patrons and the data generated by such platforms.
Every library needs to find its place in the large organization and in society in regard to this very new and very powerful phenomenon called Big Data. Libraries might not have the trained staff to become a leader in the process of organizing and building the complex mechanism of this new knowledge architecture, but librarians must educate and train themselves to be worthy participants in this new establishment.
Method
The study will be cleared by the SCSU IRB.
The survey will collect responses from library population and it readiness to use and use of Big Data. Send survey URL to (academic?) libraries around the world.
Data will be processed through SPSS. Open ended results will be processed manually. The preliminary research design presupposes a mixed method approach.
The study will include the use of closed-ended survey response questions and open-ended questions. The first part of the study (close ended, quantitative questions) will be completed online through online survey. Participants will be asked to complete the survey using a link they receive through e-mail.
Mixed methods research was defined by Johnson and Onwuegbuzie (2004) as “the class of research where the researcher mixes or combines quantitative and qualitative research techniques, methods, approaches, concepts, or language into a single study” (Johnson & Onwuegbuzie, 2004 , p. 17). Quantitative and qualitative methods can be combined, if used to complement each other because the methods can measure different aspects of the research questions (Sale, Lohfeld, & Brazil, 2002).
Sampling design
Online survey of 10-15 question, with 3-5 demographic and the rest regarding the use of tools.
1-2 open-ended questions at the end of the survey to probe for follow-up mixed method approach (an opportunity for qualitative study)
data analysis techniques: survey results will be exported to SPSS and analyzed accordingly. The final survey design will determine the appropriate statistical approach.
Project Schedule
Complete literature review and identify areas of interest – two months
Prepare and test instrument (survey) – month
IRB and other details – month
Generate a list of potential libraries to distribute survey – month
Contact libraries. Follow up and contact again, if necessary (low turnaround) – month
Collect, analyze data – two months
Write out data findings – month
Complete manuscript – month
Proofreading and other details – month
Significance of the work
While it has been widely acknowledged that Big Data (and its handling) is changing higher education (https://blog.stcloudstate.edu/ims?s=big+data) as well as academic libraries (https://blog.stcloudstate.edu/ims/2016/03/29/analytics-in-education/), it remains nebulous how Big Data is handled in the academic library and, respectively, how it is related to the handling of Big Data on campus. Moreover, the visualization of Big Data between units on campus remains in progress, along with any policymaking based on the analysis of such data (hence the need for comprehensive visualization).
This research will aim to gain an understanding on: a. how librarians are handling Big Data; b. how are they relating their Big Data output to the campus output of Big Data and c. how librarians in particular and campus administration in general are tuning their practices based on the analysis.
Based on the survey returns (if there is a statistically significant return), this research might consider juxtaposing the practices from academic libraries, to practices from special libraries (especially corporate libraries), public and school libraries.
References:
Adams Becker, S., Cummins M, Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., … Wolfson, N. (2017). NMC Horizon Report: 2017 Library Edition.
Andrejevic, M., & Gates, K. (2014). Big Data Surveillance: Introduction. Surveillance & Society, 12(2), 185–196.
Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125
Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.
Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proc. VLDB Endow., 2(2), 1481–1492. https://doi.org/10.14778/1687553.1687576
Daniel, B. (2015). Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. https://doi.org/10.1111/bjet.12230
Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., … Chuang, I. (2014). Privacy, Anonymity, and Big Data in the Social Sciences. Commun. ACM, 57(9), 56–63. https://doi.org/10.1145/2643132
De Mauro, A. D., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061
De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644(1), 97–104. https://doi.org/10.1063/1.4907823
Eaton, M. (2017). Seeing Library Data: A Prototype Data Visualization Application for Librarians. Publications and Research. Retrieved from http://academicworks.cuny.edu/kb_pubs/115
Emanuel, J. (2013). Usability testing in libraries: methods, limitations, and implications. OCLC Systems & Services: International Digital Library Perspectives, 29(4), 204–217. https://doi.org/10.1108/OCLC-02-2013-0009
Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261. https://doi.org/10.1177/2043820613513121
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47(Supplement C), 98–115. https://doi.org/10.1016/j.is.2014.07.006
Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and Variety.
Miltenoff, P., & Hauptman, R. (2005). Ethical dilemmas in libraries: an international perspective. The Electronic Library, 23(6), 664–670. https://doi.org/10.1108/02640470510635746
Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015
Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508
Reyes, J. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80. https://doi.org/10.1007/s11528-015-0842-1
Schroeder, R. (2014). Big Data and the brave new world of social media research. Big Data & Society, 1(2), 2053951714563194. https://doi.org/10.1177/2053951714563194
Sugimoto, C. R., Ding, Y., & Thelwall, M. (2012). Library and information science in the big data era: Funding, projects, and future [a panel proposal]. Proceedings of the American Society for Information Science and Technology, 49(1), 1–3. https://doi.org/10.1002/meet.14504901187
Tene, O., & Polonetsky, J. (2012). Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of Technology and Intellectual Property, 11, [xxvii]-274.
van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society; Newcastle upon Tyne, 12(2), 197–208.
Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010
West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 4, 1–0.
Willis, J. (2013). Ethics, Big Data, and Analytics: A Model for Application. Educause Review Online. Retrieved from https://docs.lib.purdue.edu/idcpubs/1
Wixom, B., Ariyachandra, T., Douglas, D. E., Goul, M., Gupta, B., Iyer, L. S., … Turetken, O. (2014). The current state of business intelligence in academia: The arrival of big data. CAIS, 34, 1.
Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109
Wu, Z., Wu, J., Khabsa, M., Williams, K., Chen, H. H., Huang, W., … Giles, C. L. (2014). Towards building a scholarly big data platform: Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital Libraries (pp. 117–126). https://doi.org/10.1109/JCDL.2014.6970157
Ercegovac, Z., & Richardson, J. J. (2004). Academic Dishonesty, Plagiarism Included, in the Digital Age: A Literature Review. College & Research Libraries, 65(4), 301-318.
what constitutes plagiarism, how prevalent plagiarism is in our schools, colleges, and society, what is done to prevent and reduce plagiarism, the attitudes of faculty toward academic dishonesty in general, and individual differences as predictors of academic dishonesty
the interdisciplinary nature of the topic and the ethical challenges of accessing and using information technology, especially in the age of the Internet. Writings have been reported in the literatures of education, psychology, and library and information studies, each looking at academic dishonesty from different perspectives. The literature has been aimed at instructors and scholars in education and developmental psychology, as well as college librarians and school media specialists.
Although the literature appears to be scattered across many fields, standard dictionaries and encyclopedias agree on the meaning of plagiarism.
According to Webster’s, plagiarism is equated with kidnapping and defined as “the unauthorized use of the language and thoughts of another author and the representation of them as one’s own.”(FN10) The Oxford English Dictionary defines plagiarism as the “wrongful appropriation or purloining, and publication as one’s own, of the ideas, or the expression of the ideas (literary, artistic, musical, mechanical, etc.).”(
plagiarism is an elusive concept and has been treated differently in different contexts.
different types of plagiarism: direct plagiarism; truncation (where strings are deleted in the beginning or ending); excision (strings are deleted from the middle of sentences); insertions; inversions; substitutions; change of tense, person, number, or voice; undocumented factual information; inappropriate use of quotation marks; or paraphrasing.
defined plagiarism as a deliberate use of “someone else’s language, ideas, or other original (not common-knowledge) material without acknowledging its source.”(FN30) This definition is extended to printed and digital materials, manuscripts, and other works. Plagiarism is interrelated to intellectual property, copyright, and authorship, and is discussed from the perspective of multiculturalism.(FN31)
Jeffrey Klausman made three distinctions among direct plagiarism, paraphrase plagiarism, and patchwork plagiarism
+++++++++++++++
Cosgrove, J., Norelli, B., & Putnam, E. (2005). Setting the Record Straight: How Online Database Providers Are Handling Plagiarism and Fabrication Issues. College & Research Libraries, 66(2), 136-148.
None of the database providers used links for corrections. Although it is true that the structure of a particular database (LexisNexis, for instance) may make static links more difficult to create than appending corrections, it is a shame that the most elemental characteristic of online resources–the ability to link–is so underutilized within the databases themselves.
Finding reliable materials using online databases is difficult enough for students, especially undergraduates, without having to navigate easily fixed pitfalls. The articles in this study are those most obviously in need of a correction or a link to a correction–articles identified by the publications themselves as being flawed by error, plagiarism, or fabrication. Academic librarians instruct students to carefully evaluate the literature in their campuses’ database resources. Unfortunately, it is not practical to expect undergraduate students to routinely search at the level necessary to uncover corrections and retractions nor do librarians commonly have the time to teach those skills.
The differences between the most popular 3D printing technologies, including: fused deposition modeling (FDM), stereolithography (SLA), digital light processing (DLP), and selective laser sintering (SLS)
How to understand a 3D printer specifications chart
What 3D printing resolution quality mean in 3D printing
How educators at universities, high schools, and colleges around the world are using the Form 2 to empower students and conduct research
When do you believe technology enhances learning, and when do you believe
it does not?
How has technology impacted your own learning?
Does your school, library, or organization have a specific learning philosophy that guides ed-tech purchases and implementation? If yes, what is that philosophy?
More than 450 responses were received (those that agreed for their answers to be
shared publicly can be seen at http://www.modernlearning.com).
For the purposes of this report, “educational technology” (often abbreviated as “ed tech”) is assumed to refer principally to the use of modern electronic computing and other high-tech, mostly Internet-enabled, devices and services in education.
When it becomes a distraction.
● When there is little or no preparation for it.
● When just used for testing / score tracking.
● When used for consuming and not creating, or just for rote learning.
● When “following the education trends: everyone else is doing it.”
● When the tech is “an end rather than means” (also stated as, ”when I don’t have a plan or learning goal…”). We found this very significant, and it is the focus of Observation 6.
● When there is a lack of guidance in how to effectively use new ed tech tools (“when there is no PD”). This is the focus of Observation 4.
● Finally, when it “gets in the way of real time talk / sharing.” Forgetting that the tech “cannot mentor, motivate, show beauty, interact fully, give quality attention, [or] contextualize.” Also: ”outcomes related to acquiring the skills and attitudes cannot be enhanced by technology.” As mentioned in the introduction, this would be missing the “human factor.” One respondent
captured this as follows: “3 reasons tech innovation fails: Misunderstanding Human Motivation, Human Learning, or Human Systems.”
reduced their isolation by helping them to connect with their peers;
● allowed them to feel part of larger educational movements;
● afforded them opportunities to become contributors.
Networked information technology has rendered the words “teacher” and “student” more ambiguous. YouTube tutorials and social-media discussions, just to cite a couple of obvious examples, have made it abundantly clear that at any given moment anyone—regardless of age or background—can be a learner or a teacher, or even both at once.
Based on this research, institutions using what they perceive as fully integrated solutions are more likely to feel that technology does not enhance their advising function. This contradicts the advertised benefits of integrated functionality (i.e., it eases the pain of managing multiple products). These negative views have been influenced by these institutions’ experiences with the specific products that they have adopted. Institutions using fully integrated solutions are less likely to report satisfaction with their products.
++++++++++++
more on academic advising and technology in this IMS blog https://blog.stcloudstate.edu/ims?s=advising
My Note: when stripped from the commercialized plug in for Apple, this article makes a good memorization exercise for pedagogues.
According to American psychologist Abraham Maslow, all humans have the same fundamental needs (food, clothing and shelter), and these needs must be met before an individual is motivated to look beyond these basic needs. This motivational theory is commonly referred to as Maslow’s hierarchy of needs.
Self-actualization: achieving one’s full potential
Maslow’s hierarchy of needs can serve as an analogy for what is possible with instructionally-designed technology
1. Device Deployment = Basic Needs
Device deployment is the first basic need of any school looking to leverage education technology. If schools are unable to procure devices and if IT is unable to get these devices into the hands of students and educators, there is no moving forward.
2. Communication = Safety Needs
Beyond basic communications functions, apps must be made available and installed for an additional layer of connectivity. For example, learning management systems (LMS) enable communication beyond classroom walls and empower students with the learning resources they need while at home or in the community. However, how do we ensure access off-campus for those without ubiquitous internet connections
3. Productivity = Love Needs
Communication that encourages higher-level thinking and problem solving is where dramatic learning happens.
4. Transformation = Esteem and Self-Actualization Needs
IT and educators are pairing innovative teaching methods such as blended learning (a mix of technology and traditional learning) or flipped classrooms (teaching is done at home and exercises during class time) with education apps (productivity layer).
5. Let Mobile Device Management (MDM) Be Your Stepladder