Sep
2021
Geolocation Storytelling Revisited
Geolocation Storytelling Revisited
+++++++++++++
more on geospatial in this IMS blog
https://blog.stcloudstate.edu/ims?s=geospatial
Digital Literacy for St. Cloud State University
+++++++++++++
more on geospatial in this IMS blog
https://blog.stcloudstate.edu/ims?s=geospatial
How to Use Mayer’s 12 Principles of Multimedia Learning [Examples Included]
++++++++++++++
more on ID in this IMS blog
https://blog.stcloudstate.edu/ims?s=instructional+design
As with all technology, XR is evolving. The current status in terms of accessibility is that more folks need to be educated about accessibility in the VR space. In general, most experiences are not accessible, yet.
Oculus For Developers has some documentation for Designing accessible VR. You can find it here:
https://developer.oculus.com/learn/design-accessible-vr/
My current research with VEIL (Virtual Experience Interaction Lab https://www.veilab.org/) involves examining Design Patterns in VR. My future work involves research into inclusive and accessible XR. In addition, I am working on a book that will be related to XR and spatial computing.
You can check out my book that is available online at this link: https://www.apress.com/gp/book/9781484250150
++++++++++++++++++
more on XR in this IMS blog
https://blog.stcloudstate.edu/ims?s=extended+reality
IM 554, Skills for Online Learning and Teaching
Plan:
Prior to class meeting
During class meeting
++++++++++++++++++
more on IM 554 in this IMS blog
https://blog.stcloudstate.edu/ims?s=554
Mesh = Hololens + ASVR + Teams
Mesh = immersive presence + spatial maps + holographic rendering
++++++++++++++
more on ASVR in this IMS blog
https://blog.stcloudstate.edu/ims?s=asvr
Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778
p. 3
2.2. Learning paradigms
An understanding of the existing learning paradigms is essential for performing an analysis of the current state of VR applications in higher education. Thus, we introduce the main ideas behind the existing learning paradigms. Literature distinguishes between behaviorism, cognitivism, and constructivism (Schunk, 2012). Other scholars also include experiential learning (Kolb & Kolb, 2012) to this list and, recently, connectivism has been introduced as a new learning paradigm (Kathleen Dunaway, 2011; Siemens, 2014). Each learning paradigm has developed various theories about educational goals and outcomes (Schunk, 2012). Each of these theories also offers a different perspective on the learning goals, motivational process, learning performance, transfer of knowledge process, the role of emotions, and implications for the teaching methods.
Behaviorism assumes that knowledge is a repertoire of behavioral responses to environmental stimuli (Shuell, 1986; Skinner, 1989). Thus, learning is considered to be a passive absorption of a predefined body of knowledge by the learner. According to this paradigm, learning requires repetition and learning motivation is extrinsic, involving positive and negative reinforcement. The teacher serves as a role model who transfers the correct behavioral response.
Cognitivism understands the acquisition of knowledge systems as actively constructed by learners based on pre-existing prior knowledge structures. Hence, the proponents of cognitivism view learning as an active, constructive, and goal-oriented process, which involves active assimilation and accommodation of new information to an existing body of knowledge. The learning motivation is intrinsic and learners should be capable of defining their own goals and motivating themselves to learn. Learning is supported by providing an environment that encourages discovery and assimilation or accommodation of knowledge (Shuell, 1986),RN23. Cognitivism views learning as more complex cognitive processes such as thinking, problem-solving, verbal information, concept formation, and information processing. It addresses the issues of how information is received, organized, stored, and retrieved by the mind. Knowledge acquisition is a mental activity consisting of internal coding and structuring by the learner. Digital media, including VR-based learning can strengthen cognitivist learning design (Dede, 2008). Cognitive strategies such as schematic organization, analogical reasoning, and algorithmic problem solving will fit learning tasks requiring an increased level of processing, e.g. classifications, rule or procedural executions (Ertmer & Newby, 1993) and be supported by digital media (Dede, 2008).
Constructivism posits that learning is an active, constructive process. Learners serve as information constructors who actively construct their subjective representations and comprehensions of reality. New information is linked to the prior knowledge of each learner and, thus, mental representations are subjective (Fosnot, 2013; Fosnot & Perry, 1996). Therefore, constructivists argue that the instructional learning design has to provide macro and micro support to assist the learners in constructing their knowledge and engaging them for meaningful learning. The macro support tools include related cases, information resources, cognitive tools, conversation, and collaboration tools, and social or contextual support. A micro strategy makes use of multimedia and principles such as the spatial contiguity principle, coherence principle, modality principle, and redundancy principle to strengthen the learning process. VR-based learning fits the constructivist learning design (Lee & Wong, 2008; Sharma, Agada, & Ruffin, 2013). Constructivist strategies such as situated learning, cognitive apprenticeships, and social negotiation are appropriate for learning tasks demanding high levels of processing, for instance, heuristic problem solving, personal selection, and monitoring of cognitive strategies (Ertmer & Newby, 1993).
Experientialism describes learning as following a cycle of experiential stages, from concrete experience, observation and reflection, and abstract conceptualization to testing concepts in new situations. Experientialism adopts the constructivist’s point of view to some extent—e.g., that learning should be drawn from a learner’s personal experience. The teacher takes on the role of a facilitator to motivate learners to address the various stages of the learning cycle (Kolb & Kolb, 2012).
Connectivism takes into account the digital-age by assuming that people process information by forming connections. This newly introduced paradigm suggests that people do not stop learning after completing their formal education. They continue to search for and gain knowledge outside of traditional education channels, such as job skills, networking, experience, and access to information, by making use of new technology tools (Siemens, 2014).
https://www.icrc.org/en/what-we-do/virtual-reality
mounting research suggests that gaming in immersive virtual environments can directly affect and impact regions of the brain responsible for memory, spatial orientation, information organizations, and fine motor skills.
the ICRC officially established its Virtual Reality Unit (VRU) to delve further into computer-generated environments as a way to educate, communicate and advocate respect for IHL.
By 2017, the VRU had amassed a library of virtual environments for FAS’ IHL training sessions but there was a desire within the VRU, as well as in FAS and ICRC’s Learning & Development, to develop more advanced VR opportunities for a wider audience.
A 2018 report researched global financial investment in XR and a 2019 meta-analysis consolidated global academic findings that used VR to measure behaviour.
December 2019 … the production of an XR Quick Start Guide in April 2020 which introduces ICRC staff to lessons learned and best practices for initiative development.
++++++++++
more on gaming in this IMS blog
https://blog.stcloudstate.edu/ims?s=gaming
and immersive learning
https://blog.stcloudstate.edu/ims?s=immersive+learning
Modest3D Guided Virtual Adventure – iLRN Conference 2020 – Session 1: currently, live session: https://youtu.be/GjxTPOFSGEM
https://mediaspace.minnstate.edu/media/Modest+3D/1_28ejh60g
Instruction and Instructional Design
Presentation 1: Inspiring Faculty (+ Students) with Tales of Immersive Tech (Practitioner Presentation #106)
Authors: Nicholas Smerker
Immersive technologies – 360º video, virtual and augmented realities – are being discussed in many corners of higher education. For an instructor who is familiar with the terms, at least in passing, learning more about why they and their students should care can be challenging, at best. In order to create a font of inspiration, the IMEX Lab team within Teaching and Learning with Technology at Penn State devised its Get Inspired web resource. Building on a similar repository for making technology stories at the sister Maker Commons website, the IMEX Lab Get Inspired landing page invites faculty to discover real world examples of how cutting edge XR tools are being used every day. In addition to very approachable video content and a short summary calling out why our team chose the story, there are also instructional designer-developed Assignment Ideas that allow for quick deployment of exercises related to – though not always relying upon – the technologies highlighted in a given Get Inspired story.
Presentation 2: Lessons Learned from Over A Decade of Designing and Teaching Immersive VR in Higher Education Online Courses (Practitioner Presentation #101)
Authors: Eileen Oconnor
This presentation overviews the design and instruction in immersive virtual reality environments created by the author beginning with Second Life and progressing to open source venues. It will highlight the diversity of VR environment developed, the challenges that were overcome, and the accomplishment of students who created their own VR environments for K12, college and corporate settings. The instruction and design materials created to enable this 100% online master’s program accomplishment will be shared; an institute launched in 2018 for emerging technology study will be noted.
Presentation 3: Virtual Reality Student Teaching Experience: A Live, Remote Option for Learning Teaching Skills During Campus Closure and Social Distancing (Practitioner Presentation #110)
Authors: Becky Lane, Christine Havens-Hafer, Catherine Fiore, Brianna Mutsindashyaka and Lauren Suna
Summary: During the Coronavirus pandemic, Ithaca College teacher education majors needed a classroom of students in order to practice teaching and receive feedback, but the campus was closed, and gatherings forbidden. Students were unable to participate in live practice teaching required for their program. We developed a virtual reality pilot project to allow students to experiment in two third-party social VR programs, AltSpaceVR and Rumii. Social VR platforms allow a live, embodied experience that mimics in-person events to give students a more realistic, robust and synchronous teaching practice opportunity. We documented the process and lessons learned to inform, develop and scale next generation efforts.
Target audience sector: Informal and/or lifelong learning
Supported devices: Desktop/laptop – Windows, Desktop/laptop – Mac
Platform/environment access: Download from a website and install on a desktop/laptop computer
Official website: http://www.secondlife.com
+++++++++++++++++++
Presentation 1: Evaluating the impact of multimodal Collaborative Virtual Environments on user’s spatial knowledge and experience of gamified educational tasks (Full Paper #91)
Authors: Ioannis Doumanis and Daphne Economou
>>Access Video Presentation<<
Several research projects in spatial cognition have suggested Virtual Environments (VEs) as an effective way of facilitating mental map development of a physical space. In the study reported in this paper, we evaluated the effectiveness of multimodal real-time interaction in distilling understanding of the VE after completing gamified educational tasks. We also measure the impact of these design elements on the user’s experience of educational tasks. The VE used reassembles an art gallery and it was built using REVERIE (Real and Virtual Engagement In Realistic Immersive Environment) a framework designed to enable multimodal communication on the Web. We compared the impact of REVERIE VG with an educational platform called Edu-Simulation for the same gamified educational tasks. We found that the multimodal VE had no impact on the ability of students to retain a mental model of the virtual space. However, we also found that students thought that it was easier to build a mental map of the virtual space in REVERIE VG. This means that using a multimodal CVE in a gamified educational experience does not benefit spatial performance, but also it does not cause distraction. The paper ends with future work and conclusions and suggestions for improving mental map construction and user experience in multimodal CVEs.
Presentation 2: A case study on student’s perception of the virtual game supported collaborative learning (Full Paper #42)
Authors: Xiuli Huang, Juhou He and Hongyan Wang
>>Access Video Presentation<<
The English education course in China aims to help students establish the English skills to enhance their international competitiveness. However, in traditional English classes, students often lack the linguistic environment to apply the English skills they learned in their textbook. Virtual reality (VR) technology can set up an immersive English language environment and then promote the learners to use English by presenting different collaborative communication tasks. In this paper, spherical video-based virtual reality technology was applied to build a linguistic environment and a collaborative learning strategy was adopted to promote their communication. Additionally, a mixed-methods research approach was used to analyze students’ achievement between a traditional classroom and a virtual reality supported collaborative classroom and their perception towards the two approaches. The experimental results revealed that the virtual reality supported collaborative classroom was able to enhance the students’ achievement. Moreover, by analyzing the interview, students’ attitudes towards the virtual reality supported collaborative class were reported and the use of language learning strategies in virtual reality supported collaborative class was represented. These findings could be valuable references for those who intend to create opportunities for students to collaborate and communicate in the target language in their classroom and then improve their language skills
Presentation 1: Reducing Cognitive Load through the Worked Example Effect within a Serious Game Environment (Full Paper #19)
Authors: Bernadette Spieler, Naomi Pfaff and Wolfgang Slany
>>Access Video Presentation<<
Novices often struggle to represent problems mentally; the unfamiliar process can exhaust their cognitive resources, creating frustration that deters them from learning. By improving novices’ mental representation of problems, worked examples improve both problem-solving skills and transfer performance. Programming requires both skills. In programming, it is not sufficient to simply understand how Stackoverflow examples work; programmers have to be able to adapt the principles and apply them to their own programs. This paper shows evidence in support of the theory that worked examples are the most efficient mode of instruction for novices. In the present study, 42 students were asked to solve the tutorial The Magic Word, a game especially for girls created with the Catrobat programming environment. While the experimental group was presented with a series of worked examples of code, the control groups were instructed through theoretical text examples. The final task was a transfer question. While the average score was not significantly better in the worked example condition, the fact that participants in this experimental group finished significantly faster than the control group suggests that their overall performance was better than that of their counterparts.
Presentation 2: A literature review of e-government services with gamification elements (Full Paper #56)
Authors: Ruth S. Contreras-Espinosa and Alejandro Blanco-M
>>Access Video Presentation<<
Nowadays several democracies are facing the growing problem of a breach in communication between its citizens and their political representatives, resulting in low citizen’s engagement in the participation of political decision making and on public consultations. Therefore, it is fundamental to generate a constructive relationship between both public administration and the citizens by solving its needs. This document contains a useful literature review of the gamification topic and e-government services. The documents contain a background of those concepts and conduct a selection and analysis of the different applications found. A set of three lines of research gaps are found with a potential impact on future studies.
Presentation 1: Connecting User Experience to Learning in an Evaluation of an Immersive, Interactive, Multimodal Augmented Reality Virtual Diorama in a Natural History Museum & the Importance of Story (Full Paper #51)
Authors: Maria Harrington
>>Access Video Presentation<<
Reported are the findings of user experience and learning outcomes from a July 2019 study of an immersive, interactive, multimodal augmented reality (AR) application, used in the context of a museum. The AR Perpetual Garden App is unique in creating an immersive multisensory experience of data. It allowed scientifically naïve visitors to walk into a virtual diorama constructed as a data visualization of a springtime woodland understory, and interact with multimodal information directly through their senses. The user interface comprised of two different AR data visualization scenarios reinforced with data based ambient bioacoustics, an audio story of the curator’s narrative, and interactive access to plant facts. While actual learning and dwell times were the same between the AR app and the control condition, the AR experience received higher ratings on perceived learning. The AR interface design features of “Story” and “Plant Info” showed significant correlations with actual learning outcomes, while “Ease of Use” and “3D Plants” showed significant correlations with perceived learning. As such, designers and developers of AR apps can generalize these findings to inform future designs.
Presentation 2: The Naturalist’s Workshop: Virtual Reality Interaction with a Natural Science Educational Collection (Short Paper #11)
Authors: Colin Patrick Keenan, Cynthia Lincoln, Adam Rogers, Victoria Gerson, Jack Wingo, Mikhael Vasquez-Kool and Richard L. Blanton
>>Access Video Presentation<<
For experiential educators who utilize or maintain physical collections, The Naturalist’s Workshop is an exemplar virtual reality platform to interact with digitized collections in an intuitive and playful way. The Naturalist’s Workshop is a purpose-developed application for the Oculus Quest standalone virtual reality headset for use by museum visitors on the floor of the North Carolina Museum of Natural Sciences under the supervision of a volunteer attendant. Within the application, museum visitors are seated at a virtual desk. Using their hand controllers and head-mounted display, they explore drawers containing botanical specimens and tools-of-the-trade of a naturalist. While exploring, the participant can receive new information about any specimen by dropping it into a virtual examination tray. 360-degree photography and three-dimensionally scanned specimens are used to allow user-motivated, immersive experience of botanical meta-data such as specimen collection coordinates.
Presentation 3: 360˚ Videos: Entry level Immersive Media for Libraries and Education (Practitioner Presentation #132)
Authors: Diane Michaud
>>Access Video Presentation<<
Within the continuum of XR Technologies, 360˚ videos are relatively easy to produce and need only an inexpensive mobile VR viewer to provide a sense of immersion. 360˚ videos present an opportunity to reveal “behind the scenes” spaces that are normally inaccessible to users of academic libraries. This can promote engagement with unique special collections and specific library services. In December 2019, with little previous experience, I led the production of a short 360˚video tour, a walk-through of our institution’s archives. This was a first attempt; there are plans to transform it into a more interactive, user-driven exploration. The beta version successfully generated interest, but the enhanced version will also help prepare uninitiated users for the process of examining unique archival documents and artefacts. This presentation will cover the lessons learned, and what we would do differently for our next immersive video production. Additionally, I will propose that the medium of 360˚ video is ideal for many institutions’ current or recent predicament with campuses shutdown due to the COVID-19 pandemic. Online or immersive 360˚ video can be used for virtual tours of libraries and/or other campus spaces. Virtual tours would retain their value beyond current campus shutdowns as there will always be prospective students and families who cannot easily make a trip to campus. These virtual tours would provide a welcome alternative as they eliminate the financial burden of travel and can be taken at any time.
https://internal.altvr.com/events/1460721187360342083Excited to present at 12:30 pm ET today with one of my @ridge_high game design students about using #Minecraft as a content creation tool. Join us! @PlayCraftLearn @PlayCraftLearn @BernardsTwpBOE @BTEAOnline @WAMSBTSD @wamsfoodslady @EarthSwanny @melaniedupuis84 @HelenAngel https://t.co/gDTYZ9kXQG
— Steve Isaacs (@mr_isaacs) May 7, 2020
PRESENTATION
Our team will share lessons learned in collaborating to create immersive experiences that accelerate STEM education. Find out how students achieve classroom learning objectives by designing AR experiences. Watch a demonstration of how an immersive scientific story is co-created by students and teachers in a virtual learning environment. Explore novel techniques for supporting learners to demonstrate understanding and share knowledge using spatial technologies and storytelling principles. We invite guests to share their questions and perspectives on the possibilities and limitations of XR storytelling to facilitate relational connections to curriculum and instruction.
PRESENTERS:
Sarah Cassidy | Janelle LaVoie | Quincy Wang | Poh Tan
We are a team of VR learners from the University of Saskatchewan and Simon Fraser University in Canada. Our research explores innovative uses of immersive technology for STEM education and pro-social change.
MENTOR: Paula MacDowell
University of Saskatchewan, Assistant Professor
Website
LinkedIN
Twitter: paulamacdowell
Facebook Discord: Paulie#8830
https://internal.altvr.com/events/1460721187360342083
******************************
https://www.everestvirtualreality.com/
*******************************
=+++++++++++++++++++++
more on students in VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=students+in+vr