While he once said it was hard to see the appeal of Google Glass, the AR wearable that proved unpopular with consumers, he’s held a consistently positive opinion on AR since at least 2016.
AR features are already available on the iPhone and iPad. And while hope is starting to fade that Apple will release a mixed reality device in 2022, the latest rumors suggest the company is still forging ahead with some kind of AR / VR headset to be released in the not-distant future.
For the purpose of this chapter, Cross Reality or XR refers to technologies and applications that involve combinations of mixed reality (MR), augmented reality (AR), virtual reality (VR), and virtual worlds (VWs). These are technologies that connect computer technology (such as informational overlays) to the physical world for the purposes of augmenting or extending experiences beyond the real. Especially relevant to the definition of XR is the fact that this term encompasses a wide range of options for delivering learning experiences, from minimal technology and episodic experiences to deep immersion and persistent platforms. The preponderance of different terms for slightly different technologies indicate that this is a growth area within the field. Here we provide a few definitions of these technologies.
MR—Mixed reality refers to a blend of technologies used to influence the human perception of an experience. Motion sensors, body tracking, and eye tracking interplay with overlaid technology to give a rich and full version of reality displayed to the user. For example, technology could add sound or additional graphics to an experience in real time. Examples include the Magic Leap One and Microsoft HoloLens 2.0. MR and XR are often used interchangeably.
AR—Augmented reality refers to technology systems that overlay information onto the real world, but the technology might not allow for real-time feedback. As such, AR experiences can move or animate, but they might not interact with changes in depth of view or external light conditions. Currently, AR is considered the first generation of the newer and more interactive MR experiences.
VR—Virtual reality, as a technological product, traces its history to approximately 1960 and tends to encompass user experiences that are visually and auditorily different from the real world. Indeed, the real world is often blocked from interacting with the virtual one. Headsets, headphones, haptics, and haptic clothing might purposely cut off all input except that which is virtual. In general, VR is a widely recognizable term, often found in gaming and workplace training, where learners need to be transported to a different time and place. VR experiences in STEM often consist of virtual labs or short virtual field trips.
VW—Virtual worlds are frequently considered a subset of VR with the difference that VWs are inherently social and collaborative; VWs frequently contain multiple simultaneous users, while VRs are often solo experiences. Another discrimination between virtual reality and virtual worlds is the persistence of the virtual space. VR tends to be episodic, with the learner in the virtual experience for a few minutes and the reality created within the experience ends when the learner experience ends. VWs are persistent in that the worlds continue to exist on computer servers whether or not there are active avatars within the virtual space (Bell 2008). This discrimination between VR and VW, however, is dissolving. VR experiences can be created to exist for days, and some users have been known to wear headsets for extended periods of time. Additionally, more and more VR experiences are being designed to be for game play, socialization, or mental relaxation. The IEEE VR 2020 online conference and the Educators in VR International Summit 2020 offered participants opportunities to experience conference presentations in virtual rooms as avatars while interacting with presenters and conference attendees (see Sect. 2.5 for more information).
CVEs—Collaborative virtual environments are communication systems in which multiple interactants share the same three-dimensional digital space despite occupying remote physical locations (Yee and Bailenson 2006).
Embodiment—Embodiment is defined by Lindgren and Johnson-Glenberg (2013) as the enactment of knowledge and concepts through the activity of our bodies within an MR (mixed reality) and physical environment
Human-Centered Design philosophy that involves putting human needs, capabilities, and behavior first (Jerald 2018: 15). XR provides the opportunity to experience just-in-time immersive, experiential learning that uses concrete yet exploratory experiences involving senses that result in lasting memories. Here we discuss opportunities for social applications with XR.
XR learner activities are usually created for individual use, which may or may not need to be simultaneously experienced as a class together at the same time or place with the instructor. Activities can be designed into instruction with VR headsets, high-resolution screens, smartphones, or other solo technological devices for use inside and outside of the classroom.
Do we address the challenges in the grant proposal?
some learners will be held back from full XR activity by visual, physical, and social abilities such as stroke, vertigo, epilepsy, or age-related reaction time. It should also be noted that the encompassing nature of VR headsets might create some discomfort or danger for any learners as they can no longer fully see and control their body and body space.
our next webinar, “Augmented Reality and 3D Environments for the Teaching of Chemistry,” which will be broadcast next Tuesday, May 25 at 16 hrs (Central Mexico time).
UCLA Extension seeks XR (augmented and virtual reality) professionals to teach in a new online certificate program housed within the UCLA Extension Center for Immersive Media. This recruitment is for online instructors for remote and asynchronous instruction, three hours per week, for ten-week quarters.
The center is focused on enterprise applications, workforce training in XR, narrative structures for XR storytelling, and (UX) User Experience in XR. This XR program is focused on training individuals to become XR content developers. The emphasis of this certificate is not on advanced coding or hardware development. Areas of recruitment include:
XR Frameworks, an introduction to the XR business, user cases & goal/needs evaluation
XR Tools I, an introduction to a modeling software such as Blender
XR Tools II, prototyping tools with an emphasis on Unity
XR Narratives, the use of non-linear narrative structures in XR development
XR User Experience I, usability applications and studies bringing together previous class course work into VR and XR projects
XR User Experience II, advanced XR experience studies and applications
XR Product Pipeline & Project Management, Best practices including stages of production, critical paths, etc.
XR Capstone Project, creation of final portfolio piece UCLA Extension is the open-access, self-supporting continuing education division of UCLA. The Department of the Arts offers a wide variety of certificate programs and courses, including post-baccalaureate credit-bearing (400-level), continuing education (CEU) credit, and non-credit bearing general interest courses. Course disciplines in the Visual Arts span subject areas such as Design Communication Arts, User Experience, Photography, Studio Arts and Art History. Our courses and certificate programs offer students the opportunity to learn from highly qualified practitioners who are passionate about teaching. Applications to teach are accepted throughout the year in order to fill immediate program needs and to increase the depth of the instructor pool, but interviews will only be scheduled with qualified applicants who can fill anticipated openings. XR Instructor Qualified applicants possessing current industry knowledge and experience in the following topic area(s) are encouraged to apply: AR, VR, MR, XR, User Experience Design, Gaming, Immersive Interface Design, XR Research, Software (Unity, Blender), XR Hardware. Classes are currently online only. Two formats are available: asynchronous, or live Zoom lectures. Each course is 11 weeks, enrollment limited to 20 students. Instructor Duties: • Develop or update course syllabus to meet campus approval requirements, in consultation with the UCLA Extension Program Director and Program Manager. • Use subject-matter expertise to impart knowledge to students and leverage additional resources appropriately to enhance the curriculum (i.e. make arrangements for guest speakers, etc.) • Design interactive and motivational classroom activities to fully engage participants and to reinforce student learning. • Update materials periodically, and regularly monitor course evaluations in order to make adjustments and improvements to the curriculum. • Respond to student questions and learning needs in a timely manner. • Communicate with Program Director and Program Staff in a timely manner. • Complete required administrative tasks in a timely manner including: completing all new hire paperwork, submitting updated quarterly syllabus, posting bio and photo on the UCLA Extension website, accepting quarterly contract, submitting required textbook orders, and communicating classroom needs to the appropriate people. • Participate in required orientations and instructor training programs. • Employ culturally competent teaching methodologies in the classroom inclusive of both domestic and international student populations. • Stay current regarding the professional body of knowledge in the field • Respond to student inquiries about final grades and consult with Program Director as needed. • Maintain a record of final grades for up to 13 months following the last class session. Qualifications: • Creation of XR products, with portfolio examples and specific role(s) in producing • 3-5 years industry experience • Commitment to the highest level of academic standards and integrity. • Current knowledge of and demonstrated proficiency in subject area. • Highly effective oral and written communication skills, including the ability to convey conceptual and complex ideas and information. • Outstanding interpersonal skills and high emotional intelligence. • Proficiency in or willingness to learn the use of instructional technology and online teaching tools. • College-level and/or continuing education teaching experience preferred. • Experience designing curriculum and measuring student performance preferred.
UCLA Extension is considered one of the top programs of its kind, offering to more than 35,000 students per year approximately 4,500 classes and non-degree certificate programs to meet the professional development, continuing education and personal enrichment needs of the full spectrum of nontraditional students as well as companies and organizations throughout and beyond the Los Angeles region.
Special Conditions of Employment
Instructors are hired on a quarterly contract basis.
Because Extension is a division of UCLA, all Extension degree-credit instructors and courses must be formally approved according to the regulations of the Academic Senate of the University of California. Eligibility to teach a course is contingent upon this formal academic approval. Once approved, teaching assignments are “by agreement.” The Instructor’s Contract outlines the deliverables for the course, the course schedule, and the compensation terms, subject to Extension policies and procedures. UCLA Extension makes no commitment to hire an instructor until it has sent and received a signed
Instructor Contract. Should the course section an instructor plans to teach be cancelled for any reason, the Instructor Contract, including rights to compensation for future section meetings, is voided.
In an effort to promote and maintain a healthy environment for our students, visitors and employees, UCLA is a smoke-free site. Smoking is prohibited within the boundaries of all UCLA owned, occupied, leased, and associated building and facilities. UCLA Extension is an Equal Opportunity Employer that values a diverse workforce.
To Apply:
Please follow the “apply now” link to submit the following:
Completed application form
Current CV
Link to portfolio or work samples if available
Cover letter”
Basic qualifications (required at time of application)
Creation of XR products, with portfolio examples and specific role(s) in producing
3-5 years industry experience
Commitment to the highest level of academic standards and integrity.
Current knowledge of and demonstrated proficiency in subject area.
Highly effective oral and written communication skills, including the ability to convey conceptual and complex ideas and information.
Outstanding interpersonal skills and high emotional intelligence.
Proficiency in or willingness to learn the use of instructional technology and online
teaching tools.
College-level and/or continuing education teaching experience preferred.
Experience designing curriculum and measuring student performance preferred.
Presentation 1: Inspiring Faculty (+ Students) with Tales of Immersive Tech (Practitioner Presentation #106)
Authors: Nicholas Smerker
Immersive technologies – 360º video, virtual and augmented realities – are being discussed in many corners of higher education. For an instructor who is familiar with the terms, at least in passing, learning more about why they and their students should care can be challenging, at best. In order to create a font of inspiration, the IMEX Lab team within Teaching and Learning with Technology at Penn State devised its Get Inspired web resource. Building on a similar repository for making technology stories at the sister Maker Commons website, the IMEX Lab Get Inspired landing page invites faculty to discover real world examples of how cutting edge XR tools are being used every day. In addition to very approachable video content and a short summary calling out why our team chose the story, there are also instructional designer-developed Assignment Ideas that allow for quick deployment of exercises related to – though not always relying upon – the technologies highlighted in a given Get Inspired story.
Presentation 2: Lessons Learned from Over A Decade of Designing and Teaching Immersive VR in Higher Education Online Courses (Practitioner Presentation #101)
Authors: Eileen Oconnor
This presentation overviews the design and instruction in immersive virtual reality environments created by the author beginning with Second Life and progressing to open source venues. It will highlight the diversity of VR environment developed, the challenges that were overcome, and the accomplishment of students who created their own VR environments for K12, college and corporate settings. The instruction and design materials created to enable this 100% online master’s program accomplishment will be shared; an institute launched in 2018 for emerging technology study will be noted.
Presentation 3: Virtual Reality Student Teaching Experience: A Live, Remote Option for Learning Teaching Skills During Campus Closure and Social Distancing (Practitioner Presentation #110)
Summary: During the Coronavirus pandemic, Ithaca College teacher education majors needed a classroom of students in order to practice teaching and receive feedback, but the campus was closed, and gatherings forbidden. Students were unable to participate in live practice teaching required for their program. We developed a virtual reality pilot project to allow students to experiment in two third-party social VR programs, AltSpaceVR and Rumii. Social VR platforms allow a live, embodied experience that mimics in-person events to give students a more realistic, robust and synchronous teaching practice opportunity. We documented the process and lessons learned to inform, develop and scale next generation efforts.
Sunday, June 21 • 8:00am – 9:00am Escape the (Class)room games in OpenSim or Second Life FULLhttps://ilrn2020.sched.com/event/ceKP/escape-the-classroom-games-in-opensim-or-second-lifePre-registration for this tour is required as places are limited. Joining instructions will be emailed to registrants ahead of the scheduled tour time.The Guided Virtual Adventure tour will take you to EduNation in Second Life to experience an Escape room game. For one hour, a group of participants engage in voice communication and try to solve puzzles, riddles or conundrums and follow clues to eventually escape the space. These scenarios are designed for problem solving and negotiating language and are ideal for language education. They are fun and exciting and the clock ticking adds to game play.Tour guide(s)/leader(s): Philp Heike, let’s talk online sprl, Belgium
Presentation 1: Evaluating the impact of multimodal Collaborative Virtual Environments on user’s spatial knowledge and experience of gamified educational tasks (Full Paper #91)
Authors: Ioannis Doumanis and Daphne Economou
>>Access Video Presentation<<
Several research projects in spatial cognition have suggested Virtual Environments (VEs) as an effective way of facilitating mental map development of a physical space. In the study reported in this paper, we evaluated the effectiveness of multimodal real-time interaction in distilling understanding of the VE after completing gamified educational tasks. We also measure the impact of these design elements on the user’s experience of educational tasks. The VE used reassembles an art gallery and it was built using REVERIE (Real and Virtual Engagement In Realistic Immersive Environment) a framework designed to enable multimodal communication on the Web. We compared the impact of REVERIE VG with an educational platform called Edu-Simulation for the same gamified educational tasks. We found that the multimodal VE had no impact on the ability of students to retain a mental model of the virtual space. However, we also found that students thought that it was easier to build a mental map of the virtual space in REVERIE VG. This means that using a multimodal CVE in a gamified educational experience does not benefit spatial performance, but also it does not cause distraction. The paper ends with future work and conclusions and suggestions for improving mental map construction and user experience in multimodal CVEs.
Presentation 2: A case study on student’s perception of the virtual game supported collaborative learning (Full Paper #42)
Authors: Xiuli Huang, Juhou He and Hongyan Wang
>>Access Video Presentation<<
The English education course in China aims to help students establish the English skills to enhance their international competitiveness. However, in traditional English classes, students often lack the linguistic environment to apply the English skills they learned in their textbook. Virtual reality (VR) technology can set up an immersive English language environment and then promote the learners to use English by presenting different collaborative communication tasks. In this paper, spherical video-based virtual reality technology was applied to build a linguistic environment and a collaborative learning strategy was adopted to promote their communication. Additionally, a mixed-methods research approach was used to analyze students’ achievement between a traditional classroom and a virtual reality supported collaborative classroom and their perception towards the two approaches. The experimental results revealed that the virtual reality supported collaborative classroom was able to enhance the students’ achievement. Moreover, by analyzing the interview, students’ attitudes towards the virtual reality supported collaborative class were reported and the use of language learning strategies in virtual reality supported collaborative class was represented. These findings could be valuable references for those who intend to create opportunities for students to collaborate and communicate in the target language in their classroom and then improve their language skills
Presentation 1: Reducing Cognitive Load through the Worked Example Effect within a Serious Game Environment (Full Paper #19)
Authors: Bernadette Spieler, Naomi Pfaff and Wolfgang Slany
>>Access Video Presentation<<
Novices often struggle to represent problems mentally; the unfamiliar process can exhaust their cognitive resources, creating frustration that deters them from learning. By improving novices’ mental representation of problems, worked examples improve both problem-solving skills and transfer performance. Programming requires both skills. In programming, it is not sufficient to simply understand how Stackoverflow examples work; programmers have to be able to adapt the principles and apply them to their own programs. This paper shows evidence in support of the theory that worked examples are the most efficient mode of instruction for novices. In the present study, 42 students were asked to solve the tutorial The Magic Word, a game especially for girls created with the Catrobat programming environment. While the experimental group was presented with a series of worked examples of code, the control groups were instructed through theoretical text examples. The final task was a transfer question. While the average score was not significantly better in the worked example condition, the fact that participants in this experimental group finished significantly faster than the control group suggests that their overall performance was better than that of their counterparts.
Presentation 2: A literature review of e-government services with gamification elements (Full Paper #56)
Authors: Ruth S. Contreras-Espinosa and Alejandro Blanco-M
>>Access Video Presentation<<
Nowadays several democracies are facing the growing problem of a breach in communication between its citizens and their political representatives, resulting in low citizen’s engagement in the participation of political decision making and on public consultations. Therefore, it is fundamental to generate a constructive relationship between both public administration and the citizens by solving its needs. This document contains a useful literature review of the gamification topic and e-government services. The documents contain a background of those concepts and conduct a selection and analysis of the different applications found. A set of three lines of research gaps are found with a potential impact on future studies.
Presentation 1: Connecting User Experience to Learning in an Evaluation of an Immersive, Interactive, Multimodal Augmented Reality Virtual Diorama in a Natural History Museum & the Importance of Story (Full Paper #51)
Authors: Maria Harrington
>>Access Video Presentation<<
Reported are the findings of user experience and learning outcomes from a July 2019 study of an immersive, interactive, multimodal augmented reality (AR) application, used in the context of a museum. The AR Perpetual Garden App is unique in creating an immersive multisensory experience of data. It allowed scientifically naïve visitors to walk into a virtual diorama constructed as a data visualization of a springtime woodland understory, and interact with multimodal information directly through their senses. The user interface comprised of two different AR data visualization scenarios reinforced with data based ambient bioacoustics, an audio story of the curator’s narrative, and interactive access to plant facts. While actual learning and dwell times were the same between the AR app and the control condition, the AR experience received higher ratings on perceived learning. The AR interface design features of “Story” and “Plant Info” showed significant correlations with actual learning outcomes, while “Ease of Use” and “3D Plants” showed significant correlations with perceived learning. As such, designers and developers of AR apps can generalize these findings to inform future designs.
Presentation 2: The Naturalist’s Workshop: Virtual Reality Interaction with a Natural Science Educational Collection (Short Paper #11)
Authors: Colin Patrick Keenan, Cynthia Lincoln, Adam Rogers, Victoria Gerson, Jack Wingo, Mikhael Vasquez-Kool and Richard L. Blanton
>>Access Video Presentation<<
For experiential educators who utilize or maintain physical collections, The Naturalist’s Workshop is an exemplar virtual reality platform to interact with digitized collections in an intuitive and playful way. The Naturalist’s Workshop is a purpose-developed application for the Oculus Quest standalone virtual reality headset for use by museum visitors on the floor of the North Carolina Museum of Natural Sciences under the supervision of a volunteer attendant. Within the application, museum visitors are seated at a virtual desk. Using their hand controllers and head-mounted display, they explore drawers containing botanical specimens and tools-of-the-trade of a naturalist. While exploring, the participant can receive new information about any specimen by dropping it into a virtual examination tray. 360-degree photography and three-dimensionally scanned specimens are used to allow user-motivated, immersive experience of botanical meta-data such as specimen collection coordinates.
Presentation 3: 360˚ Videos: Entry level Immersive Media for Libraries and Education (Practitioner Presentation #132)
Authors: Diane Michaud
>>Access Video Presentation<<
Within the continuum of XR Technologies, 360˚ videos are relatively easy to produce and need only an inexpensive mobile VR viewer to provide a sense of immersion. 360˚ videos present an opportunity to reveal “behind the scenes” spaces that are normally inaccessible to users of academic libraries. This can promote engagement with unique special collections and specific library services. In December 2019, with little previous experience, I led the production of a short 360˚video tour, a walk-through of our institution’s archives. This was a first attempt; there are plans to transform it into a more interactive, user-driven exploration. The beta version successfully generated interest, but the enhanced version will also help prepare uninitiated users for the process of examining unique archival documents and artefacts. This presentation will cover the lessons learned, and what we would do differently for our next immersive video production. Additionally, I will propose that the medium of 360˚ video is ideal for many institutions’ current or recent predicament with campuses shutdown due to the COVID-19 pandemic. Online or immersive 360˚ video can be used for virtual tours of libraries and/or other campus spaces. Virtual tours would retain their value beyond current campus shutdowns as there will always be prospective students and families who cannot easily make a trip to campus. These virtual tours would provide a welcome alternative as they eliminate the financial burden of travel and can be taken at any time.
The event requires no registration, and is virtual only, free, and open to the public. Platform access is required, so please install one of the above platforms to attend the International Summit. You may attend in 2D on a desktop or laptop computer with a headphone and microphone (USB gaming headphone recommended), or with a virtual device such as the Oculus Go, Quest, and Rift, Vive, and other mobile and tethered devices. Please note the specifications and requirements of each platform.
Charlie Fink, author, columnist for Forbes magazine, and Adjunct Faculty member of Chapman University, will be presenting “Setting the Table for the Next Decade in XR,” discussing the future of this innovative and immersive technology, at the 2020 Educators in VR International Summit. He will be speaking in AltspaceVR on Tuesday, February 18 at 1:00 PM EST /
This workshop with Dr. Sarah Jones will focus on developing a relevant and new literacy for virtual reality, including the core competencies and skills needed to develop and understand how to become an engaged user of the technology in a meaningful way. The workshop will develop into research for a forthcoming book on Uncovering a Literacy for VR due to be published in 2020.
Sarah is listed as one of the top 15 global influencers within virtual reality. After nearly a decade in television news, Sarah began working in universities focusing on future media, future technology and future education. Sarah holds a PhD in Immersive Storytelling and has published extensively on virtual and augmented reality, whilst continuing to make and create immersive experiences. She has advised the UK Government on Immersive Technologies and delivers keynotes and speaks at conferences across the world on imagining future technology. Sarah is committed to diversifying the media and technology industries and regularly champions initiatives to support this agenda.
Currently there are limited ways to connect 3D VR environments to physical objects in the real-world whilst simultaneously conducting communication and collaboration between remote users. Within the context of a solar power plant, the performance metrics of the site are invaluable for environmental engineers who are remotely located. Often two or more remotely located engineers need to communicate and collaborate on solving a problem. If a solar panel component is damaged, the repair often needs to be undertaken on-site thereby incurring additional expenses. This triage of communication is known as inter-cognitive communication and intra-cognitive communication: inter-cognitive communication where information transfer occurs between two cognitive entities with different cognitive capabilities (e.g., between a human and an artificially cognitive system); intra-cognitive communication where information transfer occurs between two cognitive entities with equivalent cognitive capabilities (e.g., between two humans) [Baranyi and Csapo, 2010]. Currently, non-VR solutions offer a comprehensive analysis of solar plant data. A regular PC with a monitor currently have advantages over 3D VR. For example, sensors can be monitored using dedicated software such as EPEVER or via a web browser; as exemplified by the comprehensive service provided by Elseta. But when multiple users are able to collaborate remotely within a three-dimensional virtual simulation, the opportunities for communication, training and academic education will be profound.
Michael Vallance Ed.D. is a researcher in the Department of Media Architecture, Future University Hakodate, Japan. He has been involved in educational technology design, implementation, research and consultancy for over twenty years, working closely with Higher Education Institutes, schools and media companies in UK, Singapore, Malaysia and Japan. His 3D virtual world design and tele-robotics research has been recognized and funded by the UK Prime Minister’s Initiative (PMI2) and the Japan Advanced Institute of Science and Technology (JAIST). He has been awarded by the United States Army for his research in collaborating the programming of robots in a 3D Virtual World.
Augmented Reality Lens is popular among young people thanks to Snapchat’s invention. Business is losing money without fully using of social media targeting young people (14-25). In my presentation, Dominique Wu will show how businesses can generate more leads through Spark AR (Facebook AR/Instagram AR) & Snapchat AR Lens, and how to create a strategic Snapchat & Instagram AR campaigns.
Domnique Wu is an XR social media strategist and expert in UX/UI design.She has her own YouTube and Apple Podcast show called “XReality: Digital Transformation,” covering the technology and techniques of incorporating XR and AR into social media, marketing, and integration into enterprise solutions.
Mark Christian, EVP, Strategy and Corporate Development, GIGXR
Mixed Reality devices like the HoloLens are transforming education now. Mark Christian will discuss how the technology is not about edge use cases or POCs, but real usable products that are at Universities transforming the way we teach and learn. Christian will talk about the products of GIGXR, the story of how they were developed and what the research is saying about their efficacy. It is time to move to adoption of XR technology in education. Learn how one team has made this a reality.
As CEO of forward-thinking virtual reality and software companies, Mark Christian employs asymmetric approaches to rapid, global market adoption, hiring, diversity and revenue. He prides himself on unconventional approaches to building technology companies.
Virtual Reality is an effective medium to impart education to the student only if it is done right.The way VR is considered gimmick or not is by the way the software application are designed/developed by the developers not the hardware limitation.I will be giving insight about the VR development for educational content specifically designed for students of lower secondary school.I will also provide insights about the development of game in unity3D game engine.
Game Developer and VR developer with over 3 years of experience in Game Development.Developer of Zombie Shooter, winner of various national awards in the gaming and entertainment category, Avinash Gyawali is the developer of EDVR, an immersive voice controlled VR experience specially designed for children of age 10-18 years.
Virtual Reality Technologies for Learning Designers
Margherita Berti
Virtual Reality (VR) is a computer-generated experience that simulates presence in real or imagined environments (Kerrebrock, Brengman, & Willems, 2017). VR promotes contextualized learning, authentic experiences, critical thinking, and problem-solving opportunities. Despite the great potential and popularity of this technology, the latest two installations of the Educause Horizon Report (2018, 2019) have argued that VR remains “elusive” in terms of mainstream adoption. The reasons are varied, including the expense and the lack of empirical evidence for its effectiveness in education. More importantly, examples of successful VR implementations for those instructors who lack technical skills are still scarce. Margherita Berti will discuss a range of easy-to-use educational VR tools and examples of VR-based activity examples and the learning theories and instructional design principles utilized for their development.
Margherita Berti is a doctoral candidate in Second Language Acquisition and Teaching (SLAT) and Educational Technology at the University of Arizona. Her research specialization resides at the intersection of virtual reality, the teaching of culture, and curriculum and content development for foreign language education.
Amanda Fox, Creative Director of STEAMPunks/MetaInk Publishing, MetaInk Publishing
There is a barrier between an author and readers of his/her books. The author’s journey ends, and the reader’s begins. But what if as an author/trainer, you could use gamification and augmented reality(AR) to interact and coach your readers as part of their learning journey? Attend this session with Amanda Fox to learn how the book Teachingland leverages augmented reality tools such as Metaverse to connect with readers beyond the text.
Amanda Fox, Creative Director of STEAMPunksEdu, and author of Teachingland: A Teacher’s Survival Guide to the Classroom Apolcalypse and Zom-Be A Design Thinker. Check her out on the Virtual Reality Podcast, or connect with her on twitter @AmandaFoxSTEM.
Christian Jonathan Angel Rueda specializaes in didactic activity of the use of virtual reality/virtual worlds to learn the fundamentals of design. He shares the development of a course including recreating in the three-dimensional environment using the fundamentals learned in class, a demonstration of all the works developed throughout the semester using the knowledge of design foundation to show them creatively, and a final project class scenario that connected with the scenes of the students who showed their work throughout the semester.
Christian Jonathan Angel Rueda is a research professor at the Autonomous University of Queretaro in Mexico. With a PhD in educational technology, Christian has published several papers on the intersection of education, pedagogy, and three-dimensional immersive digital environments. He is also an edtech, virtual reality, and social media consultant at Eco Onis.
How we can bridge the gap between eLearning and XR. Richard Van Tilborg discusses combining brain insights enabled with new technologies. Training and education cases realised with the CoVince platform: journeys which start on you mobile and continue in VR. The possibilities to earn from your creations and have a central distribution place for learning and data.
Richard Van Tilborg works with the CoVince platform, a VR platform offering training and educational programs for central distribution of learning and data. He is an author and speaker focusing on computers and education in virtual reality-based tasks for delivering feedback.