Google Expeditions can be a fairly inexpensive way to present content. Students who have smartphones (Android or iOS) can download the Google Cardboard app and Google Expeditions for free. VR glasses can improve the experience but are not required.
Ideas for using VR in class
Do you teach biology? Take them on a tour of a virus or a cell.
Are you a professor in the arts? Visit street art around the world or the Royal Shakespeare Company.
Are you a guidance or career counselor? Bring your students to Berklee College of Music or meet a robotics engineer or female firefighter in NYC.
Astronomy professor? Send your students on the Juno mission to Jupiter or to experience the aurora borealis.
Professors of education can build lessons with your students so they can teach elementary students about animal camouflage or take children on a tour of the Aztec and Mayan pyramids.
Google, for instance, has made virtual field trips to inaccessible locations easier for history and social studies classes with its Cardboard viewers used in conjunction with the Expeditions app. And technologies like zSpace have expanded opportunities in STEM subjects with virtual interactive dissections, diagrams and experiments.
+++++++++++
more on VR in education in this IMS blog
Canada will see the fastest growth, with a CAGR of 145.2 percent over the forecast period. Other leaders in terms of growth include Central and Eastern Europe at 133.5 percent, Western Europe at 121.2 percent and the U.S. at 120.5 percent.
+++++++++++++++
Leslie Fisher Thinks Augmented Reality First, Then VR in the Classroom
An interview with the former Apple K–12 systems engineer, who will participate in multiple sessions during ISTE.
THE Journal: What do you think about virtual reality (VR) and augmented reality (AR) in the classroom? Is the cost point for VR prohibitive?
In virtual reality, one of my favorite apps is CoSpaces. It allows anyone to design a 3D space, and then interact with it in virtual reality.
Virtual reality can be quite affordable with Google Cardboard. We can get into basic interaction in VR with Cardboard. There are 40 or 50 VR apps where you can simply use Cardboard and explore. Google Street View allows you to do virtual viewing of many different locations. That technology augments what the teacher is doing.
Most kids can’t afford to buy their own Oculus headset. That price point is quite a bit higher. But we don’t need to have 30 kids using Oculus all of the time. Two or three might work
MEL Science aims to release more than 150 lessons covering all the main topics included in K–12 schools’ chemistry curriculum. Later this year, MEL Science also aims to add support for other VR platforms, including Google Cardboard and Samsung Gear VR.
If you search Twitter effectively, there are not only great resources but great people to help you teach differently and keep the classroom more entertaining. You can grow your own personal learning network.
In February, Google added WebVR to Chrome on Daydream-ready phones (like Pixel and ZenFone). The WebVR standard allows users to view virtual reality (VR) experiences in a browser like Chrome by simply tapping a link and putting on a compatible headset. Yesterday, the company revealed it added support for Google Cardboard and launched a new homepage for web-based VR experiments.
WebVR support on Chrome for Oculus Rift and HTC Vive is “coming soon.”
new forms of human-computer interaction (HCI) such as augmented reality (AR),virtual reality (VR) and mixed reality (MR).
p. 21
combining AR/VR/MR with cognitive computing and artificial intelligence (AI) technologies (such as machine learning, deep learning, natural language processing and chatbots).
Some thought-provoking questions include:
Will remote workers be able to be seen and interacted with via their holograms (i.e., attending their meetings virtually)? What would this mean for remote learners?
Will our smartphones increasingly allow us to see information overlaid on the real world? (Think Pokémon Go, but putting that sort of technology into a vast array of different applications, many of which could be educational in nature)
How do/will these new forms of HCI impact how we design our learning spaces?
Will students be able to pick their preferred learning setting (i.e., studying by a brook or stream or in a virtual Starbucks-like atmosphere)?
Will more devices/platforms be developed that combine the power of AI with VR/AR/MR-related experiences? For example, will students be able to issue a verbal question or command to be able to see and experience walking around ancient Rome?
Will there be many new types of learning experiences,like what Microsoft was able to achieve in its collaboration with Case Western Reserve University [OH]? Its HoloLens product transforms the way human anatomy can be taught.
p. 22 Extensive costs for VR design and development drive the need for collaborative efforts.
Case Western Reserve University, demonstrates a collaboration with the Cleveland Clinic and Microsoft to create active multi-dimensional learning using holography.
the development of more affordable high-quality virtual reality solutions.
AR game developed by the Salzburg University of Applied Sciences [Austria] (http://www.fh-salzburg.ac.at/en/) that teaches about sustainability, the environment and living green.
Whether using AR for a gamified course or to acclimate new students to campus, the trend will continue into 2017.
Google Expeditions This virtual reality field trip tool works in conjunction with Google Cardboard and has just been officially released. The app allows teachers to guide students through an exploration of 200 (and growing) historical sites and natural resources in an immersive, three-dimensional experience. The app only works on Android devices and is free.
Flippity This app works in conjunction with Google Sheets and allows teachers to easily make a Jeopardy-style game.
Google Science Journal This Android app allows users to do science experiments with mobile phones. Students can use sensors in the phone or connect external sensors to collect data, but can also take notes on observations, analyze and annotate within the app.
Google Cast This simple app solves issues of disparate devices in the classroom. When students download the app, they can project from their devices onto the screen at the front of the room easily. “You don’t have to have specific hardware, you just have to have Wi-Fi,”
Constitute This site hosts a database of constitutions from around the world. Anything digitally available has been aggregated here. It is searchable by topic and will pull out specific excerpts related to search terms like “freedom of speech.”
YouTube a database of YouTube Channels by subject to help educators with discoverability (hint subjects are by tab along the bottom of the document).
Zygote Body This freemium tool has a lot of functionality in the free version, allowing students to view different parts of human anatomy and dig into how various body systems work.
Pixlr This app has less power than Photoshop, but is free and fairly sophisticated. It works directly with Google accounts, so students can store files there.
uild With Chrome This extension to the Chrome browser lets kids play with digital blocks like Legos. Based on the computer’s IP address, the software assigns users a plot of land on which to build nearby. There’s a Build Academy to learn how to use the various tools within the program, but then students can make whatever they want.
Google CS First Built on Scratch’s programming language, this easy tool gives step-by-step instructions to get started and is great for the hesitant teacher who is just beginning to dip a toe into coding.