Searching for "mobile devices"

Emerging Trends and Impacts of the Internet of Things in Libraries

Emerging Trends and Impacts of the Internet of Things in Libraries

https://www.igi-global.com/gateway/book/244559

Chapters:

Holland, B. (2020). Emerging Technology and Today’s Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 1-33). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch001

The purpose of this chapter is to examine emerging technology and today’s libraries. New technology stands out first and foremost given that they will end up revolutionizing every industry in an age where digital transformation plays a major role. Major trends will define technological disruption. The next-gen of communication, core computing, and integration technologies will adopt new architectures. Major technological, economic, and environmental changes have generated interest in smart cities. Sensing technologies have made IoT possible, but also provide the data required for AI algorithms and models, often in real-time, to make intelligent business and operational decisions. Smart cities consume different types of electronic internet of things (IoT) sensors to collect data and then use these data to manage assets and resources efficiently. This includes data collected from citizens, devices, and assets that are processed and analyzed to monitor and manage, schools, libraries, hospitals, and other community services.

Makori, E. O. (2020). Blockchain Applications and Trends That Promote Information Management. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 34-51). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch002
Blockchain revolutionary paradigm is the new and emerging digital innovation that organizations have no choice but to embrace and implement in order to sustain and manage service delivery to the customers. From disruptive to sustaining perspective, blockchain practices have transformed the information management environment with innovative products and services. Blockchain-based applications and innovations provide information management professionals and practitioners with robust and secure opportunities to transform corporate affairs and social responsibilities of organizations through accountability, integrity, and transparency; information governance; data and information security; as well as digital internet of things.
Hahn, J. (2020). Student Engagement and Smart Spaces: Library Browsing and Internet of Things Technology. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 52-70). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch003
The purpose of this chapter is to provide evidence-based findings on student engagement within smart library spaces. The focus of smart libraries includes spaces that are enhanced with the internet of things (IoT) infrastructure and library collection maps accessed through a library-designed mobile application. The analysis herein explored IoT-based browsing within an undergraduate library collection. The open stacks and mobile infrastructure provided several years (2016-2019) of user-generated smart building data on browsing and selecting items in open stacks. The methods of analysis used in this chapter include transactional analysis and data visualization of IoT infrastructure logs. By analyzing server logs from the computing infrastructure that powers the IoT services, it is possible to infer in greater detail than heretofore possible the specifics of the way library collections are a target of undergraduate student engagement.
Treskon, M. (2020). Providing an Environment for Authentic Learning Experiences. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 71-86). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch004
The Loyola Notre Dame Library provides authentic learning environments for undergraduate students by serving as “client” for senior capstone projects. Through the creative application of IoT technologies such as Arduinos and Raspberry Pis in a library setting, the students gain valuable experience working through software design methodology and create software in response to a real-world challenge. Although these proof-of-concept projects could be implemented, the library is primarily interested in furthering the research, teaching, and learning missions of the two universities it supports. Whether the library gets a product that is worth implementing is not a requirement; it is a “bonus.”
Rashid, M., Nazeer, I., Gupta, S. K., & Khanam, Z. (2020). Internet of Things: Architecture, Challenges, and Future Directions. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 87-104). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch005
The internet of things (IoT) is a computing paradigm that has changed our daily livelihood and functioning. IoT focuses on the interconnection of all the sensor-based devices like smart meters, coffee machines, cell phones, etc., enabling these devices to exchange data with each other during human interactions. With easy connectivity among humans and devices, speed of data generation is getting multi-fold, increasing exponentially in volume, and is getting more complex in nature. In this chapter, the authors will outline the architecture of IoT for handling various issues and challenges in real-world problems and will cover various areas where usage of IoT is done in real applications. The authors believe that this chapter will act as a guide for researchers in IoT to create a technical revolution for future generations.
Martin, L. (2020). Cloud Computing, Smart Technology, and Library Automation. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 105-123). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch006
As technology continues to change, the landscape of the work of librarians and libraries continue to adapt and adopt innovations that support their services. Technology also continues to be an essential tool for dissemination, retrieving, storing, and accessing the resources and information. Cloud computing is an essential component employed to carry out these tasks. The concept of cloud computing has long been a tool utilized in libraries. Many libraries use OCLC to catalog and manage resources and share resources, WorldCat, and other library applications that are cloud-based services. Cloud computing services are used in the library automation process. Using cloud-based services can streamline library services, minimize cost, and the need to have designated space for servers, software, or other hardware to perform library operations. Cloud computing systems with the library consolidate, unify, and optimize library operations such as acquisitions, cataloging, circulation, discovery, and retrieval of information.
Owusu-Ansah, S. (2020). Developing a Digital Engagement Strategy for Ghanaian University Libraries: An Exploratory Study. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 124-139). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch007
This study represents a framework that digital libraries can leverage to increase usage and visibility. The adopted qualitative research aims to examine a digital engagement strategy for the libraries in the University of Ghana (UG). Data is collected from participants (digital librarians) who are key stakeholders of digital library service provision in the University of Ghana Library System (UGLS). The chapter reveals that digital library services included rare collections, e-journal, e-databases, e-books, microfilms, e-theses, e-newspapers, and e-past questions. Additionally, the research revealed that the digital library service patronage could be enhanced through outreach programmes, open access, exhibitions, social media, and conferences. Digital librarians recommend that to optimize digital library services, literacy programmes/instructions, social media platforms, IT equipment, software, and website must be deployed. In conclusion, a DES helps UGLS foster new relationships, connect with new audiences, and establish new or improved brand identity.
Nambobi, M., Ssemwogerere, R., & Ramadhan, B. K. (2020). Implementation of Autonomous Library Assistants Using RFID Technology. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 140-150). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch008
This is an interesting time to innovate around disruptive technologies like the internet of things (IoT), machine learning, blockchain. Autonomous assistants (IoT) are the electro-mechanical system that performs any prescribed task automatically with no human intervention through self-learning and adaptation to changing environments. This means that by acknowledging autonomy, the system has to perceive environments, actuate a movement, and perform tasks with a high degree of autonomy. This means the ability to make their own decisions in a given set of the environment. It is important to note that autonomous IoT using radio frequency identification (RFID) technology is used in educational sectors to boost the research the arena, improve customer service, ease book identification and traceability of items in the library. This chapter discusses the role, importance, the critical tools, applicability, and challenges of autonomous IoT in the library using RFID technology.
Priya, A., & Sahana, S. K. (2020). Processor Scheduling in High-Performance Computing (HPC) Environment. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 151-179). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch009
Processor scheduling is one of the thrust areas in the field of computer science. The future technologies use a huge amount of processing for execution of their tasks like huge games, programming software, and in the field of quantum computing. In real-time, many complex problems are solved by GPU programming. The primary concern of scheduling is to reduce the time complexity and manpower. Several traditional techniques exit for processor scheduling. The performance of traditional techniques is reduced when it comes to the huge processing of tasks. Most scheduling problems are NP-hard in nature. Many of the complex problems are recently solved by GPU programming. GPU scheduling is another complex issue as it runs thousands of threads in parallel and needs to be scheduled efficiently. For such large-scale scheduling problems, the performance of state-of-the-art algorithms is very poor. It is observed that evolutionary and genetic-based algorithms exhibit better performance for large-scale combinatorial and internet of things (IoT) problems.
Kirsch, B. (2020). Virtual Reality in Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 180-193). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch010
Librarians are beginning to offer virtual reality (VR) services in libraries. This chapter reviews how libraries are currently using virtual reality for both consumption and creation purposes. Virtual reality tools will be compared and contrasted, and recommendations will be given for purchasing and circulating headsets and VR equipment. Google Tour Creator and a smartphone or 360-degree camera can be used to create a virtual tour of the library and other virtual reality content. These new library services will be discussed along with practical advice and best practices for incorporating virtual reality into the library for instructional and entertainment purposes.
Heffernan, K. L., & Chartier, S. (2020). Augmented Reality Gamifies the Library: A Ride Through the Technological Frontier. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 194-210). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch011
Two librarians at a University in New Hampshire attempted to integrate gamification and mobile technologies into the exploration of, and orientation to, the library’s services and resources. From augmented reality to virtual escape rooms and finally an in-house app created by undergraduate, campus-based, game design students, the library team learned much about the triumphs and challenges that come with attempting to utilize new technologies to reach users in the 21st century. This chapter is a narrative describing years of various attempts, innovation, and iteration, which have led to the library team being on the verge of introducing an app that could revolutionize campus discovery and engagement.
Miltenoff, P. (2020). Video 360 and Augmented Reality: Visualization to Help Educators Enter the Era of eXtended Reality. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 211-225). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch012
The advent of all types of eXtended Reality (XR)—VR, AR, MR—raises serious questions, both technological and pedagogical. The setup of campus services around XR is only the prelude to the more complex and expensive project of creating learning content using XR. In 2018, the authors started a limited proof-of-concept augmented reality (AR) project for a library tour. Building on their previous research and experience creating a virtual reality (VR) library tour, they sought a scalable introduction of XR services and content for the campus community. The AR library tour aimed to start us toward a matrix for similar services for the entire campus. They also explored the attitudes of students, faculty, and staff toward this new technology and its incorporation in education, as well as its potential and limitations toward the creation of a “smart” library.

ARLearn

Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (in press). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science – Technolgy for learning across physical and virtual spaces.

https://www.academia.edu/29464704/ARLearn_augmented_reality_meets_augmented_virtuality

Augmented reality (AR) and AR games offer a unique opportunity to
implement this core idea in linking real world situations and problems with learning
support. The theory of situated learning [Lave & Wenger, 90] is grounded on the
assumption that learners do not learn via the plain acquisition of knowledge but they
learn via the active participation in frameworks and social contexts with a specific
social engagement structure. Kolb’s learning cycle [Kolb, 84] and the concept of
experiential learning discusses

de Freitas stresses the importance of linking the
experiences made in a game, simulation or micro world with their application in real
world practices [de Freitas, 06]. [Brown & Cairns, 04] describe game immersion as a
continuum from engagement over engrossment to total immersion.

Despite the huge potential of immersive games to overcome the gap between the real
world and the educational context and the rising market for electronic games [PWC,
10], the use of technology-enhanced immersive games in education is still quite low.
The reasons for this are manyfold:
● high game development costs meet limited educational budgets [Westera et
al., 08]
● predefined games are hard to be integrated in the educational process
[Klopfer, Osterweil & Salen, 09]
● learner support in online games does not easily scale [Van Rosmalen et al.,
08]
● furthermore, game platforms up to now could not easily be integrated with
real world environments.

mixed reality definition

 

augmented reality browsers like Layar and Wikitude

first mashups for Google StreetView (called StreetLearn) and for mobile
devices which use the Android Google Maps API (called ARLearn). StreetLearn is
intended to provide an augmented virtuality environment on a Desktop, while mobile
devices are provided with an augmented reality experience through ARLearn. By
creating scripts, adding interactive elements and by introducing gamification
elements, we believe that we can increase the learner’s motivation and provide a
richer learning experience linking mobile augmented reality and augmented virtuality.

freely available tools and offers an open REST API. From the enduser
point of view, playing games is easy for users and requires no special knowledge.
Creating scripts requires no programming skills but does impose still technical
background as scripts are to be edited either in JSON or XML.

iLearn2020

YouTube Live stream: https://www.youtube.com/watch?v=DSXLJGhI2D8&feature=youtu.be
and the Discord directions: https://docs.google.com/document/d/1GgI4dfq-iD85yJiyoyPApB33tIkRJRns1cJ8OpHAYno/editiLearn2020

Modest3D Guided Virtual Adventure – iLRN Conference 2020 – Session 1: currently, live session: https://youtu.be/GjxTPOFSGEM

https://mediaspace.minnstate.edu/media/Modest+3D/1_28ejh60g

CALL FOR PROPOSALS: GUIDED VIRTUAL ADVENTURE TOURS
at iLRN 2020: 6th International Conference of the Immersive Learning Research Network
Organized in conjunction with Educators in VR
Technically co-sponsored by the IEEE Education Society
June 21-25, 2020, Online
Conference theme: “Vision 20/20: Hindsight, Insight, and Foresight in XR and Immersive Learning”
Conference website: https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fimmersivelrn.org%2Filrn2020&data=02%7C01%7Cpmiltenoff%40STCLOUDSTATE.EDU%7C7a9997a1d6724744f7d708d7f52d9387%7C5011c7c60ab446ab9ef4fae74a921a7f%7C0%7C0%7C637247448406614239&sdata=Jt%2BFUtP3Vs%2FQi1z9HCk9x8m%2B%2BRjkZ63qrcoZnFiUdaQ%3D&reserved=0
++++++++++++++++++++++++++++++
Wednesday, June 24 • 12:00pm – 1:00pm

 Instruction and Instructional Design

Presentation 1: Inspiring Faculty (+ Students) with Tales of Immersive Tech (Practitioner Presentation #106)

Authors: Nicholas Smerker

Immersive technologies – 360º video, virtual and augmented realities – are being discussed in many corners of higher education. For an instructor who is familiar with the terms, at least in passing, learning more about why they and their students should care can be challenging, at best. In order to create a font of inspiration, the IMEX Lab team within Teaching and Learning with Technology at Penn State devised its Get Inspired web resource. Building on a similar repository for making technology stories at the sister Maker Commons website, the IMEX Lab Get Inspired landing page invites faculty to discover real world examples of how cutting edge XR tools are being used every day. In addition to very approachable video content and a short summary calling out why our team chose the story, there are also instructional designer-developed Assignment Ideas that allow for quick deployment of exercises related to – though not always relying upon – the technologies highlighted in a given Get Inspired story.

Presentation 2: Lessons Learned from Over A Decade of Designing and Teaching Immersive VR in Higher Education Online Courses (Practitioner Presentation #101)

Authors: Eileen Oconnor

This presentation overviews the design and instruction in immersive virtual reality environments created by the author beginning with Second Life and progressing to open source venues. It will highlight the diversity of VR environment developed, the challenges that were overcome, and the accomplishment of students who created their own VR environments for K12, college and corporate settings. The instruction and design materials created to enable this 100% online master’s program accomplishment will be shared; an institute launched in 2018 for emerging technology study will be noted.

Presentation 3: Virtual Reality Student Teaching Experience: A Live, Remote Option for Learning Teaching Skills During Campus Closure and Social Distancing (Practitioner Presentation #110)

Authors: Becky Lane, Christine Havens-Hafer, Catherine Fiore, Brianna Mutsindashyaka and Lauren Suna

Summary: During the Coronavirus pandemic, Ithaca College teacher education majors needed a classroom of students in order to practice teaching and receive feedback, but the campus was closed, and gatherings forbidden. Students were unable to participate in live practice teaching required for their program. We developed a virtual reality pilot project to allow students to experiment in two third-party social VR programs, AltSpaceVR and Rumii. Social VR platforms allow a live, embodied experience that mimics in-person events to give students a more realistic, robust and synchronous teaching practice opportunity. We documented the process and lessons learned to inform, develop and scale next generation efforts.

++++++++++++++++++++++++++
Tuesday, June 23 • 5:00pm – 6:00pm
+++++++++++++++++++++++++++
Sunday, June 21 • 8:00am – 9:00am
Escape the (Class)room games in OpenSim or Second Life FULLhttps://ilrn2020.sched.com/event/ceKP/escape-the-classroom-games-in-opensim-or-second-lifePre-registration for this tour is required as places are limited. Joining instructions will be emailed to registrants ahead of the scheduled tour time.The Guided Virtual Adventure tour will take you to EduNation in Second Life to experience an Escape room game. For one hour, a group of participants engage in voice communication and try to solve puzzles, riddles or conundrums and follow clues to eventually escape the space. These scenarios are designed for problem solving and negotiating language and are ideal for language education. They are fun and exciting and the clock ticking adds to game play.Tour guide(s)/leader(s): Philp Heike, let’s talk online sprl, Belgium

Target audience sector: Informal and/or lifelong learning

Supported devices: Desktop/laptop – Windows, Desktop/laptop – Mac

Platform/environment access: Download from a website and install on a desktop/laptop computer
Official website: http://www.secondlife.com

+++++++++++++++++++

Thursday, June 25 • 9:00am – 10:00am

Games and Gamification II

Click here to remove from My Sched.

Presentation 1: Evaluating the impact of multimodal Collaborative Virtual Environments on user’s spatial knowledge and experience of gamified educational tasks (Full Paper #91)

Authors: Ioannis Doumanis and Daphne Economou

>>Access Video Presentation<<

Several research projects in spatial cognition have suggested Virtual Environments (VEs) as an effective way of facilitating mental map development of a physical space. In the study reported in this paper, we evaluated the effectiveness of multimodal real-time interaction in distilling understanding of the VE after completing gamified educational tasks. We also measure the impact of these design elements on the user’s experience of educational tasks. The VE used reassembles an art gallery and it was built using REVERIE (Real and Virtual Engagement In Realistic Immersive Environment) a framework designed to enable multimodal communication on the Web. We compared the impact of REVERIE VG with an educational platform called Edu-Simulation for the same gamified educational tasks. We found that the multimodal VE had no impact on the ability of students to retain a mental model of the virtual space. However, we also found that students thought that it was easier to build a mental map of the virtual space in REVERIE VG. This means that using a multimodal CVE in a gamified educational experience does not benefit spatial performance, but also it does not cause distraction. The paper ends with future work and conclusions and suggestions for improving mental map construction and user experience in multimodal CVEs.

Presentation 2: A case study on student’s perception of the virtual game supported collaborative learning (Full Paper #42)

Authors: Xiuli Huang, Juhou He and Hongyan Wang

>>Access Video Presentation<<

The English education course in China aims to help students establish the English skills to enhance their international competitiveness. However, in traditional English classes, students often lack the linguistic environment to apply the English skills they learned in their textbook. Virtual reality (VR) technology can set up an immersive English language environment and then promote the learners to use English by presenting different collaborative communication tasks. In this paper, spherical video-based virtual reality technology was applied to build a linguistic environment and a collaborative learning strategy was adopted to promote their communication. Additionally, a mixed-methods research approach was used to analyze students’ achievement between a traditional classroom and a virtual reality supported collaborative classroom and their perception towards the two approaches. The experimental results revealed that the virtual reality supported collaborative classroom was able to enhance the students’ achievement. Moreover, by analyzing the interview, students’ attitudes towards the virtual reality supported collaborative class were reported and the use of language learning strategies in virtual reality supported collaborative class was represented. These findings could be valuable references for those who intend to create opportunities for students to collaborate and communicate in the target language in their classroom and then improve their language skills

!!!!!!!!!!!!!!!!!!!
Thursday, June 25 • 11:00am – 12:00pm

 Games and Gamification III

Click here to remove from My Sched.

Presentation 1: Reducing Cognitive Load through the Worked Example Effect within a Serious Game Environment (Full Paper #19)

Authors: Bernadette Spieler, Naomi Pfaff and Wolfgang Slany

>>Access Video Presentation<<

Novices often struggle to represent problems mentally; the unfamiliar process can exhaust their cognitive resources, creating frustration that deters them from learning. By improving novices’ mental representation of problems, worked examples improve both problem-solving skills and transfer performance. Programming requires both skills. In programming, it is not sufficient to simply understand how Stackoverflow examples work; programmers have to be able to adapt the principles and apply them to their own programs. This paper shows evidence in support of the theory that worked examples are the most efficient mode of instruction for novices. In the present study, 42 students were asked to solve the tutorial The Magic Word, a game especially for girls created with the Catrobat programming environment. While the experimental group was presented with a series of worked examples of code, the control groups were instructed through theoretical text examples. The final task was a transfer question. While the average score was not significantly better in the worked example condition, the fact that participants in this experimental group finished significantly faster than the control group suggests that their overall performance was better than that of their counterparts.

Presentation 2: A literature review of e-government services with gamification elements (Full Paper #56)

Authors: Ruth S. Contreras-Espinosa and Alejandro Blanco-M

>>Access Video Presentation<<

Nowadays several democracies are facing the growing problem of a breach in communication between its citizens and their political representatives, resulting in low citizen’s engagement in the participation of political decision making and on public consultations. Therefore, it is fundamental to generate a constructive relationship between both public administration and the citizens by solving its needs. This document contains a useful literature review of the gamification topic and e-government services. The documents contain a background of those concepts and conduct a selection and analysis of the different applications found. A set of three lines of research gaps are found with a potential impact on future studies.

++++++++++++++++++
Thursday, June 25 • 12:00pm – 1:00pm

 Museums and Libraries

Click here to remove from My Sched.

Presentation 1: Connecting User Experience to Learning in an Evaluation of an Immersive, Interactive, Multimodal Augmented Reality Virtual Diorama in a Natural History Museum & the Importance of Story (Full Paper #51)

Authors: Maria Harrington

>>Access Video Presentation<<

Reported are the findings of user experience and learning outcomes from a July 2019 study of an immersive, interactive, multimodal augmented reality (AR) application, used in the context of a museum. The AR Perpetual Garden App is unique in creating an immersive multisensory experience of data. It allowed scientifically naïve visitors to walk into a virtual diorama constructed as a data visualization of a springtime woodland understory, and interact with multimodal information directly through their senses. The user interface comprised of two different AR data visualization scenarios reinforced with data based ambient bioacoustics, an audio story of the curator’s narrative, and interactive access to plant facts. While actual learning and dwell times were the same between the AR app and the control condition, the AR experience received higher ratings on perceived learning. The AR interface design features of “Story” and “Plant Info” showed significant correlations with actual learning outcomes, while “Ease of Use” and “3D Plants” showed significant correlations with perceived learning. As such, designers and developers of AR apps can generalize these findings to inform future designs.

Presentation 2: The Naturalist’s Workshop: Virtual Reality Interaction with a Natural Science Educational Collection (Short Paper #11)

Authors: Colin Patrick Keenan, Cynthia Lincoln, Adam Rogers, Victoria Gerson, Jack Wingo, Mikhael Vasquez-Kool and Richard L. Blanton

>>Access Video Presentation<<

For experiential educators who utilize or maintain physical collections, The Naturalist’s Workshop is an exemplar virtual reality platform to interact with digitized collections in an intuitive and playful way. The Naturalist’s Workshop is a purpose-developed application for the Oculus Quest standalone virtual reality headset for use by museum visitors on the floor of the North Carolina Museum of Natural Sciences under the supervision of a volunteer attendant. Within the application, museum visitors are seated at a virtual desk. Using their hand controllers and head-mounted display, they explore drawers containing botanical specimens and tools-of-the-trade of a naturalist. While exploring, the participant can receive new information about any specimen by dropping it into a virtual examination tray. 360-degree photography and three-dimensionally scanned specimens are used to allow user-motivated, immersive experience of botanical meta-data such as specimen collection coordinates.

Presentation 3: 360˚ Videos: Entry level Immersive Media for Libraries and Education (Practitioner Presentation #132)

Authors: Diane Michaud

>>Access Video Presentation<<

Within the continuum of XR Technologies, 360˚ videos are relatively easy to produce and need only an inexpensive mobile VR viewer to provide a sense of immersion. 360˚ videos present an opportunity to reveal “behind the scenes” spaces that are normally inaccessible to users of academic libraries. This can promote engagement with unique special collections and specific library services. In December 2019, with little previous experience, I led the production of a short 360˚video tour, a walk-through of our institution’s archives. This was a first attempt; there are plans to transform it into a more interactive, user-driven exploration. The beta version successfully generated interest, but the enhanced version will also help prepare uninitiated users for the process of examining unique archival documents and artefacts. This presentation will cover the lessons learned, and what we would do differently for our next immersive video production. Additionally, I will propose that the medium of 360˚ video is ideal for many institutions’ current or recent predicament with campuses shutdown due to the COVID-19 pandemic. Online or immersive 360˚ video can be used for virtual tours of libraries and/or other campus spaces. Virtual tours would retain their value beyond current campus shutdowns as there will always be prospective students and families who cannot easily make a trip to campus. These virtual tours would provide a welcome alternative as they eliminate the financial burden of travel and can be taken at any time.

++++++++++++++++++

Educators in VR

Info on all presentations: https://account.altvr.com/channels/1182698623012438188

Charlie Fink: Setting the Table for the Next Decade in XR

Translating Training Requirements into Immersive Experience

Virtual Reality Technologies for Learning Designers

Virtual Reality Technologies for Learning Designers Margherita Berti

$$$$$$$$$$$$$$$$$$$$$$

Technology Acceptance and Learning Process Victoria Bolotina part 1

Technology Acceptance and Learning Process Victoria Bolotina part 2

Assessment of Learning Activities in VR Evelien Ydo part 2

++++++++++++++++++++++++++++++++++++++++

VR: So Much More Than a Field Trip Shannon Putman, Graduate Assistant/PhD Student, University of Louisville SPED special education https://account.altvr.com/events/1406092840622096803

++++++++++++++++++++++++++++++

VR and Health Professionals Rob Theriault

+++++++++++++++++++++++

Transform Your History Lessons with AR and VR Michael Fricano II

++++++++++++++++++++++++++++

Transform Your History Lessons with AR and VR Michael Fricano II, Technology Integration Specialist https://www.arvreduhub.com/transform-history

Qlone App for 3D scanning

++++++++++++++++++++++++++++++++++++++

2020 Educators in VR International Summit

The 2020 Educators in VR International Summit is February 17-22. It features over 170 speakers in 150+ events across multiple social and educational platforms including AltspaceVRENGAGErumiiMozilla Hubs, and Somnium Space.

The event requires no registration, and is virtual only, free, and open to the public. Platform access is required, so please install one of the above platforms to attend the International Summit. You may attend in 2D on a desktop or laptop computer with a headphone and microphone (USB gaming headphone recommended), or with a virtual device such as the Oculus Go, Quest, and Rift, Vive, and other mobile and tethered devices. Please note the specifications and requirements of each platform.

The majority of our events are on AltspaceVR. AltspaceVR is available for Samsung GearSteam Store for HTC ViveWindows Mixed Reality, and the Oculus Store for RiftGo and Quest users. Download and install the 2D version for use on your Windows desktop computer.

Charlie Fink, author, columnist for Forbes magazine, and Adjunct Faculty member of Chapman University, will be presenting “Setting the Table for the Next Decade in XR,” discussing the future of this innovative and immersive technology, at the 2020 Educators in VR International Summit. He will be speaking in AltspaceVR on Tuesday, February 18 at 1:00 PM EST /

International Summit

Setting the Table for the Next Decade in XR 1PM, Tues, Feb 18 https://account.altvr.com/events/1406089727517393133

Finding a New Literacy for a New Reality 5PM, Tues, Feb 18

https://account.altvr.com/events/1406093036194103494 schedule for new literacy

Finding a New Literacy for a New Reality

Dr. Sarah Jones, Deputy Dean, De Montfort University

This workshop with Dr. Sarah Jones will focus on developing a relevant and new literacy for virtual reality, including the core competencies and skills needed to develop and understand how to become an engaged user of the technology in a meaningful way. The workshop will develop into research for a forthcoming book on Uncovering a Literacy for VR due to be published in 2020.

Sarah is listed as one of the top 15 global influencers within virtual reality. After nearly a decade in television news, Sarah began working in universities focusing on future media, future technology and future education. Sarah holds a PhD in Immersive Storytelling and has published extensively on virtual and augmented reality, whilst continuing to make and create immersive experiences. She has advised the UK Government on Immersive Technologies and delivers keynotes and speaks at conferences across the world on imagining future technology. Sarah is committed to diversifying the media and technology industries and regularly champions initiatives to support this agenda.

Inter-cognitive and Intra-cognitive Communication in Virtual Reality

Inter-cognitive and Intra-cognitive Communication in Virtual Reality

Michael Vallance, Professor, Future University Hakodate

Currently there are limited ways to connect 3D VR environments to physical objects in the real-world whilst simultaneously conducting communication and collaboration between remote users. Within the context of a solar power plant, the performance metrics of the site are invaluable for environmental engineers who are remotely located. Often two or more remotely located engineers need to communicate and collaborate on solving a problem. If a solar panel component is damaged, the repair often needs to be undertaken on-site thereby incurring additional expenses. This triage of communication is known as inter-cognitive communication and intra-cognitive communication: inter-cognitive communication where information transfer occurs between two cognitive entities with different cognitive capabilities (e.g., between a human and an artificially cognitive system); intra-cognitive communication where information transfer occurs between two cognitive entities with equivalent cognitive capabilities (e.g., between two humans) [Baranyi and Csapo, 2010]. Currently, non-VR solutions offer a comprehensive analysis of solar plant data. A regular PC with a monitor currently have advantages over 3D VR. For example, sensors can be monitored using dedicated software such as EPEVER or via a web browser; as exemplified by the comprehensive service provided by Elseta. But when multiple users are able to collaborate remotely within a three-dimensional virtual simulation, the opportunities for communication, training and academic education will be profound.

Michael Vallance Ed.D. is a researcher in the Department of Media Architecture, Future University Hakodate, Japan. He has been involved in educational technology design, implementation, research and consultancy for over twenty years, working closely with Higher Education Institutes, schools and media companies in UK, Singapore, Malaysia and Japan. His 3D virtual world design and tele-robotics research has been recognized and funded by the UK Prime Minister’s Initiative (PMI2) and the Japan Advanced Institute of Science and Technology (JAIST). He has been awarded by the United States Army for his research in collaborating the programming of robots in a 3D Virtual World.

Create Strategic Snapchat & Instagram AR Campaigns

Create Strategic Snapchat & Instagram AR Campaigns

Dominique Wu, CEO/Founder, Hummingbirdsday

Augmented Reality Lens is popular among young people thanks to Snapchat’s invention. Business is losing money without fully using of social media targeting young people (14-25). In my presentation, Dominique Wu will show how businesses can generate more leads through Spark AR (Facebook AR/Instagram AR) & Snapchat AR Lens, and how to create a strategic Snapchat & Instagram AR campaigns.

Domnique Wu is an XR social media strategist and expert in UX/UI design.She has her own YouTube and Apple Podcast show called “XReality: Digital Transformation,” covering the technology and techniques of incorporating XR and AR into social media, marketing, and integration into enterprise solutions.

Mixed Reality in Classrooms Near You

Mixed Reality in Classrooms Near You

Mark Christian, EVP, Strategy and Corporate Development, GIGXR

Mixed Reality devices like the HoloLens are transforming education now. Mark Christian will discuss how the technology is not about edge use cases or POCs, but real usable products that are at Universities transforming the way we teach and learn. Christian will talk about the products of GIGXR, the story of how they were developed and what the research is saying about their efficacy. It is time to move to adoption of XR technology in education. Learn how one team has made this a reality.

As CEO of forward-thinking virtual reality and software companies, Mark Christian employs asymmetric approaches to rapid, global market adoption, hiring, diversity and revenue. He prides himself on unconventional approaches to building technology companies.

Designing Educational Content in VR

Designing Educational Content in VR

Avinash Gyawali, VR Developer, Weaver Studio

Virtual Reality is an effective medium to impart education to the student only if it is done right.The way VR is considered gimmick or not is by the way the software application are designed/developed by the developers not the hardware limitation.I will be giving insight about the VR development for educational content specifically designed for students of lower secondary school.I will also provide insights about the development of game in unity3D game engine.

Game Developer and VR developer with over 3 years of experience in Game Development.Developer of Zombie Shooter, winner of various national awards in the gaming and entertainment category, Avinash Gyawali is the developer of EDVR, an immersive voice controlled VR experience specially designed for children of age 10-18 years.

8:00 AM PST Research Virtual Reality Technologies for Learning Designers Margherita Berti ASVR

Virtual Reality Technologies for Learning Designers

Margherita Berti

Virtual Reality (VR) is a computer-generated experience that simulates presence in real or imagined environments (Kerrebrock, Brengman, & Willems, 2017). VR promotes contextualized learning, authentic experiences, critical thinking, and problem-solving opportunities. Despite the great potential and popularity of this technology, the latest two installations of the Educause Horizon Report (2018, 2019) have argued that VR remains “elusive” in terms of mainstream adoption. The reasons are varied, including the expense and the lack of empirical evidence for its effectiveness in education. More importantly, examples of successful VR implementations for those instructors who lack technical skills are still scarce. Margherita Berti will discuss a range of easy-to-use educational VR tools and examples of VR-based activity examples and the learning theories and instructional design principles utilized for their development.

Margherita Berti is a doctoral candidate in Second Language Acquisition and Teaching (SLAT) and Educational Technology at the University of Arizona. Her research specialization resides at the intersection of virtual reality, the teaching of culture, and curriculum and content development for foreign language education.

Wed 11:00 AM PST Special Event Gamifying the Biblioverse with Metaverse Amanda Fox VR Design / Biblioverse / Training & Embodiment ASVR

Gamifying the Biblioverse with Metaverse

Amanda Fox, Creative Director of STEAMPunks/MetaInk Publishing, MetaInk Publishing

There is a barrier between an author and readers of his/her books. The author’s journey ends, and the reader’s begins. But what if as an author/trainer, you could use gamification and augmented reality(AR) to interact and coach your readers as part of their learning journey? Attend this session with Amanda Fox to learn how the book Teachingland leverages augmented reality tools such as Metaverse to connect with readers beyond the text.

Amanda Fox, Creative Director of STEAMPunksEdu, and author of Teachingland: A Teacher’s Survival Guide to the Classroom Apolcalypse and Zom-Be A Design Thinker. Check her out on the Virtual Reality Podcast, or connect with her on twitter @AmandaFoxSTEM.

Wed 10:00 AM PST Research Didactic Activity of the Use of VR and Virtual Worlds to Teach Design Fundamentals Christian Jonathan Angel Rueda VR Design / Biblioverse / Training & Embodiment ASVR

Didactic Activity of the Use of VR and Virtual Worlds to Teach Design Fundamentals

Christian Jonathan Angel Rueda, research professor, Autonomous University of Queretaro (Universidad Autónoma de Querétaro)

Christian Jonathan Angel Rueda specializaes in didactic activity of the use of virtual reality/virtual worlds to learn the fundamentals of design. He shares the development of a course including recreating in the three-dimensional environment using the fundamentals learned in class, a demonstration of all the works developed throughout the semester using the knowledge of design foundation to show them creatively, and a final project class scenario that connected with the scenes of the students who showed their work throughout the semester.

Christian Jonathan Angel Rueda is a research professor at the Autonomous University of Queretaro in Mexico. With a PhD in educational technology, Christian has published several papers on the intersection of education, pedagogy, and three-dimensional immersive digital environments. He is also an edtech, virtual reality, and social media consultant at Eco Onis.

Thu 11:00 AM PST vCoaching Closing the Gap Between eLearning and XR Richard Van Tilborg XR eLearning / Laughter Medicine ASVR

Closing the Gap Between eLearning and XR

Richard Van Tilborg, founder, CoVince

How we can bridge the gap between eLearning and XR. Richard Van Tilborg discusses combining brain insights enabled with new technologies. Training and education cases realised with the CoVince platform: journeys which start on you mobile and continue in VR. The possibilities to earn from your creations and have a central distribution place for learning and data.

Richard Van Tilborg works with the CoVince platform, a VR platform offering training and educational programs for central distribution of learning and data. He is an author and speaker focusing on computers and education in virtual reality-based tasks for delivering feedback.

 

Thu 12:00 PM PST Research Assessment of Learning Activities in VR Evelien Ydo Technology Acceptance / Learning Assessment / Vaping Prevention ASVR
Thu 6:00 PM PST Down to Basics Copyright and Plagiarism Protections in VR Jonathan Bailey ASVR

 

Thu 8:00 PM PST Diversity Cyberbullying in VR John Williams, Brennan Hatton, Lorelle VanFossen ASVR

IM 690 Intro to AR merge cube

IM 690 Virtual Reality and Augmented Reality

A little bit of humor, before we start: Actual Reality Goggles:

View this post on Instagram

A new competitor to #vr #virtualreality in @edtech 🤦🏽‍♂️ @scsuvizlab

A post shared by Digital literacy at SCSU (@scsutechinstruct) on

Merge Cube: Intro to AR (Augmented Reality)

    1. What is Merge Cube
    2. Why do we need to know it

The Mobile Future of Augmented Reality from Qualcomm Wireless Evolution
  1. How does it work

View this post on Instagram

#mergecube instruction session w Mark Gill and Alan Srock : Tue, Oct. 22, 11 AM, Miller Center 205. @stcloudstate more info at https://blog.stcloudstate.edu/IMS/2019/10/15/merge-cube-workshop-at-SCSU. @scsualumni @scsu_involvement @scsuambassadors @scsuatwood @scsustudentgovernment @scsu_soe @scsusota @scsucose @scsu_honors @scsusopa @scsu_greek_life

A post shared by Digital literacy at SCSU (@scsutechinstruct) on

6 min video explaining how to start the cube

Mark Gill merge cube workshop of October 22, 2019:
https://minnstate.zoom.us/rec/share/_-FwEpGh_ElJR4XBtG3US4M7Ranreaa80yZI__sMnk-vRzQElwtvUlSuWY7tTT22

Creating Merge Cube objects, Mark Gill video tutorial (password in your D2L course

https://blog.stcloudstate.edu/ims/2019/10/17/mark-gill-how-to-mergecube/

More information on Merge Cube and comparison with other AR devices:

https://blog.stcloudstate.edu/ims/2019/08/08/sources-to-intro-vr/

+++++++++++++++++++++++

  1. AR with a telephone

Mark Gill explains creation of AR objects to students in an Unity workshop

SCSU AR Library Tour:

  1. Microsoft Hololens
    SCSU SOE graduate students’ experience with Hololens:



Seeing it through Hololens:

  1. Microsoft Hololens 2

How to setup a Hololens

Advanced Hololens with Unity:

++++++++++++++++++++++
More resources (advanced):

  1. Introduction to AR with Unity3D from Andreas Blick

I
+++++++++++
Plamen Miltenoff, Ph.D., MLIS
Professor
320-308-3072
pmiltenoff@stcloudstate.edu
http://web.stcloudstate.edu/pmiltenoff/faculty/
schedule a meeting: https://doodle.com/digitalliteracy
find my office: https://youtu.be/QAng6b_FJqs

Peter Rubin Future Presence

P 4. But all that “disruption,” as people love to collect, is over looking the thing that’s the most disruptive of them all call on the way we relate to each other will never be the same. That’s because of something called presence.
Presence is the absolute foundation of virtual reality, and in VR, it’s the absolute foundation of connection-connection with yourself, with an idea, with another human, even connection with artificial intelligence.
p. 28 VR definition
Virtual reality is an 1. artificial environment that’s 2. immersive enough to convince you that you are 3. actually inside it.
1. ” artificial environment ” could mean just about anything. The photograph is an artificial environment of video game is an artificial environment a Pixar movie is an artificial environment the only thing that matters is that it’s not where are you physically are
p. 44 VR: putting the “it” in “meditation”
my note: it seems Rubin sees the 21st century VR as the equivalent of the drug experimentation in the 1960s US: p. 46 “VR is potentially going to become a direct interface to the subconscious”

p. 74 serious games, Carrie Heeter. p. 49

The default network in the brain in today’s society is the wandering mind. We are ruminating about the past, and we are worrying about the future, or maybe even planning for the future; there is some productive thinking. But in general, a wandering mind is an unhappy mind. And that is where we spent all of our week in time: not being aware of everything that we are experiencing in the moment.
Hester’s Open meditation had already let her to design apps and studies that investigated mediate meditations ability to calm that wandering mind
p. 51 Something called interoception. It is a term that is gaining ground in psychologist circles in recent years and basically means awareness of battle associations-like my noticing the fact that I was sitting awkwardly or that keeping my elbows on the cheers armrests was making my shoulders hunched slightly. Not surprisingly, mindfulness meditation seems to heighten interoception. And that is exactly how Heeter and Allbritton Strep throat the meditation I am doing on Costa Del sole. First, I connect with the environment; then with my body; Dan I combined the two. The combination of the VR and interception leads to what she describes as “embodied presence”: not only do you feel like you are in the VR environment, but because you have consciously work to integrate your bodily Sensations into VR, it is a fuller, more vivid version of presents.

p. 52 guided meditation VR GMVR

p. 56 VVVR visual voice virtual reality

p. 57

Just as the ill-fated google glass immediately stigmatized all its wearers as “glassholes”- a.k.a. “techier-than-thou douche bags who dropped $1500 to see an email notification appear in front of their face”-so to do some VR headset still look like face TVs for another it’s

p. 61 Hedgehog Love
engineering feelings with social presence. p.64 remember presents? This is the beginning of social presence. Mindfulness is cool, but making eye contact with Henry is the first step into the future.

p.65 back in 1992, our friend Carrie heeter posited that presence-the sensation did you are really there in VR-head treat day mentions. There was personal presents, environmental presents, and social presents, which she basically defined is being around other people who register your existence.
p. 66 the idea that emotion can be not a cause, as sweet so often assumed, but a result of it of behavior
p. 72 in chapter 1, we explain the difference between Mobile VR and PC driven PR.  The former is cheaper and easier; all you do is drop your smart phone into a headset, and it provides just about everything can eat. Dedicated VR headsets rely on the stronger processors of desktop PCs and game consoles,So they can provide a more robust sense of presence-usually at the cost of being hit Earth to your computer with cables. (it’s the cost of actual money: dedicated headset systems from hundreds of dollars, while mobile headsets like Samsung’s deer VR or Google’s DayDream View can be had for mere tens of dollars.) There is one other fundamental distinction between mobile VR and high-end VR, though, and that is what you do with your hands-how you input your desires. When VR reemerged in the early 2010s, however, the question of input was open to debate. Actually, more than one debate. p. 73 video game controllers are basically metaphors. Some, like steering wheels or pilot flight sticks, might look like that think they’re supposed to be, but  at their essence they are all just collections of buttons. p. 77 HTC sales small wearable truckers that you can affix to any object, or anybody part, to break it into the Vive’s VR.
p. 78 wait a second – you were talking about storytelling.
p. 79 Every Hollywood studio you can imagine-21st Century Fox, Paramount, Warner Bross.-Has already invested in virtual reality. They have made VR experiences based on their own movies, like interstellar or ghost in the Shell, and they have invested in other VR companies. Hollywood directors like Doug Liman (Edge of Tomorrow) and Robert Stromberg (Maleficent) have taken VR project. And the progress is exhilarating. Alejandro GOnzalez Inarritu, a 4-Time Oscar winner for best director 2014 movie Birdman, won best picture, received this special achievement Academy award in 2017 for a VR Schwartz he made. Yet Carne Y Arena, which puts viewers insight a harrowing journey from Mexico to the United States, is nothing like a movie, or even a video game.

When you premiered at the Cannes film Festival in early 2017, it was housed in an airplane hangar; viewers were a shirt, barefoot, into a room with a sand-covert floor, where they could watch and interact with other people trying to make it over the border. Arrests, detention centers, dehydration-the extremity of the human condition happening all around you. India announcement, the Academy of motion picture arts and sciences called the peas “deeply emotional and physically immersive”

p. 83 empathy versus intimacy. Why good stories need someone else

p. 84 Chris Milk

http://www.thewildernessdowntown.com/

p. 85 empathy vs intimacy: appreciation vs emotion

Both of these words are fuzzy, to say the least. Both have decades of study behind him, but both have also appeared and more magazine covers in just about any words, other than possibly “abs”

Empathy: dear Do it to do identify with and understand dollars, particularly on an emotional level. It involves imagining yourself in the place of another and, therefore, appreciating how do you feel.

Intimacy: a complex sphere of ‘inmost’ relationships with self and others that are not usually minor or incidental (though they may be a transitory) and which usually touch the personal world very deeply. They are our closest relationships with friends, family, children, lovers, but they are also the deep into important experiences we have with self

Empathy necessarily needs to involve other people; intimacy doesn’t. Empathy involves emotional understanding; intimacy involves emotion itself. Empathy, at its base, isn’t act of getting outside yourself: you’re protecting yourself into someone’s else experience, which means that in some ways you are leaving your own experience behind, other than as a reference point. Intimacy, on the other hand, is at its base act of feeling: you might be connecting quit someone or something Else, but you are doing so on the basis of the emotions you feel. p 86. Any type of VR experience perfectly illustrates the surprising gap between empathy and intimacy: life action VR. p. 87 unlike CGI-based storytelling, which full somewhere in between game in movie, live action VR feels much more like the conventional video forms that we are used to from television and movies. Like those media, people have been using VR to shoot everything from narrative fiction to documentary the sports.

Nonny de la Peña Hunger in Los Angeles at Sundance

p. 89 Clouds over Sidra Chris Milk

p. 90 SXSW south by southwest Austin Texas

p. 92 every single story has only one goal at its base: to make you care. This holds true whether it is a tale told around a campfire at night, one related to a sequence of panels in the comic book, or dialogue-heavy narrative of a television show. The story might be trying to make you laugh, or just scare you, or to make you feel sad or happy on behalf of one of the characters, but those are all just forms of caring, right? Your emotional investment-the fact that what kept us in this tale matters to you-is the fundamental aim of the storyteller.

Storytelling, than, has evolved to find ways to draw you out of yourself, to make you forget that what you are hearing or seeing or reading isn’t real. It’s only at that point, after all, that our natural capacity for empathy can kick in. p. 93 meanwhile, technology continues to evolve to detaches from those stories. For one, the frame itself continues to get smaller. Strangers still, this distraction has happened well stories continue to become more and more complex. Narratively, at least, stories are more intricate then the have ever been. p. 94. Now, with VR storytelling, the distracting power of multiple screens his met it’s match.

p. 101 experiencing our lives- together

What videos two cannot do, though, he’s bringing people together insights VR, the way re-McClure’s sinking-multicoloredat-blogs-at-each-other tag-team project is VVVR does. That’s why even V are filmmaking powerhouses like Within ( https://www.with.in/get-the-app) are moving beyond mere documentary and narrative and trying to turn storytelling into a shared experience.

Make no mistake: storytelling has always been a shirt experience. Being conscripted into the story, or even being the story.

https://www.linkedin.com/in/jess-engel-96421010/

https://medium.com/@Within/welcome-jess-aea620df0ca9

p. 103 like so many VR experiences, life of us defies many of the ways we describe a story to each other. For one, it feels at fonts shorter and longer than its actual seven-minutes runtime; although it’s seems to be over in a flash, flash contains so many details that in retrospect it is as full and vivid is a two-our movie.

There is another think, though, that sets life of us apart from so many other stories-it is the fact that not only was I in the story, but someone else was in there with me. In that someone wasn’t a field character talking to a camera that they some calling about it, or a video game creature that was programmed to look in ‘my’ direction, but a real person-a person who saw what I saw, a person who was present for each of those moments and who know is inextricably part of my old, shard-Like memory of them.

p. 107 what to do and what to do it with . How social VR is reinventing everything from game night to online harassment.

Facebook Hires Altspace CEO Eric Romo

p. 110 VR isn’t given Romo’s first bet on the future. When he was finishing up his masters degree in mechanical engineering, a professor emailed him on behalf of two men who were recruiting for a rocket company there were starting. One of those man was a Elon musk, which is how Romo became the 13th employee at space X. Eventually, she started the company focusing go solar energy, but when the bottom fell out of the industry, she shut down the company and looked for his next opportunity. Romo spent the next year and a half researching the technology and thinking about what kind of company might make sense in the new VR enabled world. He had read Snow crash, but he oh soon you get our hopes for DVR future could very well end up like gay themed flying car: defined-and limited-bite an expectation that might not match perfectly which what we actually want.

https://www.amazon.com/Snow-Crash-Neal-Stephenson/dp/1491515058

p. 116 back in the day, trolling just trim forward to pursuing a provocative argument for kicks. Today, the word used to describe the actions of anonymous mobs like the one that, for instance, Rolf actor Leslie Jones off Twitter with an onslaught of racist and sexist abuse. Harassment has become one of the defining characteristics of the Internet is for use it today. But with the emergernce of VR, our social networks have become, quite literally, embodied.

p. 116 https://medium.com/athena-talks/my-first-virtual-reality-sexual-assault-2330410b62ee 

p. 142 increasing memory function by moving from being a voyeur to physically participating in the virtual activity. embodied presence – bringing not just your head into your hands, but your body into VR-strengthens memories in the number of ways.

p. 143 at the beginning of 2017, Facebook fit published some of its. New Ron’s in internal research about the potential of social VR. Neurons INc. The agency measured eye movements, Brain activity, and pools of volunteers who were watching streaming video on smart phones and ultimately discovered that buffering and lag were significantly more stressful than waiting can line it a store, and even slightly more stressful than watching a horror movie.

p. 145 after the VR experience, more than 80% of introverts — is identified by a short survey participants took before hand-wanted to become friends with the person they had chatted with, as opposed to less than 60% of extroverts

p. 149 Rec Room Confidential: the anatomy in evolution of VR friendships

p. 165 reach out and touch someone; haptics, tactile presence and making VR physical.

https://www.digicert.com/ 

VOID: Vision of Infinite Dimensions p. 167

p. 169 the 4-D-effects: steam, cool air, moisture,

p. 170 Copresence

About

https://www.researchgate.net/profile/Shanyang_Zhao

https://www.researchgate.net/publication/2532682_Toward_A_Taxonomy_of_Copresence

https://astro.temple.edu/~bzhao001/Taxonomy_Copresence.pdf

p. 171 Zhao laid out two different criteria. The first was whether or not to people are actually in the same place-basically, are they or their stand-ins physically close enough to be able to communicate without any other tools? To people, she wrote, can either have “physical proximity” or “electronic proximity” the latter being some sort of networked connection. The second criterion was whether each person is corporeally there; in other words, is it their actual flesh-and-blood body? The second condition can have three outcomes: both people can be there corporeally; neither can be there corporeally , instead using some sort of stand in like an avatar or a robot; or just one of them can be there corporeally, with the other using case stent in

“virtual copresence” is when a flesh and blood person interacts physically with a representative of a human; if that sounds confusing, 80 good example is using an ATM call mom where are the ATM is a stent in for a bank teller

p. 172 “hypervirtual copresence,” which involves nonhuman devices that are interacting in the same physical space in a humanlike fashion. social VR does not quite fit into any of this category. Zhao refers to this sort of hybrid as a “synthetic environment” and claims that it is a combination of corporeal https://www.waze.com/telecopresence (like Skyping) and virtual telecopresence(like Waze directions )

p. 172 haptic tactics for tactile aptness

Of the five human senses,  a VR headset ca currently stimulates only to: vision and hearing. That leaves treat others-and while smell and taste me come some day.
P. 174; https://en.wikipedia.org/wiki/Aldous_Huxley Brave New World. tactile “feelies”

p. 175 https://en.wikipedia.org/wiki/A._Michael_Noll, 1971

p. 177 https://www.pcmag.com/review/349966/oculus-touch

p. 178 haptic feedback accessories, gloves. full body suites, p. 179 ultrasonics, low-frequency sound waves.

p. 186 the dating game: how touch changes intimacy.

p. 187 MIT Presence https://www.mitpressjournals.org/loi/pres

p. 186-190 questionnaire for the VRrelax project

p. 195 XXX-chnage program: turning porn back into people

p. 221 where we are going, we don’t need headsets. lets get speculative

p. 225 Magic Leap. p. 227 Magic Leap calls its technology “mixed reality,” claiming that the three dimensional virtual objects it brings into your world are far more advanced than the flat, static overlays of augmented reality. In reality, there is no longer any distinction between the two; in fact, the air are by now so many terms being accused in various ways by various companies that it’s probably worth a quick clarification.

definitions

Virtual reality: the illusion of an all-enveloping artificial world, created by wearing an opaque display in front of your eyes.

augmented reality: Bringing artificial objects into the real world-these can be as simple as a ” heads-up display,” like a speedometer project it onto your car’s windshield, or as complex as seen to be virtual creature woke across your real world leaving room, casting a realistic shadow on the floor

mixed reality: generally speaking, this is synonymous with AR, or eight at least with the part of AR that brings virtual objects into the real world. However, some people prefer “mixed” because they think “augmented” implies that reality isn’t enough.

extended or synthetic reality (XR or SR): all of the above! this are bought catch old terms that encompass the full spectrum of virtual elements individual settings.

p. 228 https://avegant.com/.

Edward Tang:

p. 231 in ten years, we won’t even have smartphone anymore.

p. 229 Eve VR is these come blink toddler, though, AR/MR is a third-trimester fetus: eat may be fully formed book eat is not quite ready to be out in the world yet. The headsets or large, the equipment is far more expensive than VR Anthony in many cases we don’t even know what a consumer product looks like.

p. 235 when 2020 is hindsight: what life in 2028 might actually look like.

++++++++++++

Belamire, J. (2016, October 20). My First Virtual Reality Groping. Athena Talks. https://medium.com/athena-talks/my-first-virtual-reality-sexual-assault-2330410b62ee

Hololens in academic library

Blurred Lines—between virtual reality games, research, and education

http://library.ifla.org/2133/

p. 5 a LibGuide was created that provided a better description of the available software for both the Microsoft Hololens and the HTC Vive and also discussed potential applications for the technology.

Both the HTC Vive and the Hololens were made bookable through the library’s LibCalendar booking system, streamlining the booking process and creating a better user experience.

When the decision was made to bring virtual and augmented reality into the McGill University Library, an important aspect of this project was to develop a collection of related software to be used alongside the technology. In building this software collection a priority was placed on acquiring software that could be demonstrated as having educational value, or that could potentially be used in relation to, or in support of, university courses.

For the Microsoft Hololens, all software was acquired through Microsoft’s Online Store. The store has a number of educationally relevant HoloLens apps available for purchase. The app ARchitect, for example, gives a basic sense of how augmented reality could be used for viewing new building designs. The app Robotics BIW allows user to simulate robotic functions. A select number of apps, such as Land of the Dinosaurs and Boulevard, provide applications for natural history and art. There were a select number of apps related to science, mathematics and medicine, and others with artistic applications. All of the HoloLens applications were free but, compared to what is available for virtual reality, the experiences were much smaller in size and scope.

For the HoloLens, a generic user account was created and shared with person who booked the HoloLens at the time of their booking. After logging into this account – which could sometimes prove to be a challenge because typing is done using the headset’s gesture controls – the user could select a floating tile which would reveal a list of available software. An unresolved problem was that users would then need to refer to the HoloLens LibGuide for a detailed description of the software, or else choose software based on name alone, and the names were not always helpful.

For the Microsoft HoloLens, the three most popular software programs were Land of the Dinosaurs, Palmyra and Insight Heart. Insight Heart allow users to view and manipulate a 3D rendering of a high-resolution human heart, Land of the Dinosaurs provided an augment reality experience featuring 3D renderings of dinosaurs, and Palmyra gave an augmented reality tour of the ancient city of Palmyra.

p. 7 Though many students had ideas for research projects that could make use of the technology, there was no available software that would have allowed them to use augmented reality in the way they wanted. There were no students interested in developing their own software to be used with the technology either.

p. 8 we found that the Microsoft HoloLens received significant use from our patrons, we would recommend the purchase of one only for libraries serving researchers and developers.

++++++++++++

Getting Real in the Library: A Case Study at the University of Florida

Samuel R. Putnam and Sara Russell GonzalezIssue 39, 2018-02-05

Getting Real in the Library: A Case Study at the University of Florida

As an alternative, Microsoft offers a Hololens with enterprise options geared toward multiple users for $5000.

The transition from mobile app development to VR/AR technology also reflected the increased investment in VR/AR by some of the largest technology companies in the world. In the past four years, Facebook purchased the virtual reality company Oculus, Apple released the ARKit for developing augmented reality applications on iOS devices, Google developed Google Cardboard as an affordable VR option, and Sony released Playstation VR to accompany their gaming platform, just to name a few notable examples. This increase of VR/AR development was mirrored by a rise in student interest and faculty research in using and creating new VR/AR content at UF.

+++++++++++

Arnhem, J.-P. van, Elliott, C., & Rose, M. (2018). Augmented and Virtual Reality in Libraries. Rowman & Littlefield.
https://books.google.com/books?id=PslaDwAAQBAJ&lpg=PA205&ots=HT7qTY-16o&dq=hololens%20academic%20library&lr&pg=PA214#v=onepage&q=hololens%20academic%20library&f=false
360 degree video in library instruction
+++++++++++++++
Hammady, R., & Ma, M. (2018). Designing Spatial UI as a Solution of the Narrow FOV of Microsoft HoloLens: Prototype of Virtual Museum Guide. In Proceedings of the 4th International AR & VR Conference 2018. Springer. Retrieved from https://eprints.staffs.ac.uk/4799/
‘HoloMuse’ that engage users with archaeological artefacts through gesture-based interactions (Pollalis, Fahnbulleh, Tynes, & Shaer, 2017). Another research utilised HoloLens to provide in-situ assistant for users (Blattgerste, Strenge, Renner, Pfeiffer, & Essig, 2017). HoloLens also used to provide magnification for low vision users by complementary finger-worn camera alongside with the HMD (Stearns, DeSouza, Yin, Findlater, & Froehlich, 2017). Even in the medical applications, HoloLens contributed in 3D visualisation purposes using AR techniques (Syed, Zakaria, & Lozanoff, 2017) and provide optimised measurements in medical surgeries(Pratt et al., 2018) (Adabi et al., 2017). Application of HoloLens extended to visualise prototype designs (DeLaOsa, 2017) and showed its potential in gaming industry (Volpe, 2015) (Alvarez, 2015) and engaging cultural visitors with gaming activities (Raptis, Fidas, & Avouris, 2017).
++++++++++++
van Arnhem, J.-P., & Spiller, J. M. (2014). Augmented Reality for Discovery and Instruction. Journal of Web Librarianship, 8(2), 214–230. https://doi.org/10.1080/19322909.2014.904208

+++++++++++

Evaluating the Microsoft HoloLens through an augmented reality assembly application
Proceedings Volume 10197, Degraded Environments: Sensing, Processing, and Display 2017; 101970V (2017) https://doi.org/10.1117/12.2262626
Event: SPIE Defense + Security, 2017, Anaheim, California, United States
To assess the HoloLens’ potential for delivering AR assembly instructions, the cross-platform Unity 3D game engine was used to build a proof of concept application. Features focused upon when building the prototype were: user interfaces, dynamic 3D assembly instructions, and spatially registered content placement. The research showed that while the HoloLens is a promising system, there are still areas that require improvement, such as tracking accuracy, before the device is ready for deployment in a factory assembly setting.
+++++++++++
Pollalis, C., Fahnbulleh, W., Tynes, J., & Shaer, O. (2017). HoloMuse: Enhancing Engagement with Archaeological Artifacts Through Gesture-Based Interaction with Holograms. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction (pp. 565–570). New York, NY, USA: ACM. https://doi.org/10.1145/3024969.3025094
https://www.researchgate.net/publication/315472858_HoloMuse_Enhancing_Engagement_with_Archaeological_Artifacts_through_Gesture-Based_Interaction_with_Holograms
++++++++++++++
Gračanin, D., Ciambrone, A., Tasooji, R., & Handosa, M. (2017). Mixed Library — Bridging Real and Virtual Libraries. In S. Lackey & J. Chen (Eds.), Virtual, Augmented and Mixed Reality (pp. 227–238). Springer International Publishing.
We use Microsoft HoloLens device to augment the user’s experience in the real library and to provide a rich set of affordances for embodied and social interactions.We describe a mixed reality based system, a prototype mixed library, that provides a variety of affordances to support embodied interactions and improve the user experience.

++++++++++++

Dourish, P. (n.d.). Where the Action Is. Retrieved November 23, 2018, from https://mitpress.mit.edu/books/where-action
embodied interactions
Computer science as an engineering discipline has been spectacularly successful. Yet it is also a philosophical enterprise in the way it represents the world and creates and manipulates models of reality, people, and action. In this book, Paul Dourish addresses the philosophical bases of human-computer interaction. He looks at how what he calls “embodied interaction”—an approach to interacting with software systems that emphasizes skilled, engaged practice rather than disembodied rationality—reflects the phenomenological approaches of Martin Heidegger, Ludwig Wittgenstein, and other twentieth-century philosophers. The phenomenological tradition emphasizes the primacy of natural practice over abstract cognition in everyday activity. Dourish shows how this perspective can shed light on the foundational underpinnings of current research on embodied interaction. He looks in particular at how tangible and social approaches to interaction are related, how they can be used to analyze and understand embodied interaction, and how they could affect the design of future interactive systems.

++++++++++

Pollalis, C., Fahnbulleh, W., Tynes, J., & Shaer, O. (2017). HoloMuse: Enhancing Engagement with Archaeological Artifacts Through Gesture-Based Interaction with Holograms. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction (pp. 565–570). New York, NY, USA: ACM. https://doi.org/10.1145/3024969.3025094
HoloMuse, an AR application for the HoloLens wearable device, which allows users to actively engage with archaeological artifacts from a museum collection
pick up, rotate, scale, and alter a hologram of an original archeological artifact using in-air gestures. Users can also curate their own exhibit or customize an existing one by selecting artifacts from a virtual gallery and placing them within the physical world so that they are viewable only using the device. We intend to study the impact of HoloMuse on learning and engagement with college-level art history and archeology students.
++++++++++++

Dugas, Z., & Kerne Andruld. (2007). Location-Aware Augmented Reality Gaming for Emergency Response Education: Concepts and Development. ResearchGate. Retrieved from https://www.researchgate.net/publication/242295040_Location-Aware_Augmented_Reality_Gaming_for_Emergency_Response_Education_Concepts_and_Development

+++++++++++

Library Spaces II: The IDEA Lab at the Grainger Engineering Library Information Center

https://prism.ucalgary.ca/bitstream/handle/1880/52190/DL5_mischo_IDEA_Lab2.pdf

++++++++++
more on Hololens in this IMS blog
https://blog.stcloudstate.edu/ims?s=hololens

multi-user reference support experiences

https://www.emeraldinsight.com/eprint/AU2Q4SJGYQG5YTQ5A9RU/full

Hahn, J. (2018). Virtual reality learning environments | Development of multi-user reference support experiences | Information and Learning Science | Ahead of Print. EmeraldInsight. Retrieved from https://www.emeraldinsight.com/eprint/AU2Q4SJGYQG5YTQ5A9RU/full
case study: an undergraduate senior projects computer science course collaboration whose aim was to develop textual browsing experiences, among other library reference functionality, within the HTC Vive virtual reality (VR) headset. In this case study, readers are introduced to applied uses of VR in service to library-based learning through the research and development of a VR reading room app with multi-user support. Within the VR reading room prototype, users are able to collaboratively explore the digital collections of HathiTrust, highlight text for further searching and discovery and receive consultative research support from a reference specialist through VR.
Library staff met with the project team weekly over the 16 weeks of both semesters to first scope out the functionality of the system and vet requirements.
The library research team further hypothesized that incorporating reference-like support in the VR environment can support library learning. There is ample evidence in the library literature which underscores the importance of reference interactions as learning and instructional experiences for university students
Educational benefits to immersive worlds include offering a deeper presence in engagement with rare or non-accessible artifacts. Sequeira and Morgado (2013, p. 2) describe their Virtual Archeology project as using “a blend of techniques and methods employed by historians and archaeologists using computer models for visualizing cultural artefacts and heritage sites”.
The higher-end graphics cards include devices such as the NVIDIA GeForceTM GTX 1060 or AMD RadeonTM RX 480, equivalent or better. The desktop system that was built for this project used the GeForce GTX 1070, which was slightly above the required minimum specifications.

Collaboration: Library as client.

Specific to this course collaboration, computer science students in their final year of study are given the option of several client projects on which to work. The Undergraduate Library has been a collaborator with senior computer science course projects for several years, beginning in 2012-2013 with mobile application design and chat reference software re-engineering (Hahn, 2015). (My note: Mark Gill, this is where and how Mehdi Mekni, you and I can collaborate)

The hurdles the students had the most trouble with was code integration – e.g. combining various individual software parts towards the end of the semester. The students also were challenged by the public HathiTrust APIs, as the system was developed to call the HathiTrust APIs from within the Unity programming environment and developing API calls in C#. This was a novel use of the HathiTrust search APIs for the students and a new area for the research team as well.

There are alternatives to Unity C# programming, notably WebVR, an open source specification for VR programming on the open web.

A-Frame has seen maturation as a platform agnostic and device agnostic software programming environment. The WebVR webpage notes that the specification supports HTC Vive, Oculus Rift, Samsung Gear VR, Google Daydream and Google Cardboard (WebVR Rocks, 2018). Open web platforms are consistent with library values and educational goals of sharing work that can be foundational in implementing VR learning experience both in VR environments and shareable on the web, too.

++++++++++++++
more on VR in libraries in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+library

teen use of phones

Teens worry they use phones too much

Andrew M. Seaman

https://www.linkedin.com/feed/news/teens-worry-they-use-phones-too-much-2251987/

Roughly half of U.S. teens say they spend too much time on their cellphones, according to research from Pew. About the same proportion of teens report taking steps to limit their use of the devices. Another survey found that about two-thirds of parents also worry their children spend too much time in front of screens; nearly 60% of parents report setting screen time restrictions for their children. The findings come as some technology companies introduce features to cut back on phone addiction.

https://www.linkedin.com/feed/update/urn%3Ali%3Aactivity%3A6438043256424054784?lipi=urn%3Ali%3Apage%3Ad_flagship3_profile_view_base%3BK6U2j7wPTx2kZp6R0t9WBg%3D%3D&licu=urn%3Ali%3Acontrol%3Ad_flagship3_profile_view_base-view_activity_details

http://www.pewinternet.org/2018/08/22/how-teens-and-parents-navigate-screen-time-and-device-distractions/

Amid roiling debates about the impact of screen time on teenagers, roughly half of those ages 13 to 17 are themselves worried they spend too much time on their cellphones. Some 52% of U.S. teens report taking steps to cut back on their mobile phone use, and similar shares have tried to limit their use of social media (57%) or video games (58%), a new Pew Research Center survey finds.

Overall, 56% of teens associate the absence of their cellphone with at least one of these three emotions: loneliness, being upset or feeling anxious. Additionally, girls are more likely than boys to feel anxious or lonely without their cellphone.

The vast majority of teens in the United States have access to a smartphone, and 45% are online on a near constant basis. The ubiquity of social media and cellphones and other devices in teens’ lives has fueled heated discussions over the effects of excessive screen time and parents’ role in limiting teens’ screen exposure. In recent months, many major technology companies, including Google and Apple, have announced new products aimed at helping adults and teens monitor and manage their online usage.

Girls are somewhat more likely than boys to say they spend too much time on social media (47% vs. 35%).

Meanwhile, 31% of teens say they lose focus in class because they are checking their cellphone – though just 8% say this often happens to them, and 38% say it never does.

Girls are more likely than boys to express feelings of anxiety (by a 49% to 35% margin) and loneliness (by a 32% to 20% margin) when they do not have their phone with them.

+++++++
more on contemplative computing in this iMS blog
https://blog.stcloudstate.edu/ims?s=contemplative+computing

1 11 12 13 14 15 16

Skip to toolbar