Searching for "drones"

drones and privacy

Weighing in on drone privacy rules

http://fcw.com/articles/2015/04/27/drone-privacy-rules.aspx

National Telecommunications and Information Administration’s “multi-stakeholder process” to develop privacy policies for commercial and private use of unmanned aircraft systems.

The Future of Privacy Forum said privacy threats aren’t equal and a lot can depend on exactly what technologies a given UAS is carrying.

More on drones in this blog:
https://blog.stcloudstate.edu/ims/?s=drones

 

3D printing, drones and wearable

CoSN 2015: The Emerging Tech That’s Transforming K–12’s Horizon

One year or less (2015–2016):

  • BYOD
  • Cloud computing
  • Makerspaces
  • Mobile learning

Two to three years (2017–2018):

  • 3D printing/rapid prototyping
  • Adaptive learning technologies
  • Information visualization
  • Learning analytics

Four to five years (2019–2020):

  • Badges/Microcredit
  • Drones
  • Visual data analysis
  • Wearable technology

The NMC’s interim K–12 Horizon Report can be downloaded for free.

What is AI

What is AI? Here’s everything you need to know about artificial intelligence

An executive guide to artificial intelligence, from machine learning and general AI to neural networks.

https://www-zdnet-com.cdn.ampproject.org/c/s/www.zdnet.com/google-amp/article/what-is-ai-heres-everything-you-need-to-know-about-artificial-intelligence/

What is artificial intelligence (AI)?

It depends who you ask.

What are the uses for AI?

What are the different types of AI?

Narrow AI is what we see all around us in computers today — intelligent systems that have been taught or have learned how to carry out specific tasks without being explicitly programmed how to do so.

General AI

General AI is very different and is the type of adaptable intellect found in humans, a flexible form of intelligence capable of learning how to carry out vastly different tasks, anything from haircutting to building spreadsheets or reasoning about a wide variety of topics based on its accumulated experience.

What can Narrow AI do?

There are a vast number of emerging applications for narrow AI:

  • Interpreting video feeds from drones carrying out visual inspections of infrastructure such as oil pipelines.
  • Organizing personal and business calendars.
  • Responding to simple customer-service queries.
  • Coordinating with other intelligent systems to carry out tasks like booking a hotel at a suitable time and location.
  • Helping radiologists to spot potential tumors in X-rays.
  • Flagging inappropriate content online, detecting wear and tear in elevators from data gathered by IoT devices.
  • Generating a 3D model of the world from satellite imagery… the list goes on and on.

What can General AI do?

A survey conducted among four groups of experts in 2012/13 by AI researchers Vincent C Müller and philosopher Nick Bostrom reported a 50% chance that Artificial General Intelligence (AGI) would be developed between 2040 and 2050, rising to 90% by 2075.

What is machine learning?

What are neural networks?

What are other types of AI?

Another area of AI research is evolutionary computation.

What is fueling the resurgence in AI?

What are the elements of machine learning?

As mentioned, machine learning is a subset of AI and is generally split into two main categories: supervised and unsupervised learning.

Supervised learning

Unsupervised learning

ai-ml-gartner-hype-cycle.jpg

Which are the leading firms in AI?

Which AI services are available?

All of the major cloud platforms — Amazon Web Services, Microsoft Azure and Google Cloud Platform — provide access to GPU arrays for training and running machine-learning models, with Google also gearing up to let users use its Tensor Processing Units — custom chips whose design is optimized for training and running machine-learning models.

Which countries are leading the way in AI?

It’d be a big mistake to think the US tech giants have the field of AI sewn up. Chinese firms Alibaba, Baidu, and Lenovo, invest heavily in AI in fields ranging from e-commerce to autonomous driving. As a country, China is pursuing a three-step plan to turn AI into a core industry for the country, one that will be worth 150 billion yuan ($22bn) by the end of 2020 to become the world’s leading AI power by 2030.

How can I get started with AI?

While you could buy a moderately powerful Nvidia GPU for your PC — somewhere around the Nvidia GeForce RTX 2060 or faster — and start training a machine-learning model, probably the easiest way to experiment with AI-related services is via the cloud.

How will AI change the world?

Robots and driverless cars

Fake news

Facial recognition and surveillance

Healthcare

Reinforcing discrimination and bias 

AI and global warming (climate change)

Will AI kill us all?

 

+++++++++++++
more on AI in this iMS blog
https://blog.stcloudstate.edu/ims?s=artificial+intelligence+education

Library 2.0 Emerging Technologies

third Library 2.019 mini-conference: “Emerging Technology,” which will be held online (and for free) on Wednesday, October 30th, from 12:00 – 3:00 pm US-Pacific Daylight Time (click for your own time zone).

Tomorrow’s technologies are shaping our world today, revolutionizing the way we live and learn. Virtual Reality, Augmented Reality, Artificial Intelligence, Machine Learning, Blockchain, Internet of Things, Drones, Personalization, the Quantified Self. Libraries can and should be the epicenter of exploring, building and promoting these emerging techs, assuring the better futures and opportunities they offer are accessible to everyone. Learn what libraries are doing right now with these cutting-edge technologies, what they’re planning next and how you can implement these ideas in your own organization.

This is a free event, being held live online and also recorded.
REGISTER HERE

Innovative Pedagogy

Rebecca Ferguson
  • Senior lecturer in the Institute of Educational Technology (IET) at The Open University in the UK
  • Senior fellow of the Higher Education Academy
TODAY, Thursday at 1:00 PM CT
JOIN HERE
This Week:
An interactive discussion on the Innovating Pedagogy 2019 report from The Open University
About the Guest
Rebecca is a senior lecturer in the Institute of Educational Technology (IET) at The Open University in the UK and a senior fellow of the Higher Education Academy. Her primary research interests are educational futures, and how people learn together online and I supervise doctoral students in both these areas.
Rebecca worked for several years as a researcher and educator on the Schome project, which focuses on educational futures, and was also the research lead on the SocialLearn online learning platform, and learning analytics lead on the Open Science Lab (Outstanding ICT Initiative of the Year: THE Awards 2014). She is currently a pedagogic adviser to the FutureLearn MOOC platform, and evaluation lead on The Open University’s FutureLearn MOOCs. She is an active member of the Society for Learning Analytics Research, and have co-chaired many learning analytics events, included several associated with the Learning Analytics Community Exchange (LACE), European Project funded under Framework 7.
Rebecca’s most recent book, Augmented Education, was published by Palgrave in spring 2014.
++++++++++++++++++++
My notes
innovative assessment is needed for innovative pedagogy.
Analytics. what is I want to know about my learning (from the learner’s perspective)
Ray Garcelon
How is “stealth assessment” unique compared to formative assessment?
students teaching robots
learning analytics, Rebecca is an authority.
how to assess resources are trustworthy, fake news and social media, navigating post-truth society
how to advance the cause of empathy through technological means
gamification. XR safer environment. digital storytelling and empathy.
poll : learning with robots –
digital literacy and importance for curriculum primary, secondary and post secondary level.
digital literacy is changing every year;
drones
Buckingham Shum, S., & Ferguson, R. (2012). Social Learning Analytics. Educational Technology & Society15(3), 3–26.https://mnpals-scs.primo.exlibrisgroup.com/discovery/fulldisplay?docid=ericEJ992500&context=PC&vid=01MNPALS_SCS:SCS&search_scope=MyInst_and_CI&tab=Everything&lang=en
Mor, Y., Ferguson, R., & Wasson, B. (2015). Editorial: Learning design, teacher inquiry into student learning and learning analytics: A call for action. British Journal of Educational Technology46(2), 221–229. https://doi.org/10.1111/bjet.12273
Rebecca Ferguson. (2014). Learning Analytics: drivers, developments and challenges. TD Tecnologie Didattiche22(3), 138–147. https://doi.org/10.17471/2499-4324/183
Hansen, C., Emin, V., Wasson, B., Mor, Y., Rodriguez-Triana, M., Dascalu, M., … Pernin, J. (2013). Towards an Integrated Model of Teacher Inquiry into Student Learning, Learning Design and Learning Analytics. Scaling up Learning for Sustained Impact – Proceedings of EC-TEL 20138095, 605–606. https://doi.org/10.1007/978-3-642-40814-4_73
how to decolonize educational technology: MOOCs coming from the big colonial powers, not from small countries. Video games: many have very colonial perspective
strategies for innovative pedagogies: only certainly groups or aspects taking into account; rarely focus on support by management, scheduling, time tabling, tech support.

+++++++++++
more on future trends in this IMS blog
https://blog.stcloudstate.edu/ims?s=future+trends

Does AI favor tyranny

Why Technology Favors Tyranny

Artificial intelligence could erase many practical advantages of democracy, and erode the ideals of liberty and equality. It will further concentrate power among a small elite if we don’t take steps to stop it.

https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/

YUVAL NOAH HARARI  OCTOBER 2018 ISSUE

Ordinary people may not understand artificial intelligence and biotechnology in any detail, but they can sense that the future is passing them by. In 1938 the common man’s condition in the Soviet Union, Germany, or the United States may have been grim, but he was constantly told that he was the most important thing in the world, and that he was the future (provided, of course, that he was an “ordinary man,” rather than, say, a Jew or a woman).

n 2018 the common person feels increasingly irrelevant. Lots of mysterious terms are bandied about excitedly in ted Talks, at government think tanks, and at high-tech conferences—globalizationblockchaingenetic engineeringAImachine learning—and common people, both men and women, may well suspect that none of these terms is about them.

Fears of machines pushing people out of the job market are, of course, nothing new, and in the past such fears proved to be unfounded. But artificial intelligence is different from the old machines. In the past, machines competed with humans mainly in manual skills. Now they are beginning to compete with us in cognitive skills.

Israel is a leader in the field of surveillance technology, and has created in the occupied West Bank a working prototype for a total-surveillance regime. Already today whenever Palestinians make a phone call, post something on Facebook, or travel from one city to another, they are likely to be monitored by Israeli microphones, cameras, drones, or spy software. Algorithms analyze the gathered data, helping the Israeli security forces pinpoint and neutralize what they consider to be potential threats.

The conflict between democracy and dictatorship is actually a conflict between two different data-processing systems. AI may swing the advantage toward the latter.

As we rely more on Google for answers, our ability to locate information independently diminishes. Already today, “truth” is defined by the top results of a Google search. This process has likewise affected our physical abilities, such as navigating space.

So what should we do?

For starters, we need to place a much higher priority on understanding how the human mind works—particularly how our own wisdom and compassion can be cultivated.

+++++++++++++++
more on SCSU student philosophy club in this IMS blog
https://blog.stcloudstate.edu/ims?s=philosophy+student+club

AI and China education

China’s children are its secret weapon in the global AI arms race

China wants to be the world leader in artificial intelligence by 2030. To get there, it’s reinventing the way children are taught

despite China’s many technological advances, in this new cyberspace race, the West had the lead.

Xi knew he had to act. Within twelve months he revealed his plan to make China a science and technology superpower. By 2030 the country would lead the world in AI, with a sector worth $150 billion. How? By teaching a generation of young Chinese to be the best computer scientists in the world.

Today, the US tech sector has its pick of the finest minds from across the world, importing top talent from other countries – including from China. Over half of Bay Area workers are highly-skilled immigrants. But with the growth of economies worldwide and a Presidential administration hell-bent on restricting visas, it’s unclear that approach can last.

In the UK the situation is even worse. Here, the government predicts there’ll be a shortfall of three million employees for high-skilled jobs by 2022 – even before you factor in the immigration crunch of Brexit. By contrast, China is plotting a homegrown strategy of local and national talent development programs. It may prove a masterstroke.

In 2013 the city’s teenagers gained global renown when they topped the charts in the PISA tests administered every three years by the OECD to see which country’s kids are the smartest in the world. Aged 15, Shanghai students were on average three full years ahead of their counterparts in the UK or US in maths and one-and-a-half years ahead in science.

Teachers, too, were expected to be learners. Unlike in the UK, where, when I began to teach a decade ago, you might be working on full-stops with eleven-year-olds then taking eighteen-year-olds through the finer points of poetry, teachers in Shanghai specialised not only in a subject area, but also an age-group.

Shanghai’s success owed a lot to Confucian tradition, but it fitted precisely the best contemporary understanding of how expertise is developed. In his book Why Don’t Kids Like School? cognitive Dan Willingham explains that complex mental skills like creativity and critical thinking depend on our first having mastered the simple stuff. Memorisation and repetition of the basics serve to lay down the neural architecture that creates automaticity of thought, ultimately freeing up space in our working memory to think big.

Seung-bin Lee, a seventeen-year-old high school graduate, told me of studying fourteen hours a day, seven days a week, for the three years leading up to the Suneung, the fearsome SAT exam taken by all Korean school leavers on a single Thursday each November, for which all flights are grounded so as not to break students’ concentration during the 45 minutes of the English listening paper.
Korea’s childhoods were being lost to a relentless regime of studying, crushed in a top-down system that saw them as cyphers rather than kids.

A decade ago, we consoled ourselves that although kids in China and Korea worked harder and did better on tests than ours, it didn’t matter. They were compliant, unthinking drones, lacking the creativity, critical thinking or entrepreneurialism needed to succeed in the world. No longer. Though there are still issues with Chinese education – urban centres like Shanghai and Hong Kong are positive outliers – the country knows something that we once did: education is the one investment on which a return is guaranteed. China is on course to becoming the first education superpower.

Troublingly, where education in the UK and US has been defined by creativity and independent thinking – Shanghai teachers told me of visits to our schools to learn about these qualities – our direction of travel is now away from those strengths and towards exams and standardisation, with school-readiness tests in the pipeline and UK schools minister Nick Gibb suggesting kids can beat exam stress by sitting more of them. Centres of excellence remain, but increasingly, it feels, we’re putting our children at risk of losing out to the robots, while China is building on its strong foundations to ask how its young people can be high-tech pioneers. They’re thinking big – we’re thinking of test scores.

soon “digital information processing” would be included as a core subject on China’s national graduation exam – the Gaokao – and pictured classrooms in which students would learn in cross-disciplinary fashion, designing mobile phones for example, in order to develop design, engineering and computing skills. Focusing on teaching kids to code was short-sighted, he explained. “We still regard it as a language between human and computer.” (My note: they are practically implementing the Finland’s attempt to rebuild curricula)

“If your plan is for one year,” went an old Chinese saying, “plant rice. If your plan is for ten years, plant trees. If your plan is for 100 years, educate children.” Two and half thousand years later chancellor Gwan Zhong might update his proverb, swapping rice for bitcoin and trees for artificial intelligence, but I’m sure he’d stand by his final point.

+++++++++++++
more on AR in this IMS blog
https://blog.stcloudstate.edu/ims?s=artificial+intelligence

more on China education in this IMS blog
https://blog.stcloudstate.edu/ims/2018/01/06/chinas-transformation-of-higher-education/

NMC Horizon Report 2017 K12

NMC/CoSN Horizon Report 2017 K–12 Edition

https://cdn.nmc.org/wp-content/uploads/2017-nmc-cosn-horizon-report-K12-advance.pdf
p. 16 Growing Focus on Measuring Learning
p. 18 Redesigning Learning Spaces
Biophilic Design for Schools : The innate tendency in human beings to focus on life and lifelike processes is biophilia

p. 20 Coding as a Literacy

 https://www.facebook.com/bracekids/
Best Coding Tools for High School http://go.nmc.org/bestco

p. 24

Significant Challenges Impeding Technology Adoption in K–12 Education
Improving Digital Literacy.
 Schools are charged with developing students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online etiquette and digital rights and responsibilities in blended and online learning settings. Due to the multitude of elements comprising digital literacy, it is a challenge for schools to implement a comprehensive and cohesive approach to embedding it in curricula.
Rethinking the Roles of Teachers.
Pre-service teacher training programs are also challenged to equip educators with digital and social–emotional competencies, such as the ability to analyze and use student data, amid other professional requirements to ensure classroom readiness.
p. 28 Improving Digital Literacy
Digital literacy spans across subjects and grades, taking a school-wide effort to embed it in curricula. This can ensure that students are empowered to adapt in a quickly changing world
Education Overview: Digital Literacy Has to Encompass More Than Social Use

What Web Literacy Skills are Missing from Learning Standards? Are current learning standards addressing the essential web literacy skills everyone should know?https://medium.com/read-write-participate/what-essential-web-skills-are-missing-from-current-learning-standards-66e1b6e99c72

 

web literacy;
alignment of stadards

The American Library Association (ALA) defines digital literacy as “the ability to use information and communication technologies to find, evaluate, create, and communicate or share information, requiring both cognitive and technical skills.” While the ALA’s definition does align to some of the skills in “Participate”, it does not specifically mention the skills related to the “Open Practice.”

The library community’s digital and information literacy standards do not specifically include the coding, revision and remixing of digital content as skills required for creating digital information. Most digital content created for the web is “dynamic,” rather than fixed, and coding and remixing skills are needed to create new content and refresh or repurpose existing content. Leaving out these critical skills ignores the fact that library professionals need to be able to build and contribute online content to the ever-changing Internet.

p. 30 Rethinking the Roles of Teachers

Teachers implementing new games and software learn alongside students, which requires
a degree of risk on the teacher’s part as they try new methods and learn what works
p. 32 Teaching Computational Thinking
p. 36 Sustaining Innovation through Leadership Changes
shift the role of teachers from depositors of knowledge to mentors working alongside students;
p. 38  Important Developments in Educational Technology for K–12 Education
Consumer technologies are tools created for recreational and professional purposes and were not designed, at least initially, for educational use — though they may serve well as learning aids and be quite adaptable for use in schools.
Drones > Real-Time Communication Tools > Robotics > Wearable Technology
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching and learning, whether inside or outside the classroom.
> Games and Gamification > Location Intelligence > Makerspaces > Preservation and Conservation Technologies
Enabling technologies are those technologies that have the potential to transform what we expect of our devices and tools. The link to learning in this category is less easy to make, but this group of technologies is where substantive technological innovation begins to be visible. Enabling technologies expand the reach of our tools, making them more capable and useful
Affective Computing > Analytics Technologies > Artificial Intelligence > Dynamic Spectrum and TV White Spaces > Electrovibration > Flexible Displays > Mesh Networks > Mobile Broadband > Natural User Interfaces > Near Field Communication > Next Generation Batteries > Open Hardware > Software-Defined Networking > Speech-to-Speech Translation > Virtual Assistants > Wireless Powe
Internet technologies include techniques and essential infrastructure that help to make the technologies underlying how we interact with the network more transparent, less obtrusive, and easier to use.
Bibliometrics and Citation Technologies > Blockchain > Digital Scholarship Technologies > Internet of Things > Syndication Tools
Learning technologies include both tools and resources developed expressly for the education sector, as well as pathways of development that may include tools adapted from other purposes that are matched with strategies to make them useful for learning.
Adaptive Learning Technologies > Microlearning Technologies > Mobile Learning > Online Learning > Virtual and Remote Laboratories
Social media technologies could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category.
Crowdsourcing > Online Identity > Social Networks > Virtual Worlds
Visualization technologies run the gamut from simple infographics to complex forms of visual data analysis
3D Printing > GIS/Mapping > Information Visualization > Mixed Reality > Virtual Reality
p. 46 Virtual Reality
p. 48 AI
p. 50 IoT

+++++++++++++++
more on NMC Horizon Reports in this IMS blog

https://blog.stcloudstate.edu/ims?s=new+media+horizon

summer readings

Abramson, a former executive editor of The New York Times and current Harvard English lecturer, recommends students read Richard Hofstadter’s “The Paranoid Style in American Politics,” first published in 1964.

James Berger is a senior Lecturer in English and American Studies at Yale University. He recommends the 2014 novel “Orfeo,” by Richard Powers.

Eric Maskin is a Harvard professor and received the 2007 Nobel Memorial Prize in Economics. Maurice Schweitzer is a professor of operations, information, and decisions at the Wharton School at the University of Pennsylvania. Both chose Michael Lewis’ “The Undoing Project.”

David B. Carter is a politics professor at Princeton University. He recommended “The Strategy of Conflict,” by Thomas Schelling, especially given the author’s recent death.

WJT Mitchell is an English and Art History professor at the University of Chicago.

He recommends a book by French philosopher Gregoire Chamayou called “A Theory of the Drone,” which attempts to understand how drones have revolutionized warfare.

Kenneth Warren is an English professor at The University of Chicago.

He recommends “Racecraft: The Soul of Inequality in American Life,” by Karen E. Fields and Barbara J. Fields

Fool

 

1 2 3 4