Searching for "programming"

Python or R at SCSU

Dear Colleagues,

Software Carpentry (https://software-carpentry.org/about/) is coming to SCSU campus.

Want to learn basic computer programming skills specifically tailored for academia?
Please consider a FREE two-day workshop on either on Python or on R.

Python is a programming language that is simple, easy to learn for beginners and experienced programmers, and emphasizes readability. At the same time, it comes with lots of modules and packages to add to your programs when you need more sophistication. Whether you need to perform data analysis, graphing, or develop a network application, or just want to have a nice calculator that remembers all your formulas and constants, Python can do it with elegance. https://www.python.org/about/

R (RStudio) is a language and environment for statistical computing and graphics. R provides a wide variety of statistical and graphical techniques. R can produce well-designed publication-quality plots, including mathematical symbols and formulae. https://www.r-project.org/about.html

Both software packages are free and operate on MS Windows, MAC/Apple and GNU/Linux OS.
Besides seamless installation on your personal computer, you can access both software in SCSU computer labs or via SCSU AppsAnywhere.

https://appsanywhere.stcloudstate.edu/vpn/index.html

In an effort to accommodate as many faculty as possible, please indicate whether you want Python or R and check your availability using these Doodle polls:

Python

https://doodle.com/poll/fgf7mn5mze9knaps

R

https://doodle.com/poll/mzirw2nc4kfv9whs

Questions? Suggestions? Please do not hesitate to ask:

zliu@stcloudstate.edu
pmiltenoff@stcloudstate.edu

For more information:
https://blog.stcloudstate.edu/imshttps://blog.stcloudstate.edu/ims/2018/02/16/python-or-r-at-scsu/
https://www.facebook.com/InforMediaServices/
https://twitter.com/SCSUtechinstruc?lang=en  #SoftwareCarpentry

 

China of Xi

Time of Xi



My note: CCTV (http://english.cctv.com/), accidentally overlaps with cctv (https://en.wikipedia.org/wiki/Closed-circuit_television): “also known as video surveillance”

China Central Television (formerly Beijing Television), commonly abbreviated as CCTV, is the predominant state television broadcaster in the People’s Republic of China. CCTV has a network of 50 channels broadcasting different programmes and is accessible to more than one billion viewers.[1] As of present, there are 50 television channels, and the broadcaster provides programming in six different languages. Most of its programmes are a mixture of news, documentary, social education, comedy, entertainment, and drama, the majority of which consists of Chinese soap operas and entertainment.[2]

https://en.wikipedia.org/wiki/China_Central_Television

CCTV is one of the official mouthpieces of the Communist Party of China, and is part of what is known in China as the “central three” (中央三台), with the others being China National Radio and China Radio International.

Fake news and CCTV

https://en.wikipedia.org/wiki/China_Central_Television

https://blogs.wsj.com/chinarealtime/2014/03/28/china-targets-fake-news/

http://ascportfolios.org/chinaandmedia/2011/01/31/fake-news-in-the-news/

https://www.huffingtonpost.com/entry/united-states-china-fake-news_us_592494d5e4b00c8df29f88d7

CCTV mentioned positively: http://www.bbc.com/news/world-asia-china-22424129

Libraries supporting social inclusion for refugees and immigrants

http://blog.stcloudstate.edu/refugeesandmigrants/

Libraries supporting social inclusion for refugees and immigrants

UNESCO emphasizes the importance of social inclusion for international
migrants and encourages cities and local governments to “ensure social rights
for migrants to adequate housing, education, health and social care, welfare
and decent standard of living according to basic needs such as food, energy
and water.” Libraries can play an important role in helping new arrivals
acclimate and thrive in a new community.
Do you have a story to share about how your library, on its own or in
collaboration with community organizations, is providing social services and
support for refugees and immigrants? Do you have advice on creating successful
programming to support refugees and immigrants?

Proposal to the SCSU library administration:

Good afternoon,

I will be submitting a proposal about my individual work in that area:

In the fall of 2015, I organized a campus-wide meeting, including St. Cloud community members, on refugees and migrants, by inviting one Syrian and one Somali refugees:

I also reached out across campus (e.g. Dan Wildeson with the Holocaust Center, Geoffrey Tabakin, Stephen Philion).

I organized also the online presence by delivering the personal stories of three refugees:

http://blog.stcloudstate.edu/refugeesandmigrants/2015/09/19/personal-stories/

and organizing and maintain a blog on the issue of refugees and migrants: http://blog.stcloudstate.edu/refugeesandmigrants/2015/09/19/personal-stories/

In 2017, I proposed and taught a class on Migration : http://web.stcloudstate.edu/pmiltenoff/hons221/ . I proposed the same class for the Honors program.

I also maintain a FB group for the class and in conjunction with the blog (you need to request permission to enter the FB group): https://www.facebook.com/groups/hons221

I am formally proposing / requesting to transition my individual efforts and offering the library to support me in expanding my acitivies on this topic

Here is my rational:

  • If not on campus, at least in the library, I am the only refugee and for that matter an immigrant. I have the understanding and the compassion of someone, who personally have experienced the hardship of being and immigrant and refugee.
  • I have amounted information and experience presenting the information and engaging the audience in a discussion regarding a rather controversial (for St. Cloud) issue
  • I have the experience and skills to conduct such discussions both F2F and online

Based on my rational, here are activities I am proposing:

  • The library supports a monthly F2F meetings, where I am taking the responsibility to host students with refugee and/or migrant status and facilitate a conversation among those students and other students, faculty, staff, who would like to learn more about the topic and discuss related issues.
    • Library support constitutes of: e.g. necessary information willingly and actively shared at Reference and Circulation desk. Library faculty and staff willingly and actively promoting the information regarding this opportunity when occasions arise.
  • The library supports my campus-wide efforts to engage faculty, staff and students. Engagement includes: e.g.,  proposals to faculty to present in their classes on including refugees and immigrants but related to their classes; assisting students with research and bibliography on their papers related to refugees and immigrants; assisting faculty and students with presentations including refugees and immigrants etc.
    • Library support constitutes of: e.g. necessary information willingly and actively shared at Reference and Circulation desk. Library faculty and staff willingly and actively promoting the information regarding this opportunity when occasions arise.

digital humanities

7 Things You Should Know About Digital Humanities

Published:   Briefs, Case Studies, Papers, Reports  

https://library.educause.edu/resources/2017/11/7-things-you-should-know-about-digital-humanities

Lippincott, J., Spiro, L., Rugg, A., Sipher, J., & Well, C. (2017). Seven Things You Should Know About Digital Humanities (ELI 7 Things You Should Know). Retrieved from https://library.educause.edu/~/media/files/library/2017/11/eli7150.pdf

definition

The term “digital humanities” can refer to research and instruction that is about information technology or that uses IT. By applying technologies in new ways, the tools and methodologies of digital humanities open new avenues of inquiry and scholarly production. Digital humanities applies computational capabilities to humanistic questions, offering new pathways for scholars to conduct research and to create and publish scholarship. Digital humanities provides promising new channels for learners and will continue to influence the ways in which we think about and evolve technology toward better and more humanistic ends.

As defined by Johanna Drucker and colleagues at UCLA, the digital humanities is “work at the intersection of digital technology and humanities disciplines.” An EDUCAUSE/CNI working group framed the digital humanities as “the application and/or development of digital tools and resources to enable researchers to address questions and perform new types of analyses in the humanities disciplines,” and the NEH Office of Digital Humanities says digital humanities “explore how to harness new technology for thumanities research as well as those that study digital culture from a humanistic perspective.” Beyond blending the digital with the humanities, there is an intentionality about combining the two that defines it.

digital humanities can include

  • creating digital texts or data sets;
  • cleaning, organizing, and tagging those data sets;
  • applying computer-based methodologies to analyze them;
  • and making claims and creating visualizations that explain new findings from those analyses.

Scholars might reflect on

  • how the digital form of the data is organized,
  • how analysis is conducted/reproduced, and
  • how claims visualized in digital form may embody assumptions or biases.

Digital humanities can enrich pedagogy as well, such as when a student uses visualized data to study voter patterns or conducts data-driven analyses of works of literature.

Digital humanities usually involves work by teams in collaborative spaces or centers. Team members might include

  • researchers and faculty from multiple disciplines,
  • graduate students,
  • librarians,
  • instructional technologists,
  • data scientists and preservation experts,
  • technologists with expertise in critical computing and computing methods, and undergraduates

projects:

downsides

  • some disciplinary associations, including the Modern Language Association and the American Historical Association, have developed guidelines for evaluating digital proj- ects, many institutions have yet to define how work in digital humanities fits into considerations for tenure and promotion
  • Because large projects are often developed with external funding that is not readily replaced by institutional funds when the grant ends sustainability is a concern. Doing digital humanities well requires access to expertise in methodologies and tools such as GIS, mod- eling, programming, and data visualization that can be expensive for a single institution to obtain
  • Resistance to learning new tech- nologies can be another roadblock, as can the propensity of many humanists to resist working in teams. While some institutions have recognized the need for institutional infrastructure (computation and storage, equipment, software, and expertise), many have not yet incorporated such support into ongoing budgets.

Opportunities for undergraduate involvement in research, provid ing students with workplace skills such as data management, visualization, coding, and modeling. Digital humanities provides new insights into policy-making in areas such as social media, demo- graphics, and new means of engaging with popular culture and understanding past cultures. Evolution in this area will continue to build connections between the humanities and other disci- plines, cross-pollinating research and education in areas like med- icine and environmental studies. Insights about digital humanities itself will drive innovation in pedagogy and expand our conceptualization of classrooms and labs

++++++++++++
more on digital humanities in this IMS blog
https://blog.stcloudstate.edu/ims?s=digital+humanities

IT issues in 2018

EDUCAUSE: The top 10 IT issues in 2018

BY MERIS STANSBURY November 6th, 2017 https://www.ecampusnews.com/campus-administration/educause-top-10-issues-2018/

Security once again tops the list of EDUCAUSE’s Top 10 IT Issues in higher education. A focus on student success and programming becomes prominent.

 the 2017 issues here.

The Top 10 IT issues for 2018

1. Information security: Developing a risk-based security strategy that keeps pace with security threats and challenges.

2. Student success: Managing the system implementations and integrations that support multiple student success initiatives.

3. Institution-wide IT strategy: Repositioning or reinforcing the role of IT leadership as an integral strategic partner of institutional leadership in achieving institutions missions.

4. Data-enabled institutional culture: Using BI and analytics to inform the broad conversation and answer big questions.

5. Student-centered institution: Understanding and advancing technology’s role in defining the student experience on campus (from applicants to alumni).

6. Higher education affordability: Balancing and rightsizing IT priorities and budget to support IT-enabled institutional efficiencies and innovations in the context if institutional funding realities.

7. IT staffing and organizational models: Ensuring adequate staffing capacity and staff retention in the face of retirements, new sourcing models, growing external competition, rising salaries, and the demands of technology initiatives on both IT and non-IT staff.

8. (tie) Data management and governance: Implementing effective institutional data governance practices.

9. (tie) Digital integrations: Ensuring system interoperability, scalability, and extensibility, as well as data integrity, standards, and governance, across multiple applications and platforms.

10. Change leadership: Helping institutional constituents (including the IT staff) adapt to the increasing pace of technology change.

++++++++++++
more on EdUCause in this IMS blog
https://blog.stcloudstate.edu/ims?s=educause

IRDL proposal

Applications for the 2018 Institute will be accepted between December 1, 2017 and January 27, 2018. Scholars accepted to the program will be notified in early March 2018.

Title:

Learning to Harness Big Data in an Academic Library

Abstract (200)

Research on Big Data per se, as well as on the importance and organization of the process of Big Data collection and analysis, is well underway. The complexity of the process comprising “Big Data,” however, deprives organizations of ubiquitous “blue print.” The planning, structuring, administration and execution of the process of adopting Big Data in an organization, being that a corporate one or an educational one, remains an elusive one. No less elusive is the adoption of the Big Data practices among libraries themselves. Seeking the commonalities and differences in the adoption of Big Data practices among libraries may be a suitable start to help libraries transition to the adoption of Big Data and restructuring organizational and daily activities based on Big Data decisions.
Introduction to the problem. Limitations

The redefinition of humanities scholarship has received major attention in higher education. The advent of digital humanities challenges aspects of academic librarianship. Data literacy is a critical need for digital humanities in academia. The March 2016 Library Juice Academy Webinar led by John Russel exemplifies the efforts to help librarians become versed in obtaining programming skills, and respectively, handling data. Those are first steps on a rather long path of building a robust infrastructure to collect, analyze, and interpret data intelligently, so it can be utilized to restructure daily and strategic activities. Since the phenomenon of Big Data is young, there is a lack of blueprints on the organization of such infrastructure. A collection and sharing of best practices is an efficient approach to establishing a feasible plan for setting a library infrastructure for collection, analysis, and implementation of Big Data.
Limitations. This research can only organize the results from the responses of librarians and research into how libraries present themselves to the world in this arena. It may be able to make some rudimentary recommendations. However, based on each library’s specific goals and tasks, further research and work will be needed.

 

 

Research Literature

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”
– Dan Ariely, 2013  https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Big Data is becoming an omnipresent term. It is widespread among different disciplines in academia (De Mauro, Greco, & Grimaldi, 2016). This leads to “inconsistency in meanings and necessity for formal definitions” (De Mauro et al, 2016, p. 122). Similarly, to De Mauro et al (2016), Hashem, Yaqoob, Anuar, Mokhtar, Gani and Ullah Khan (2015) seek standardization of definitions. The main connected “themes” of this phenomenon must be identified and the connections to Library Science must be sought. A prerequisite for a comprehensive definition is the identification of Big Data methods. Bughin, Chui, Manyika (2011), Chen et al. (2012) and De Mauro et al (2015) single out the methods to complete the process of building a comprehensive definition.

In conjunction with identifying the methods, volume, velocity, and variety, as defined by Laney (2001), are the three properties of Big Data accepted across the literature. Daniel (2015) defines three stages in big data: collection, analysis, and visualization. According to Daniel, (2015), Big Data in higher education “connotes the interpretation of a wide range of administrative and operational data” (p. 910) and according to Hilbert (2013), as cited in Daniel (2015), Big Data “delivers a cost-effective prospect to improve decision making” (p. 911).

The importance of understanding the process of Big Data analytics is well understood in academic libraries. An example of such “administrative and operational” use for cost-effective improvement of decision making are the Finch & Flenner (2016) and Eaton (2017) case studies of the use of data visualization to assess an academic library collection and restructure the acquisition process. Sugimoto, Ding & Thelwall (2012) call for the discussion of Big Data for libraries. According to the 2017 NMC Horizon Report “Big Data has become a major focus of academic and research libraries due to the rapid evolution of data mining technologies and the proliferation of data sources like mobile devices and social media” (Adams, Becker, et al., 2017, p. 38).

Power (2014) elaborates on the complexity of Big Data in regard to decision-making and offers ideas for organizations on building a system to deal with Big Data. As explained by Boyd and Crawford (2012) and cited in De Mauro et al (2016), there is a danger of a new digital divide among organizations with different access and ability to process data. Moreover, Big Data impacts current organizational entities in their ability to reconsider their structure and organization. The complexity of institutions’ performance under the impact of Big Data is further complicated by the change of human behavior, because, arguably, Big Data affects human behavior itself (Schroeder, 2014).

De Mauro et al (2015) touch on the impact of Dig Data on libraries. The reorganization of academic libraries considering Big Data and the handling of Big Data by libraries is in a close conjunction with the reorganization of the entire campus and the handling of Big Data by the educational institution. In additional to the disruption posed by the Big Data phenomenon, higher education is facing global changes of economic, technological, social, and educational character. Daniel (2015) uses a chart to illustrate the complexity of these global trends. Parallel to the Big Data developments in America and Asia, the European Union is offering access to an EU open data portal (https://data.europa.eu/euodp/home ). Moreover, the Association of European Research Libraries expects under the H2020 program to increase “the digitization of cultural heritage, digital preservation, research data sharing, open access policies and the interoperability of research infrastructures” (Reilly, 2013).

The challenges posed by Big Data to human and social behavior (Schroeder, 2014) are no less significant to the impact of Big Data on learning. Cohen, Dolan, Dunlap, Hellerstein, & Welton (2009) propose a road map for “more conservative organizations” (p. 1492) to overcome their reservations and/or inability to handle Big Data and adopt a practical approach to the complexity of Big Data. Two Chinese researchers assert deep learning as the “set of machine learning techniques that learn multiple levels of representation in deep architectures (Chen & Lin, 2014, p. 515). Deep learning requires “new ways of thinking and transformative solutions (Chen & Lin, 2014, p. 523). Another pair of researchers from China present a broad overview of the various societal, business and administrative applications of Big Data, including a detailed account and definitions of the processes and tools accompanying Big Data analytics.  The American counterparts of these Chinese researchers are of the same opinion when it comes to “think about the core principles and concepts that underline the techniques, and also the systematic thinking” (Provost and Fawcett, 2013, p. 58). De Mauro, Greco, and Grimaldi (2016), similarly to Provost and Fawcett (2013) draw attention to the urgent necessity to train new types of specialists to work with such data. As early as 2012, Davenport and Patil (2012), as cited in Mauro et al (2016), envisioned hybrid specialists able to manage both technological knowledge and academic research. Similarly, Provost and Fawcett (2013) mention the efforts of “academic institutions scrambling to put together programs to train data scientists” (p. 51). Further, Asomoah, Sharda, Zadeh & Kalgotra (2017) share a specific plan on the design and delivery of a big data analytics course. At the same time, librarians working with data acknowledge the shortcomings in the profession, since librarians “are practitioners first and generally do not view usability as a primary job responsibility, usually lack the depth of research skills needed to carry out a fully valid” data-based research (Emanuel, 2013, p. 207).

Borgman (2015) devotes an entire book to data and scholarly research and goes beyond the already well-established facts regarding the importance of Big Data, the implications of Big Data and the technical, societal, and educational impact and complications posed by Big Data. Borgman elucidates the importance of knowledge infrastructure and the necessity to understand the importance and complexity of building such infrastructure, in order to be able to take advantage of Big Data. In a similar fashion, a team of Chinese scholars draws attention to the complexity of data mining and Big Data and the necessity to approach the issue in an organized fashion (Wu, Xhu, Wu, Ding, 2014).

Bruns (2013) shifts the conversation from the “macro” architecture of Big Data, as focused by Borgman (2015) and Wu et al (2014) and ponders over the influx and unprecedented opportunities for humanities in academia with the advent of Big Data. Does the seemingly ubiquitous omnipresence of Big Data mean for humanities a “railroading” into “scientificity”? How will research and publishing change with the advent of Big Data across academic disciplines?

Reyes (2015) shares her “skinny” approach to Big Data in education. She presents a comprehensive structure for educational institutions to shift “traditional” analytics to “learner-centered” analytics (p. 75) and identifies the participants in the Big Data process in the organization. The model is applicable for library use.

Being a new and unchartered territory, Big Data and Big Data analytics can pose ethical issues. Willis (2013) focusses on Big Data application in education, namely the ethical questions for higher education administrators and the expectations of Big Data analytics to predict students’ success.  Daries, Reich, Waldo, Young, and Whittinghill (2014) discuss rather similar issues regarding the balance between data and student privacy regulations. The privacy issues accompanying data are also discussed by Tene and Polonetsky, (2013).

Privacy issues are habitually connected to security and surveillance issues. Andrejevic and Gates (2014) point out in a decision making “generated by data mining, the focus is not on particular individuals but on aggregate outcomes” (p. 195). Van Dijck (2014) goes into further details regarding the perils posed by metadata and data to the society, in particular to the privacy of citizens. Bail (2014) addresses the same issue regarding the impact of Big Data on societal issues, but underlines the leading roles of cultural sociologists and their theories for the correct application of Big Data.

Library organizations have been traditional proponents of core democratic values such as protection of privacy and elucidation of related ethical questions (Miltenoff & Hauptman, 2005). In recent books about Big Data and libraries, ethical issues are important part of the discussion (Weiss, 2018). Library blogs also discuss these issues (Harper & Oltmann, 2017). An academic library’s role is to educate its patrons about those values. Sugimoto et al (2012) reflect on the need for discussion about Big Data in Library and Information Science. They clearly draw attention to the library “tradition of organizing, managing, retrieving, collecting, describing, and preserving information” (p.1) as well as library and information science being “a historically interdisciplinary and collaborative field, absorbing the knowledge of multiple domains and bringing the tools, techniques, and theories” (p. 1). Sugimoto et al (2012) sought a wide discussion among the library profession regarding the implications of Big Data on the profession, no differently from the activities in other fields (e.g., Wixom, Ariyachandra, Douglas, Goul, Gupta, Iyer, Kulkami, Mooney, Phillips-Wren, Turetken, 2014). A current Andrew Mellon Foundation grant for Visualizing Digital Scholarship in Libraries seeks an opportunity to view “both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets (Hwangbo, 2014).

The importance of the library with its traditional roles, as described by Sugimoto et al (2012) may continue, considering the Big Data platform proposed by Wu, Wu, Khabsa, Williams, Chen, Huang, Tuarob, Choudhury, Ororbia, Mitra, & Giles (2014). Such platforms will continue to emerge and be improved, with librarians as the ultimate drivers of such platforms and as the mediators between the patrons and the data generated by such platforms.

Every library needs to find its place in the large organization and in society in regard to this very new and very powerful phenomenon called Big Data. Libraries might not have the trained staff to become a leader in the process of organizing and building the complex mechanism of this new knowledge architecture, but librarians must educate and train themselves to be worthy participants in this new establishment.

 

Method

 

The study will be cleared by the SCSU IRB.
The survey will collect responses from library population and it readiness to use and use of Big Data.  Send survey URL to (academic?) libraries around the world.

Data will be processed through SPSS. Open ended results will be processed manually. The preliminary research design presupposes a mixed method approach.

The study will include the use of closed-ended survey response questions and open-ended questions.  The first part of the study (close ended, quantitative questions) will be completed online through online survey. Participants will be asked to complete the survey using a link they receive through e-mail.

Mixed methods research was defined by Johnson and Onwuegbuzie (2004) as “the class of research where the researcher mixes or combines quantitative and qualitative research techniques, methods, approaches, concepts, or language into a single study” (Johnson & Onwuegbuzie, 2004 , p. 17).  Quantitative and qualitative methods can be combined, if used to complement each other because the methods can measure different aspects of the research questions (Sale, Lohfeld, & Brazil, 2002).

 

Sampling design

 

  • Online survey of 10-15 question, with 3-5 demographic and the rest regarding the use of tools.
  • 1-2 open-ended questions at the end of the survey to probe for follow-up mixed method approach (an opportunity for qualitative study)
  • data analysis techniques: survey results will be exported to SPSS and analyzed accordingly. The final survey design will determine the appropriate statistical approach.

 

Project Schedule

 

Complete literature review and identify areas of interest – two months

Prepare and test instrument (survey) – month

IRB and other details – month

Generate a list of potential libraries to distribute survey – month

Contact libraries. Follow up and contact again, if necessary (low turnaround) – month

Collect, analyze data – two months

Write out data findings – month

Complete manuscript – month

Proofreading and other details – month

 

Significance of the work 

While it has been widely acknowledged that Big Data (and its handling) is changing higher education (https://blog.stcloudstate.edu/ims?s=big+data) as well as academic libraries (https://blog.stcloudstate.edu/ims/2016/03/29/analytics-in-education/), it remains nebulous how Big Data is handled in the academic library and, respectively, how it is related to the handling of Big Data on campus. Moreover, the visualization of Big Data between units on campus remains in progress, along with any policymaking based on the analysis of such data (hence the need for comprehensive visualization).

 

This research will aim to gain an understanding on: a. how librarians are handling Big Data; b. how are they relating their Big Data output to the campus output of Big Data and c. how librarians in particular and campus administration in general are tuning their practices based on the analysis.

Based on the survey returns (if there is a statistically significant return), this research might consider juxtaposing the practices from academic libraries, to practices from special libraries (especially corporate libraries), public and school libraries.

 

 

References:

 

Adams Becker, S., Cummins M, Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., … Wolfson, N. (2017). NMC Horizon Report: 2017 Library Edition.

Andrejevic, M., & Gates, K. (2014). Big Data Surveillance: Introduction. Surveillance & Society, 12(2), 185–196.

Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125

Bail, C. A. (2014). The cultural environment: measuring culture with big data. Theory and Society, 43(3–4), 465–482. https://doi.org/10.1007/s11186-014-9216-5

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press.

Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and academic scholarship. First Monday, 18(10). Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/4879

Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.

Chen, X. W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514–525. https://doi.org/10.1109/ACCESS.2014.2325029

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proc. VLDB Endow., 2(2), 1481–1492. https://doi.org/10.14778/1687553.1687576

Daniel, B. (2015). Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. https://doi.org/10.1111/bjet.12230

Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., … Chuang, I. (2014). Privacy, Anonymity, and Big Data in the Social Sciences. Commun. ACM, 57(9), 56–63. https://doi.org/10.1145/2643132

De Mauro, A. D., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644(1), 97–104. https://doi.org/10.1063/1.4907823

Dumbill, E. (2012). Making Sense of Big Data. Big Data, 1(1), 1–2. https://doi.org/10.1089/big.2012.1503

Eaton, M. (2017). Seeing Library Data: A Prototype Data Visualization Application for Librarians. Publications and Research. Retrieved from http://academicworks.cuny.edu/kb_pubs/115

Emanuel, J. (2013). Usability testing in libraries: methods, limitations, and implications. OCLC Systems & Services: International Digital Library Perspectives, 29(4), 204–217. https://doi.org/10.1108/OCLC-02-2013-0009

Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261. https://doi.org/10.1177/2043820613513121

Harper, L., & Oltmann, S. (2017, April 2). Big Data’s Impact on Privacy for Librarians and Information Professionals. Retrieved November 7, 2017, from https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47(Supplement C), 98–115. https://doi.org/10.1016/j.is.2014.07.006

Hwangbo, H. (2014, October 22). The future of collaboration: Large-scale visualization. Retrieved November 7, 2017, from http://usblogs.pwc.com/emerging-technology/the-future-of-collaboration-large-scale-visualization/

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and Variety.

Miltenoff, P., & Hauptman, R. (2005). Ethical dilemmas in libraries: an international perspective. The Electronic Library, 23(6), 664–670. https://doi.org/10.1108/02640470510635746

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015

Power, D. J. (2014). Using ‘Big Data’ for analytics and decision support. Journal of Decision Systems, 23(2), 222–228. https://doi.org/10.1080/12460125.2014.888848

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508

Reilly, S. (2013, December 12). What does Horizon 2020 mean for research libraries? Retrieved November 7, 2017, from http://libereurope.eu/blog/2013/12/12/what-does-horizon-2020-mean-for-research-libraries/

Reyes, J. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80. https://doi.org/10.1007/s11528-015-0842-1

Schroeder, R. (2014). Big Data and the brave new world of social media research. Big Data & Society, 1(2), 2053951714563194. https://doi.org/10.1177/2053951714563194

Sugimoto, C. R., Ding, Y., & Thelwall, M. (2012). Library and information science in the big data era: Funding, projects, and future [a panel proposal]. Proceedings of the American Society for Information Science and Technology, 49(1), 1–3. https://doi.org/10.1002/meet.14504901187

Tene, O., & Polonetsky, J. (2012). Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of Technology and Intellectual Property, 11, [xxvii]-274.

van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society; Newcastle upon Tyne, 12(2), 197–208.

Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010

Weiss, A. (2018). Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals. Rowman & Littlefield Publishers. Retrieved from https://rowman.com/ISBN/9781538103227/Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals

West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 4, 1–0.

Willis, J. (2013). Ethics, Big Data, and Analytics: A Model for Application. Educause Review Online. Retrieved from https://docs.lib.purdue.edu/idcpubs/1

Wixom, B., Ariyachandra, T., Douglas, D. E., Goul, M., Gupta, B., Iyer, L. S., … Turetken, O. (2014). The current state of business intelligence in academia: The arrival of big data. CAIS, 34, 1.

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Wu, Z., Wu, J., Khabsa, M., Williams, K., Chen, H. H., Huang, W., … Giles, C. L. (2014). Towards building a scholarly big data platform: Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital Libraries (pp. 117–126). https://doi.org/10.1109/JCDL.2014.6970157

 

+++++++++++++++++
more on big data





academic library collection data visualization

Finch, J. f., & Flenner, A. (2016). Using Data Visualization to Examine an Academic Library Collection. College & Research Libraries77(6), 765-778.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dllf%26AN%3d119891576%26site%3dehost-live%26scope%3dsite

p. 766
Visualizations of library data have been used to: • reveal relationships among subject areas for users. • illuminate circulation patterns. • suggest titles for weeding. • analyze citations and map scholarly communications

Each unit of data analyzed can be described as topical, asking “what.”6 • What is the number of courses offered in each major and minor? • What is expended in each subject area? • What is the size of the physical collection in each subject area? • What is student enrollment in each area? • What is the circulation in specific areas for one year?

libraries, if they are to survive, must rethink their collecting and service strategies in radical and possibly scary ways and to do so sooner rather than later. Anderson predicts that, in the next ten years, the “idea of collection” will be overhauled in favor of “dynamic access to a virtually unlimited flow of information products.”  My note: in essence, the fight between Mark Vargas and the Acquisition/Cataloguing people

The library collection of today is changing, affected by many factors, such as demanddriven acquisitions, access, streaming media, interdisciplinary coursework, ordering enthusiasm, new areas of study, political pressures, vendor changes, and the individual faculty member following a focused line of research.

subject librarians may see opportunities in looking more closely at the relatively unexplored “intersection of circulation, interlibrary loan, and holdings.”

Using Visualizations to Address Library Problems

the difference between graphical representations of environments and knowledge visualization, which generates graphical representations of meaningful relationships among retrieved files or objects.

Exhaustive lists of data visualization tools include: • the DIRT Directory (http://dirtdirectory.org/categories/visualization) • Kathy Schrock’s educating through infographics (www.schrockguide.net/ infographics-as-an-assessment.html) • Dataviz list of online tools (www.improving-visualisation.org/case-studies/id=5)

Visualization tools explored for this study include Plotly, Microsoft Excel, Python programming language, and D3.js, a javascript library for creating documents based on data. Tableau Public©

Eugene O’Loughlin, National College of Ireland, is very helpful in composing the charts and is found here: https://youtu.be/4FyImh2G7N0.

p. 771 By looking at the data (my note – by visualizing the data), more questions are revealed,  The visualizations provide greater comprehension than the two-dimensional “flatland” of the spreadsheets, in which valuable questions and insights are lost in the columns and rows of data.

By looking at data visualized in different combinations, library collection development teams can clearly compare important considerations in collection management: expenditures and purchases, circulation, student enrollment, and course hours. Library staff and administrators can make funding decisions or begin dialog based on data free from political pressure or from the influence of the squeakiest wheel in a department.

+++++++++++++++
more on data visualization for the academic library in this IMS blog
https://blog.stcloudstate.edu/ims?s=data+visualization

pedagogically sound Minecraft examples

FridayLive!! Oct 27 THIS WEEK 2:00 PM EDT 

Minecraft for Higher Ed? Try it. Pros, Cons, Recommendations? 

Description: Why Minecraft, the online video game? How can Minecraft improve learning for higher education?
We’ll begin with a live demo in which all can participate (see “Minecraft for Free”).
We’ll review “Examples, Not Rumors” of successful adaptations and USES of Minecraft for teaching/learning in higher education. Especially those submitted in advance
And we’ll try to extract from these activities a few recommendations/questions/requests re Minecraft in higher education.

++++++++++
Examples:

Minecraft Education Edition: https://education.minecraft.net/
(more info: https://blog.stcloudstate.edu/ims/2017/05/23/minecraft-education-edition/)

K12: 

Minecraft empathy skillshttp://www.gettingsmart.com/wp-content/uploads/2017/04/How-Minecraft-Supports-SEL.pdf 

coding w MineCraft

Minecraft for Math

Higher Ed: 

Minecraft Higher Education?

Using MCEE in Higher Education

Why NOT to use minecraft in education:

https://higheredrevolution.com/why-educators-probably-shouldn-t-use-minecraft-in-their-classrooms-989f525c6e62

College Students Get Virtual Look at the Real World with ‘Minecraft’

Carnegie Mellon University uses the game-based learning tool to help students demonstrate engineering skills. SEP182017

https://edtechmagazine.com/higher/article/2017/09/college-students-get-virtual-look-real-world-minecraft

Using Minecraft in Higher Education

https://groups.google.com/forum/#!topic/minecraft-teachers/cED6MM0E0bQ

Using MinecraftEdu – Part 1 – Introduction

https://www.youtube.com/watch?v=Lsfd9J5UgVk

Physics with Minecraft example

Chemistry with Minecraft example

Biology

other disciplines

+++++++++++

Does learning really happen w Minecraft?

Callaghan, N. (2016). Investigating the role of Minecraft in educational learning environments. Educational Media International53(4), 244-260. doi:10.1080/09523987.2016.1254877

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d119571817%26site%3dehost-live%26scope%3dsite

Noelene Callaghan dissects the evolution in Australian education from a global perspective. She rightfully draws attention (p. 245) to inevitable changes in the educational world, which still remain ignored: e.g., the demise of “traditional” LMS (Educase is calling for their replacement with digital learning environments https://blog.stcloudstate.edu/ims/2017/07/06/next-gen-digital-learning-environment/ and so does the corporate world of learning: https://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/ ), the inevitability of BYOD (mainly by the “budget restrictions and sustainability challenges” (p. 245); by the assertion of cloud computing, and, last but not least, by the gamification of education.

p. 245 literature review. In my paper, I am offering more comprehensive literature review. While Callaghan focuses on the positive, my attempt is to list both pros and cons: http://scsu.mn/1F008Re

 

  1. 246 General use of massive multiplayer online role playing games (MMORPGs)

levels of interaction have grown dramatically and have led to the creation of general use of massive multiplayer online role playing games (MMORPGs)

  1. 247 In teaching and learning environments, affordances associated with edugames within a project-based learning (PBL) environment permit:
  • (1)  Learner-centered environments
  • (2)  Collaboration
  • (3)  Curricular content
  • (4)  Authentic tasks
  • (5)  Multiple expression modes
  • (6)  Emphasis on time management
  • (7)  Innovative assessment (Han & Bhattacharya, 2001).

These affordances develop both social and cognitive abilities of students

 

Nebel, S., Schneider, S., Beege, M., Kolda, F., Mackiewicz, V., & Rey, G. (2017). You cannot do this alone! Increasing task interdependence in cooperative educational videogames to encourage collaboration. Educational Technology Research & Development65(4), 993-1014. doi:10.1007/s11423-017-9511-8

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d124132216%26site%3dehost-live%26scope%3dsite

Abrams, S. S., & Rowsell, J. (2017). Emotionally Crafted Experiences: Layering Literacies in Minecraft. Reading Teacher70(4), 501-506.

Nebel, S., Schneider, S., & Daniel Rey, G. (2016). Mining Learning and Crafting Scientific Experiments: A Literature Review on the Use of Minecraft in Education and Research. Source: Journal of Educational Technology & Society, 19(192), 355–366. Retrieved from http://www.jstor.org/stable/jeductechsoci.19.2.355

Cipollone, M., Schifter, C. C., & Moffat, R. A. (2014). Minecraft as a Creative Tool: A Case Study. International Journal Of Game-Based Learning4(2), 1-14.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ1111251%26site%3dehost-live%26scope%3dsite

Niemeyer, D. J., & Gerber, H. R. (2015). Maker culture and Minecraft : implications for the future of learning. Educational Media International52(3), 216-226. doi:10.1080/09523987.2015.1075103

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d111240626%26site%3dehost-live%26scope%3dsite

Nebel, S., Schneider, S., & Daniel Rey, G. (2016). Mining Learning and Crafting Scientific Experiments: A Literature Review on the Use of Minecraft in Education and Research. Journal of Educational Technology & Society, 19(192), 355–366. Retrieved from http://www.jstor.org/stable/jeductechsoci.19.2.355

 

Wilkinson, B., Williams, N., & Armstrong, P. (2013). Improving Student Understanding, Application and Synthesis of Computer Programming Concepts with Minecraft. In The European Conference on Technology in the Classroom 2013. Retrieved from http://iafor.info/archives/offprints/ectc2013-offprints/ECTC2013_0477.pdf

Berg Marklund, B., & Alklind Taylor, A.-S. (2015). Teachers’ Many Roles in Game-Based Learning Projects. In Academic Conferences International Limited (pp. 359–367). Retrieved from https://search.proquest.com/openview/15e084a1c52fdda188c27b9d2de6d361/1?pq-origsite=gscholar&cbl=396495

Uusi-Mäkelä, M., & Uusi-Mäkelä, M. (2014). Immersive Language Learning with Games: Finding Flow in MinecraftEdu. EdMedia: World Conference on Educational Media and Technology (Vol. 2014). Association for the Advancement of Computing in Education (AACE). Retrieved from https://www.learntechlib.org/noaccess/148409/

Birt, J., & Hovorka, D. (2014). Effect of mixed media visualization on learner perceptions and outcomes. In 25th Australasian Conference on Information Systems (pp. 1–10). Retrieved from http://epublications.bond.edu.au/fsd_papers/74

Al Washmi, R., Bana, J., Knight, I., Benson, E., Afolabi, O., Kerr, A., Hopkins, G. (2014). Design of a Math Learning Game Using a Minecraft Mod. https://doi.org/10.13140/2.1.4660.4809
https://www.researchgate.net/publication/267135810_Design_of_a_Math_Learning_Game_Using_a_Minecraft_Mod
https://docs.google.com/document/d/1uch2iC_CGsESdF9lpATGwWkamNbqQ7JOYEu_D-V03LQ/edit?usp=sharing

+++++++++++++
more on Minecraft in this IMS blog
https://blog.stcloudstate.edu/ims?s=minecraft

librarian versus information specialist

USA Today career advice feature on October 13, 2017 entitled “Careers: 8 jobs that won’t exist in 2030,”  https://www.usatoday.com/story/money/careers/2017/10/13/8-jobs-that-wont-exist-in-2030/104219994/ provoked the following reaction by the ALICE Board of Directors:

Ms. Joanne Lipman
October 20, 2017
Editor-in-Chief of USA Today
7950 Jones Branch Drive
McLean, VA 22108

Dear Ms. Lipman,

In our roles as the Board of Directors of the Association for Library and Information Science Education (ALISE), we are writing to express our profound disappointment with the USA Today career advice feature on October 13, 2017 entitled “Careers: 8 jobs that won’t exist in 2030,” which declared that “librarian” is the number one career among the eight jobs that inaccurate statement on two fronts: first, that the profession is declining, and second, that this alleged will disappear in 2030. This is a false and decline is a result of libraries as warehouses of printed books.

The author of this article may not realize that a professional librarian position in the U.S. and many other countries requires a Master’s degree. According to a recent article in Library Journal, 86% of recent graduates from American Library Association (ALA) accredited schools have found jobs. Another recent report (released on September 28, 2017) by Pearson, Nesta, and Oxford University predicts growth in the information professions, including librarians, curators, and archivists. They are among the top ten jobs likely to experience increased demand in 2030. The report is summarized by Library Journal in its article entitled “The Job Outlook: In 2030, Librarians Will Be in Demand.” Furthermore, your own job posting section for librarian positions does not show the decline of our profession. A close reading of the job titles should have indicated to the author that librarians do more than simply check out books.

This article demonstrates a lack of understanding of librarians’ work as information professionals. My note: but so do lack understanding a lot of librarians, paraprofessionals and administrators in libraries. They are the one, who leave the impressions reflected in the article of US Today. Information professionals IS the keyword and, as during the hype around year 2000 with Barnes & Nobles, a great number of people working in libraries continue to behave as it is the Middle Ages and care of paper-based materials the one and only responsibility a “librarian” may have. The lack of understanding  regarding the wide scope  of “information professionals” is profound.

Libraries provide access to print and special collections of media, and subscription-based or free electronic resources. All of these must be curated, cataloged, or organized by professional librarians to make them accessible to their users. My note: beating your own drum is good, but when failing to recognize the existence of folksonomy and its impact, do not get upset when US Today reflects the impact

College and university librarians carry out research consultations and instruct student and faculty in finding, evaluating, and using information. My note: when faculty let them do it. And administration recognizes it. It is a shaky position, which does not exclude the 2030 scenario.

Public librarians connect patrons to community resources, lead programming for children and adults, and engage in community outreach and advocacy. Special librarians work for corporations, federal and state institutions, focusing on gathering competitive intelligence and making sure their organizations have access to the information they need to make sound business or strategic decisions.

The article also inaccurately presents libraries as dedicated solely to books:

More and more people are clearing out those paperbacks and downloading e-books on their Tablets and Kindles instead. The same goes for borrowing — as books fall out of favor, libraries are not as popular as they once were. That means you’ll have a tough time finding a job if you decide to become a librarian. Many schools and universities are already moving their libraries off the shelves and onto the Internet.

In addition to providing access to books, journals, newspapers, and other media, both electronically and in print, libraries provide access to technology, from computers, laptops, and iPads to 3D printers,
My note: are we? are we doing this at our library? Are the reference librarians allowing such blasphemous thoughts penetrate this library? And if they do, do they allow other professionals to collaborate with them, or “keep it for themselves?”

multimedia software, and recording studios.
My note: whaaat?

Many libraries have expanded their non-print collections and are circulating a wide variety of objects including tools, musical instruments, toys, wifi hotspots, and artwork. Libraries are highly valued as community centers and safe spaces that allow people to connect with information and with each other. Research shows that libraries are one of the most trusted and valued public institutions in the country.

The article further argues that librarians and libraries are not needed because printed books are falling out of favor. However, there is considerable counter-evidence that printed books are still in demand, including the articles cited below.

Cain, S. (2017, March 14). Ebook sales continue to fall as younger generations drive appetite for print. The Guardian. Retrieved from:

Jenkins, S. (2016, May 13). Books are back. Only the technodazzled thought they would go away. The Guardian. Retrieved from: https://www.theguardian.com/commentisfree/2016/may/13/books- ebook-publishers-paper

Milliot, J. (2017, January 20). The Bad News About E-books: Nielsen reports units fell 16% in 2016 compared to 2015. Publishers Weekly. Retrieved from:

We respectfully request an open response from you or from the author of the article. Sincerely,

continue-to-fall-nielsen-survey-uk-book-sales

topic/digital/retailing/article/72563-the-bad-news-about-e-books.html

ALISE Board of Directors

Dietmar Wolfram (President), Heidi Julien (President-Elect), Louise Spiteri (Past President), Denice

Adkins (Secretary/Treasurer), Leanne Bowler (Director for Special Interest Groups), Cecilia Salvatore

(Director for Membership Services), Rong Tang (Director for External Relations)

 

code4lib 2018

Code2LIB February 2018

http://2018.code4lib.org/

2018 Preconference Voting

10. The Virtualized Library: A Librarian’s Introduction to Docker and Virtual Machines
This session will introduce two major types of virtualization, virtual machines using tools like VirtualBox and Vagrant, and containers using Docker. The relative strengths and drawbacks of the two approaches will be discussed along with plenty of hands-on time. Though geared towards integrating these tools into a development workflow, the workshop should be useful for anyone interested in creating stable and reproducible computing environments, and examples will focus on library-specific tools like Archivematica and EZPaarse. With virtualization taking a lot of the pain out of installing and distributing software, alleviating many cross-platform issues, and becoming increasingly common in library and industry practices, now is a great time to get your feet wet.

(One three-hour session)

11. Digital Empathy: Creating Safe Spaces Online
User research is often focused on measures of the usability of online spaces. We look at search traffic, run card sorting and usability testing activities, and track how users navigate our spaces. Those results inform design decisions through the lens of information architecture. This is important, but doesn’t encompass everything a user needs in a space.

This workshop will focus on the other component of user experience design and user research: how to create spaces where users feel safe. Users bring their anxieties and stressors with them to our online spaces, but informed design choices can help to ameliorate that stress. This will ultimately lead to a more positive interaction between your institution and your users.

The presenters will discuss the theory behind empathetic design, delve deeply into using ethnographic research methods – including an opportunity for attendees to practice those ethnographic skills with student participants – and finish with the practical application of these results to ongoing and future projects.

(One three-hour session)

14. ARIA Basics: Making Your Web Content Sing Accessibility

https://dequeuniversity.com/assets/html/jquery-summit/html5/slides/landmarks.html
Are you a web developer or create web content? Do you add dynamic elements to your pages? If so, you should be concerned with making those dynamic elements accessible and usable to as many as possible. One of the most powerful tools currently available for making web pages accessible is ARIA, the Accessible Rich Internet Applications specification. This workshop will teach you the basics for leveraging the full power of ARIA to make great accessible web pages. Through several hands-on exercises, participants will come to understand the purpose and power of ARIA and how to apply it for a variety of different dynamic web elements. Topics will include semantic HTML, ARIA landmarks and roles, expanding/collapsing content, and modal dialog. Participants will also be taught some basic use of the screen reader NVDA for use in accessibility testing. Finally, the lessons will also emphasize learning how to keep on learning as HTML, JavaScript, and ARIA continue to evolve and expand.

Participants will need a basic background in HTML, CSS, and some JavaScript.

(One three-hour session)

18. Learning and Teaching Tech
Tech workshops pose two unique problems: finding skilled instructors for that content, and instructing that content well. Library hosted workshops are often a primary educational resource for solo learners, and many librarians utilize these workshops as a primary outreach platform. Tackling these two issues together often makes the most sense for our limited resources. Whether a programming language or software tool, learning tech to teach tech can be one of the best motivations for learning that tech skill or tool, but equally important is to learn how to teach and present tech well.

This hands-on workshop will guide participants through developing their own learning plan, reviewing essential pedagogy for teaching tech, and crafting a workshop of their choice. Each participant will leave with an actionable learning schedule, a prioritized list of resources to investigate, and an outline of a workshop they would like to teach.

(Two three-hour sessions)

23. Introduction to Omeka S
Omeka S represents a complete rewrite of Omeka Classic (aka the Omeka 2.x series), adhering to our fundamental principles of encouraging use of metadata standards, easy web publishing, and sharing cultural history. New objectives in Omeka S include multisite functionality and increased interaction with other systems. This workshop will compare and contrast Omeka S with Omeka Classic to highlight our emphasis on 1) modern metadata standards, 2) interoperability with other systems including Linked Open Data, 3) use of modern web standards, and 4) web publishing to meet the goals medium- to large-sized institutions.

In this workshop we will walk through Omeka S Item creation, with emphasis on LoD principles. We will also look at the features of Omeka S that ease metadata input and facilitate project-defined usage and workflows. In accordance with our commitment to interoperability, we will describe how the API for Omeka S can be deployed for data exchange and sharing between many systems. We will also describe how Omeka S promotes multiple site creation from one installation, in the interest of easy publishing with many objects in many contexts, and simplifying the work of IT departments.

(One three-hour session)

24. Getting started with static website generators
Have you been curious about static website generators? Have you been wondering who Jekyll and Hugo are? Then this workshop is for you

My notehttps://opensource.com/article/17/5/hugo-vs-jekyll

But this article isn’t about setting up a domain name and hosting for your website. It’s for the step after that, the actual making of that site. The typical choice for a lot of people would be to use something like WordPress. It’s a one-click install on most hosting providers, and there’s a gigantic market of plugins and themes available to choose from, depending on the type of site you’re trying to build. But not only is WordPress a bit overkill for most websites, it also gives you a dynamically generated site with a lot of moving parts. If you don’t keep all of those pieces up to date, they can pose a significant security risk and your site could get hijacked.

The alternative would be to have a static website, with nothing dynamically generated on the server side. Just good old HTML and CSS (and perhaps a bit of Javascript for flair). The downside to that option has been that you’ve been relegated to coding the whole thing by hand yourself. It’s doable, but you just want a place to share your work. You shouldn’t have to know all the idiosyncrasies of low-level web design (and the monumental headache of cross-browser compatibility) to do that.

Static website generators are tools used to build a website made up only of HTML, CSS, and JavaScript. Static websites, unlike dynamic sites built with tools like Drupal or WordPress, do not use databases or server-side scripting languages. Static websites have a number of benefits over dynamic sites, including reduced security vulnerabilities, simpler long-term maintenance, and easier preservation.

In this hands-on workshop, we’ll start by exploring static website generators, their components, some of the different options available, and their benefits and disadvantages. Then, we’ll work on making our own sites, and for those that would like to, get them online with GitHub pages. Familiarity with HTML, git, and command line basics will be helpful but are not required.

(One three-hour session)

26. Using Digital Media for Research and Instruction
To use digital media effectively in both research and instruction, you need to go beyond just the playback of media files. You need to be able to stream the media, divide that stream into different segments, provide descriptive analysis of each segment, order, re-order and compare different segments from the same or different streams and create web sites that can show the result of your analysis. In this workshop, we will use Omeka and several plugins for working with digital media, to show the potential of video streaming, segmentation and descriptive analysis for research and instruction.

(One three-hour session)

28. Spark in the Dark 101 https://zeppelin.apache.org/
This is an introductory session on Apache Spark, a framework for large-scale data processing (https://spark.apache.org/). We will introduce high level concepts around Spark, including how Spark execution works and it’s relationship to the other technologies for working with Big Data. Following this introduction to the theory and background, we will walk workshop participants through hands-on usage of spark-shell, Zeppelin notebooks, and Spark SQL for processing library data. The workshop will wrap up with use cases and demos for leveraging Spark within cultural heritage institutions and information organizations, connecting the building blocks learned to current projects in the real world.

(One three-hour session)

29. Introduction to Spotlight https://github.com/projectblacklight/spotlight
http://www.spotlighttechnology.com/4-OpenSource.htm
Spotlight is an open source application that extends the digital library ecosystem by providing a means for institutions to reuse digital content in easy-to-produce, attractive, and scholarly-oriented websites. Librarians, curators, and other content experts can build Spotlight exhibits to showcase digital collections using a self-service workflow for selection, arrangement, curation, and presentation.

This workshop will introduce the main features of Spotlight and present examples of Spotlight-built exhibits from the community of adopters. We’ll also describe the technical requirements for adopting Spotlight and highlight the potential to customize and extend Spotlight’s capabilities for their own needs while contributing to its growth as an open source project.

(One three-hour session)

31. Getting Started Visualizing your IoT Data in Tableau https://www.tableau.com/
The Internet of Things is a rising trend in library research. IoT sensors can be used for space assessment, service design, and environmental monitoring. IoT tools create lots of data that can be overwhelming and hard to interpret. Tableau Public (https://public.tableau.com/en-us/s/) is a data visualization tool that allows you to explore this information quickly and intuitively to find new insights.

This full-day workshop will teach you the basics of building your own own IoT sensor using a Raspberry Pi (https://www.raspberrypi.org/) in order to gather, manipulate, and visualize your data.

All are welcome, but some familiarity with Python is recommended.

(Two three-hour sessions)

32. Enabling Social Media Research and Archiving
Social media data represents a tremendous opportunity for memory institutions of all kinds, be they large academic research libraries, or small community archives. Researchers from a broad swath of disciplines have a great deal of interest in working with social media content, but they often lack access to datasets or the technical skills needed to create them. Further, it is clear that social media is already a crucial part of the historical record in areas ranging from events your local community to national elections. But attempts to build archives of social media data are largely nascent. This workshop will be both an introduction to collecting data from the APIs of social media platforms, as well as a discussion of the roles of libraries and archives in that collecting.

Assuming no prior experience, the workshop will begin with an explanation of how APIs operate. We will then focus specifically on the Twitter API, as Twitter is of significant interest to researchers and hosts an important segment of discourse. Through a combination of hands-on and demos, we will gain experience with a number of tools that support collecting social media data (e.g., Twarc, Social Feed Manager, DocNow, Twurl, and TAGS), as well as tools that enable sharing social media datasets (e.g., Hydrator, TweetSets, and the Tweet ID Catalog).

The workshop will then turn to a discussion of how to build a successful program enabling social media collecting at your institution. This might cover a variety of topics including outreach to campus researchers, collection development strategies, the relationship between social media archiving and web archiving, and how to get involved with the social media archiving community. This discussion will be framed by a focus on ethical considerations of social media data, including privacy and responsible data sharing.

Time permitting, we will provide a sampling of some approaches to social media data analysis, including Twarc Utils and Jupyter Notebooks.

(One three-hour session)

1 3 4 5 6 7 10