Searching for "qualitative research"

qualitative research in online environment

https://www.facebook.com/groups/onlinelearningcollective/permalink/557378281559541/

A Facebook group thread:

Qualitative researchers: Does anyone have any general pointers on conducting qualitative work in this environment other than doing interviews or focus groups over Zoom? Example: I (normally) do a lot of participant observation work. Where and how will I do this or do it as well as I have done it?

At this moment, my focus is all on teaching. But if this situation becomes more prolonged, I need to figure out how to keep the research going too.

+++++++++++

Qualitative Data Analysis Tools

https://libguides.mit.edu/anthro/qda

+++++++++++
more on qualitative research in this IMS blog
https://blog.stcloudstate.edu/ims?s=qualitative+research

Qualitative Landscape of Information Literacy Research

The Qualitative Landscape of Information Literacy Research: Perspectives, Methods and Techniques

Annemaree Lloyd
https://www.alastore.ala.org/infolitresearch?_zs=HxthW1&_zl=7kkv7

  • situating information literacy research;
  • informing information literacy research;
  • framing information literacy pedagogy;
  • qualitative methods;
  • quantitative and mixed method approaches;
  • data collection;
  • planning for research; and
  • evaluating information literacy research.

+++++++++++++++++++++++
more on information literacy in this IMS blog
https://blog.stcloudstate.edu/ims?s=information+literacy

qualitative method research

Cohort 7

By miltenoff | View this Toon at ToonDoo | Create your own Toon

Qualitative Method Research

quote

Data treatment and analysis

Because the questionnaire data comprised both Likert scales and open questions, they were analyzed quantitatively and qualitatively. Textual data (open responses) were qualitatively analyzed by coding: each segment (e.g. a group of words) was assigned to a semantic reference category, as systematically and rigorously as possible. For example, “Using an iPad in class really motivates me to learn” was assigned to the category “positive impact on motivation.” The qualitative analysis was performed using an adapted version of the approaches developed by L’Écuyer (1990) and Huberman and Miles (1991, 1994). Thus, we adopted a content analysis approach using QDAMiner software, which is widely used in qualitative research (see Fielding, 2012; Karsenti, Komis, Depover, & Collin, 2011). For the quantitative analysis, we used SPSS 22.0 software to conduct descriptive and inferential statistics. We also conducted inferential statistics to further explore the iPad’s role in teaching and learning, along with its motivational effect. The results will be presented in a subsequent report (Fievez, & Karsenti, 2013)

Fievez, A., & Karsenti, T. (2013). The iPad in Education: uses, benefits and challenges. A survey of 6057 students and 302 teachers in Quebec, Canada (p. 51). Canada Research Chair in Technologies in Education. Retrieved from https://www.academia.edu/5366978/The_iPad_in_Education_uses_benefits_and_challenges._A_survey_of_6057_students_and_302_teachers_in_Quebec_Canada

unquote

 The 20th century notion of conducting a qualitative research by an oral interview and then processing manually your results had triggered in the second half of the 20th century [sometimes] condescending attitudes by researchers from the exact sciences.
The reason was the advent of computing power in the second half of the 20th century, which allowed exact sciences to claim “scientific” and “data-based” results.
One of the statistical package, SPSS, is today widely known and considered a magnificent tools to bring solid statistically-based argumentation, which further perpetuates the superiority of quantitative over qualitative method.
At the same time, qualitative researchers continue to lag behind, mostly due to the inertia of their approach to qualitative analysis. Qualitative analysis continues to be processed in the olden ways. While there is nothing wrong with the “olden” ways, harnessing computational power can streamline the “olden ways” process and even present options, which the “human eye” sometimes misses.
Below are some suggestions, you may consider, when you embark on the path of qualitative research.
The Use of Qualitative Content Analysis in Case Study Research
Florian Kohlbacher
http://www.qualitative-research.net/index.php/fqs/article/view/75/153

excellent guide to the structure of a qualitative research

Palys, T., & Atchison, C. (2012). Qualitative Research in the Digital Era: Obstacles and Opportunities. International Journal Of Qualitative Methods, 11(4), 352-367.
http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d89171709%26site%3dehost-live%26scope%3dsite
Palys and Atchison (2012) present a compelling case to bring your qualitative research to the level of the quantitative research by using modern tools for qualitative analysis.
1. The authors correctly promote NVivo as the “jaguar’ of the qualitative research method tools. Be aware, however, about the existence of other “Geo Metro” tools, which, for your research, might achieve the same result (see bottom of this blog entry).
2. The authors promote a new type of approach to Chapter 2 doctoral dissertation and namely OCR-ing PDF articles (most of your literature as of 2017 is mostly either in PDF or electronic textual format) through applications such as
Abbyy Fine Reader, https://www.abbyy.com/en-us/finereader/
OmniPage,  http://www.nuance.com/for-individuals/by-product/omnipage/index.htm
Readirus http://www.irislink.com/EN-US/c1462/Readiris-16-for-Windows—OCR-Software.aspx
The text from the articles is processed either through NVIVO or related programs (see bottom of this blog entry). As the authors propose: ” This is immediately useful for literature review and proposal writing, and continues through the research design, data gathering, and analysis stages— where NVivo’s flexibility for many different sources of data (including audio, video, graphic, and text) are well known—of writing for publication” (p. 353).
In other words, you can try to wrap your head around huge amount of textual information, but you can also approach the task by a parallel process of processing the same text with a tool.
 +++++++++++++++++++++++++++++
Here are some suggestions for Computer Assisted / Aided Qualitative Data Analysis Software (CAQDAS) for a small and a large community applications):

– RQDA (the small one): http://rqda.r-forge.r-project.org/ (see on youtube the tutorials of Metin Caliskan); one active developper.
GATE (the large one): http://gate.ac.uk/ | https://gate.ac.uk/download/

text mining: https://en.wikipedia.org/wiki/Text_mining
Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output.
https://ischool.syr.edu/infospace/2013/04/23/what-is-text-mining/
Qualitative data is descriptive data that cannot be measured in numbers and often includes qualities of appearance like color, texture, and textual description. Quantitative data is numerical, structured data that can be measured. However, there is often slippage between qualitative and quantitative categories. For example, a photograph might traditionally be considered “qualitative data” but when you break it down to the level of pixels, which can be measured.
word of caution, text mining doesn’t generate new facts and is not an end, in and of itself. The process is most useful when the data it generates can be further analyzed by a domain expert, who can bring additional knowledge for a more complete picture. Still, text mining creates new relationships and hypotheses for experts to explore further.

quick and easy:

intermediate:

advanced:

http://tidytextmining.com/

Introduction to GATE Developer  https://youtu.be/o5uhMF15vsA


 

use of RapidMiner:

https://rapidminer.com/pricing/

– Coding Analysis Toolkit (CAT) from University of Pittsburgh and University of Massachusetts
– Raven’s Eye is an online natural language ANALYSIS tool based
– ATLAS.TI
– XSIGTH

– QDA Miner: http://provalisresearch.com/products/qualitative-data-analysis-software/

There is also a free version called QDA Miner Lite with limited functionalities: http://provalisresearch.com/products/qualitative-data-analysis-software/freeware/

– MAXQDA

–  NVivo

– SPSS Text Analytics

– Kwalitan

– Transana (include video transcribing capability)

– XSight

Nud*ist https://www.qsrinternational.com/

(Cited from: https://www.researchgate.net/post/Are_there_any_open-source_alternatives_to_Nvivo [accessed Apr 1, 2017].

– OdinText

IBM Watson Conversation
IBM Watson Text to Speech
Google Translate API
MeTA
LingPipe
NLP4J
Timbl
Colibri Core
CRF++
Frog
Ucto
– CRFsuite

– FoLiA
PyNLPl
openNLP
NLP Compromise
MALLET
Cited from: https://www.g2crowd.com/products/nvivo/competitors/alternatives [accessed April 1, 2017
+++++++++++++++++++++++++=
http://www.socresonline.org.uk/3/3/4.html
Christine A. Barry (1998) ‘Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared’
Sociological Research Online, vol. 3, no. 3, <http://www.socresonline.org.uk/3/3/4.html&gt;

Pros and Cons of Computer Assisted Qualitative Data Analysis Software

+++++++++++++++++++++++++
more on quantitative research:

Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125
++++++++++++++++++++++++
literature on quantitative research:
Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press. https://mplus.mnpals.net/vufind/Record/ebr4_1006438
St. Cloud State University MC Main Collection – 2nd floor AZ195 .B66 2015
p. 161 Data scholarship in the Humanities
p. 166 When Are Data?
Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015

Qualitative Content Analysis

Qualitative Content Analysis

Riessman, C. K. (1994). Qualitative studies in social work research. Sage Publications.
https://books.google.bg/books/about/Narrative_Analysis.html?id=9ffAwoYi7E0C&redir_esc=y

analyse narratives from Kohler Riessman (1993), and a Qualitative Content Analysis with advice from Graneheim & Lundman, 2003)

storytelling

worked inductively by building patterns and categories from the bottom up by organizing the data into more abstract information units

https://hyp.is/go?url=https%3A%2F%2Fdrive.google.com%2Fdrive%2Fu%2F1%2Ffolders%2F1oqTy0rIPEYQYYa5fyLmYe07ZN_No_JxM&group=__world__

small qualitative studies

++++++++++++++++
more on qualitative research in this IMS blog
https://blog.stcloudstate.edu/ims?s=qualitative+research

social media for research

Using Social Media for Research – November 16
12:00 – 1:00 p.m.
1314 Social Sciences

Professor Lee-Ann Kastman Breuch (Writing Studies) and Michael Beckstrand (Mixed-Methods Research Associate, LATIS) will discuss how to retrieve, prepare, and analyze social media data for research projects. Using two case studies, Lee-Ann will share examples of a grounded theory analysis of blog, Twitter, and Facebook data.  Michael will speak about the technical aspects of retrieving and managing social media data. Pizza will be provided. Learn more and register here.
This event is part of the 2018-19 Research Development Friday Roundtable Series organized by the CLA Research Development Team.

http://camp.dash.umn.edu/data-visualization/

Workshop materials

Number of participants: 10
Prerequisites: None
Duration: 2 days

Technologies
Software

Online

Agenda

All workshop sessions will take place 9:00 a.m. – noon, with lab time and office hours 1:30 -3:30 p.m.

Tuesday, August 22

  • Introduction to web-scraping
  • Introduction to APIs
  • Facepager
  • Activities
  • Work & get help on your own projects

Wed, August 23

  • Recap
  • Introduction to OpenRefine
  • Cleaning social media data with OpenRefine
  • Analyzing/Visualizing the social media data
    • Atlas.TI
    • Voyant
    • Gephi

+++++++++++++
more on social media for research in this IMS blog
https://blog.stcloudstate.edu/ims?s=social+media+research

Cohort 8 research and write dissertation

When writing your dissertation…

Please have an FAQ-kind of list of the Google Group postings regarding resources and information on research and writing of Chapter 2

digital resource sets available through MnPALS Plus

https://blog.stcloudstate.edu/ims/2017/10/21/digital-resource-sets-available-through-mnpals-plus/ 

+++++++++++++++++++++++++

[how to] write chapter 2

You were reminded to look at dissertations of your peers from previous cohorts and use their dissertations as a “template”: http://repository.stcloudstate.edu/do/discipline_browser/articles?discipline_key=1230

You also were reminded to use the documents in Google Drive: e.g. https://drive.google.com/open?id=0B7IvS0UYhpxFVTNyRUFtNl93blE

Please have also materials, which might help you organize our thoughts and expedite your Chapter 2 writing….

Do you agree with (did you use) the following observations:

The purpose of the review of the literature is to prove that no one has studied the gap in the knowledge outlined in Chapter 1. The subjects in the Review of Literature should have been introduced in the Background of the Problem in Chapter 1. Chapter 2 is not a textbook of subject matter loosely related to the subject of the study.  Every research study that is mentioned should in some way bear upon the gap in the knowledge, and each study that is mentioned should end with the comment that the study did not collect data about the specific gap in the knowledge of the study as outlined in Chapter 1.

The review should be laid out in major sections introduced by organizational generalizations. An organizational generalization can be a subheading so long as the last sentence of the previous section introduces the reader to what the next section will contain.  The purpose of this chapter is to cite major conclusions, findings, and methodological issues related to the gap in the knowledge from Chapter 1. It is written for knowledgeable peers from easily retrievable sources of the most recent issue possible.

Empirical literature published within the previous 5 years or less is reviewed to prove no mention of the specific gap in the knowledge that is the subject of the dissertation is in the body of knowledge. Common sense should prevail. Often, to provide a history of the research, it is necessary to cite studies older than 5 years. The object is to acquaint the reader with existing studies relative to the gap in the knowledge and describe who has done the work, when and where the research was completed, and what approaches were used for the methodology, instrumentation, statistical analyses, or all of these subjects.

If very little literature exists, the wise student will write, in effect, a several-paragraph book report by citing the purpose of the study, the methodology, the findings, and the conclusions.  If there is an abundance of studies, cite only the most recent studies.  Firmly establish the need for the study.  Defend the methods and procedures by pointing out other relevant studies that implemented similar methodologies. It should be frequently pointed out to the reader why a particular study did not match the exact purpose of the dissertation.

The Review of Literature ends with a Conclusion that clearly states that, based on the review of the literature, the gap in the knowledge that is the subject of the study has not been studied.  Remember that a “summary” is different from a “conclusion.”  A Summary, the final main section, introduces the next chapter.

from http://dissertationwriting.com/wp/writing-literature-review/

Here is the template from a different school (then SCSU)

http://semo.edu/education/images/EduLead_DissertGuide_2007.pdf 

+++++++++++++++++

When conducting qualitative data, how many people should be interviewed? Is there a minimum or a max

Here is my take on it:

Simple question, not so simple answer.

It depends.

Generally, the number of respondents depends on the type of qualitative inquiry: case study methodology, phenomenological study, ethnographic study, or ethnomethodology. However, a rule of thumb is for scholars to achieve saturation point–that is the point in which no fresh information is uncovered in response to an issue that is of interest to the researcher.

If your qualitative method is designed to meet rigor and trustworthiness, thick, rich data is important. To achieve these principles you would need at least 12 interviews, ensuring your participants are the holders of knowledge in the area you intend to investigate. In grounded theory you could start with 12 and interview more if your data is not rich enough.

In IPA the norm tends to be 6 interviews.

You may check the sample size in peer reviewed qualitative publications in your field to find out about popular practice. In all depends on the research problem, choice of specific qualitative approach and theoretical framework, so the answer to your question will vary from few to few dozens.

How many interviews are needed in a qualitative research?

There are different views in literature and no one agreed to the exact number. Here I reviewed some mostly cited references. Based Creswell (2014), it is estimated that 16 participants will provide rich and detailed data. There are a couple of researchers agreed ‎on 10–15 in-depth interviews ‎are ‎sufficient ‎‎ (Guest, Bunce & Johnson 2006; Baker & ‎Edwards 2012).

your methodological choices need to reflect your ontological position and understanding of knowledge production, and that’s also where you can argue a strong case for smaller qualitative studies, as you say. This is not only a problem for certain subjects, I think it’s a problem in certain departments or journals across the board of social science research, as it’s a question of academic culture.

here more serious literature and research (in case you need to cite in Chapter 3)

Sample Size and Saturation in PhD Studies Using Qualitative Interviews

http://www.qualitative-research.net/index.php/fqs/article/view/1428/3027

https://researcholic.wordpress.com/2015/03/20/sample_size_interviews/

Gaskell, George (2000). Individual and Group Interviewing. In Martin W. Bauer & George Gaskell (Eds.), Qualitative Researching With Text, Image and Sound. A Practical Handbook (pp. 38-56). London: SAGE Publications.

Lieberson, Stanley 1991: “Small N’s and Big Conclusions.” Social Forces 70:307-20. (http://www.jstor.org/pss/2580241)

Savolainen, Jukka 1994: “The Rationality of Drawing Big Conclusions Based on Small Samples.” Social Forces 72:1217-24. (http://www.jstor.org/pss/2580299).

Small, M.(2009) ‘How many cases do I need ? On science and the logic of case selection in field-based research’ Ethnography 10(1) 5-38

Williams,M. (2000) ‘Interpretivism and generalisation ‘ Sociology 34(2) 209-224

http://james-ramsden.com/semi-structured-interviews-how-many-interviews-is-enough/

+++++++++++++++++

how to start your writing process

If you are a Pinterest user, you are welcome to just sbuscribe to the board:

https://www.pinterest.com/aidedza/doctoral-cohort/

otherwise, I am mirroring the information also in the IMS blog:

https://blog.stcloudstate.edu/ims/2017/08/13/analytical-essay/ 

+++++++++++++++++++++++++++

APA citing of “unusual” resources

https://blog.stcloudstate.edu/ims/2017/08/06/apa-citation/

+++++++++++++++++++++++

statistical modeling: your guide to Chapter 3

working on your dissertation, namely Chapter 3, you probably are consulting with the materials in this shared folder:

https://drive.google.com/drive/folders/0B7IvS0UYhpxFVTNyRUFtNl93blE?usp=sharing

In it, there is a subfolder, called “stats related materials”
https://drive.google.com/open?id=0B7IvS0UYhpxFcVg3aWxCX0RVams

where you have several documents from the Graduate school and myself to start building your understanding and vocabulary regarding your quantitative, qualitative or mixed method research.

It has been agreed that before you go to the Statistical Center (Randy Kolb), it is wise to be prepared and understand the terminology as well as the basics of the research methods.

Please have an additional list of materials available through the SCSU library and the Internet. They can help you further with building a robust foundation to lead your research:

https://blog.stcloudstate.edu/ims/2017/07/10/intro-to-stat-modeling/

In this blog entry, I shared with you:

  1. Books on intro to stat modeling available at the library. I understand the major pain borrowing books from the SCSU library can constitute, but you can use the titles and the authors and see if you can borrow them from your local public library
  2. I also sought and shared with you “visual” explanations of the basics terms and concepts. Once you start looking at those, you should be able to further research (e.g. YouTube) and find suitable sources for your learning style.

I (and the future cohorts) will deeply appreciate if you remember to share those “suitable sources for your learning style” either by sharing in this Google Group thread and/or sharing in the comments section of the blog entry: https://blog.stcloudstate.edu/ims/2017/07/10/intro-to-stat-modeling.  Your Facebook group page is also a good place to discuss among ourselves best practices to learn and use research methods for your chapter 3.

++++++++++++++++
search for sources

Google just posted on their Facebook profile a nifty short video on Google Search
https://blog.stcloudstate.edu/ims/2017/06/26/google-search/

Watching the video, you may remember the same #BooleanSearch techniques from our BI (bibliography instruction) session of last semester.

Considering the fact of preponderance of information in 2017: your Chapter 2 is NOT ONLY about finding information regrading your topic.
Your Chapter 2 is about proving your extensive research of the existing literature.

The techniques presented in the short video will arm you with methods to dig deeper and look further.

If you would like to do a decent job exploring all corners of the vast area called Internet, please consider other search engines similar to Google Scholar:

Microsoft Semantic Scholar (Semantic Scholar); Microsoft Academic Search; Academicindex.net; Proquest Dialog; Quetzal; arXiv;

https://www.google.com/; https://scholar.google.com/ (3 min); http://academic.research.microsoft.com/http://www.dialog.com/http://www.quetzal-search.infohttp://www.arXiv.orghttp://www.journalogy.com/
More about such search engines in the following blog entries:

https://blog.stcloudstate.edu/ims/2017/01/19/digital-literacy-for-glst-495/

and

https://blog.stcloudstate.edu/ims/2017/05/01/history-becker/

Let me know, if more info needed and/or you need help embarking on the “deep” search

+++++++++++++++++

tips for writing and proofreading

please have several infographics to help you with your writing habits (organization) and proofreading, posted in the IMS blog:

https://blog.stcloudstate.edu/ims/2017/06/11/writing-first-draft/
https://blog.stcloudstate.edu/ims/2017/06/11/prewriting-strategies/ 

https://blog.stcloudstate.edu/ims/2017/06/11/essay-checklist/

++++++++++++++

letter – request copyright permission

Here are several samples on mastering such letter:

https://registrar.stanford.edu/students/dissertation-and-thesis-submission/preparing-engineer-theses-paper-submission/sample-3

http://www.iup.edu/graduatestudies/resources-for-current-students/research/thesis-dissertation-information/before-starting-your-research/copyright-permission-instructions-and-sample-letter/

https://brocku.ca/webfm_send/25032

 

+++++++++++++++++

 

 

 

Research and Ethics: If Facebook can tweak our emotions and make us vote, what else can it Do?

If Facebook can tweak our emotions and make us vote, what else can it do?

http://www.businessinsider.com/facebook-calls-experiment-innovative-2014-7#ixzz36PtsxVfL

Google’s chief executive has expressed concern that we don’t trust big companies with our data – but may be dismayed at Facebook’s latest venture into manipulation

Please consider the information on Power, Privacy, and the Internet and details on ethics and big data in this IMS blog entry:https://blog.stcloudstate.edu/ims/2014/07/01/privacy-and-surveillance-obama-advisor-john-podesta-every-country-has-a-history-of-going-over-the-line/

important information:
Please consider the SCSU Research Ethics and the IRB (Institutional Review Board) document:
http://www.stcloudstate.edu/graduatestudies/current/culmProject/documents/ResearchEthicsandQualitative–IRBPresentationforGradStudentsv2.2011.pdf
For more information, please contact the SCSU Institutional Review Board : http://www.stcloudstate.edu/irb/default.asp

The Facebook Conundrum: Where Ethics and Science Collide

http://blogs.kqed.org/mindshift/2014/07/the-facebook-conundrum-where-ethics-and-science-collide

The field of learning analytics isn’t just about advancing the understanding of learning. It’s also being applied in efforts to try to influence and predict student behavior.

Learning analytics has yet to demonstrate its big beneficial breakthrough, its “penicillin,” in the words of Reich. Nor has there been a big ethical failure to creep lots of people out.

“There’s a difference,” Pistilli says, “between what we can do and what we should do.”

Emerging Trends and Impacts of the Internet of Things in Libraries

Emerging Trends and Impacts of the Internet of Things in Libraries

https://www.igi-global.com/gateway/book/244559

Chapters:

Holland, B. (2020). Emerging Technology and Today’s Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 1-33). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch001

The purpose of this chapter is to examine emerging technology and today’s libraries. New technology stands out first and foremost given that they will end up revolutionizing every industry in an age where digital transformation plays a major role. Major trends will define technological disruption. The next-gen of communication, core computing, and integration technologies will adopt new architectures. Major technological, economic, and environmental changes have generated interest in smart cities. Sensing technologies have made IoT possible, but also provide the data required for AI algorithms and models, often in real-time, to make intelligent business and operational decisions. Smart cities consume different types of electronic internet of things (IoT) sensors to collect data and then use these data to manage assets and resources efficiently. This includes data collected from citizens, devices, and assets that are processed and analyzed to monitor and manage, schools, libraries, hospitals, and other community services.

Makori, E. O. (2020). Blockchain Applications and Trends That Promote Information Management. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 34-51). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch002
Blockchain revolutionary paradigm is the new and emerging digital innovation that organizations have no choice but to embrace and implement in order to sustain and manage service delivery to the customers. From disruptive to sustaining perspective, blockchain practices have transformed the information management environment with innovative products and services. Blockchain-based applications and innovations provide information management professionals and practitioners with robust and secure opportunities to transform corporate affairs and social responsibilities of organizations through accountability, integrity, and transparency; information governance; data and information security; as well as digital internet of things.
Hahn, J. (2020). Student Engagement and Smart Spaces: Library Browsing and Internet of Things Technology. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 52-70). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch003
The purpose of this chapter is to provide evidence-based findings on student engagement within smart library spaces. The focus of smart libraries includes spaces that are enhanced with the internet of things (IoT) infrastructure and library collection maps accessed through a library-designed mobile application. The analysis herein explored IoT-based browsing within an undergraduate library collection. The open stacks and mobile infrastructure provided several years (2016-2019) of user-generated smart building data on browsing and selecting items in open stacks. The methods of analysis used in this chapter include transactional analysis and data visualization of IoT infrastructure logs. By analyzing server logs from the computing infrastructure that powers the IoT services, it is possible to infer in greater detail than heretofore possible the specifics of the way library collections are a target of undergraduate student engagement.
Treskon, M. (2020). Providing an Environment for Authentic Learning Experiences. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 71-86). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch004
The Loyola Notre Dame Library provides authentic learning environments for undergraduate students by serving as “client” for senior capstone projects. Through the creative application of IoT technologies such as Arduinos and Raspberry Pis in a library setting, the students gain valuable experience working through software design methodology and create software in response to a real-world challenge. Although these proof-of-concept projects could be implemented, the library is primarily interested in furthering the research, teaching, and learning missions of the two universities it supports. Whether the library gets a product that is worth implementing is not a requirement; it is a “bonus.”
Rashid, M., Nazeer, I., Gupta, S. K., & Khanam, Z. (2020). Internet of Things: Architecture, Challenges, and Future Directions. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 87-104). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch005
The internet of things (IoT) is a computing paradigm that has changed our daily livelihood and functioning. IoT focuses on the interconnection of all the sensor-based devices like smart meters, coffee machines, cell phones, etc., enabling these devices to exchange data with each other during human interactions. With easy connectivity among humans and devices, speed of data generation is getting multi-fold, increasing exponentially in volume, and is getting more complex in nature. In this chapter, the authors will outline the architecture of IoT for handling various issues and challenges in real-world problems and will cover various areas where usage of IoT is done in real applications. The authors believe that this chapter will act as a guide for researchers in IoT to create a technical revolution for future generations.
Martin, L. (2020). Cloud Computing, Smart Technology, and Library Automation. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 105-123). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch006
As technology continues to change, the landscape of the work of librarians and libraries continue to adapt and adopt innovations that support their services. Technology also continues to be an essential tool for dissemination, retrieving, storing, and accessing the resources and information. Cloud computing is an essential component employed to carry out these tasks. The concept of cloud computing has long been a tool utilized in libraries. Many libraries use OCLC to catalog and manage resources and share resources, WorldCat, and other library applications that are cloud-based services. Cloud computing services are used in the library automation process. Using cloud-based services can streamline library services, minimize cost, and the need to have designated space for servers, software, or other hardware to perform library operations. Cloud computing systems with the library consolidate, unify, and optimize library operations such as acquisitions, cataloging, circulation, discovery, and retrieval of information.
Owusu-Ansah, S. (2020). Developing a Digital Engagement Strategy for Ghanaian University Libraries: An Exploratory Study. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 124-139). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch007
This study represents a framework that digital libraries can leverage to increase usage and visibility. The adopted qualitative research aims to examine a digital engagement strategy for the libraries in the University of Ghana (UG). Data is collected from participants (digital librarians) who are key stakeholders of digital library service provision in the University of Ghana Library System (UGLS). The chapter reveals that digital library services included rare collections, e-journal, e-databases, e-books, microfilms, e-theses, e-newspapers, and e-past questions. Additionally, the research revealed that the digital library service patronage could be enhanced through outreach programmes, open access, exhibitions, social media, and conferences. Digital librarians recommend that to optimize digital library services, literacy programmes/instructions, social media platforms, IT equipment, software, and website must be deployed. In conclusion, a DES helps UGLS foster new relationships, connect with new audiences, and establish new or improved brand identity.
Nambobi, M., Ssemwogerere, R., & Ramadhan, B. K. (2020). Implementation of Autonomous Library Assistants Using RFID Technology. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 140-150). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch008
This is an interesting time to innovate around disruptive technologies like the internet of things (IoT), machine learning, blockchain. Autonomous assistants (IoT) are the electro-mechanical system that performs any prescribed task automatically with no human intervention through self-learning and adaptation to changing environments. This means that by acknowledging autonomy, the system has to perceive environments, actuate a movement, and perform tasks with a high degree of autonomy. This means the ability to make their own decisions in a given set of the environment. It is important to note that autonomous IoT using radio frequency identification (RFID) technology is used in educational sectors to boost the research the arena, improve customer service, ease book identification and traceability of items in the library. This chapter discusses the role, importance, the critical tools, applicability, and challenges of autonomous IoT in the library using RFID technology.
Priya, A., & Sahana, S. K. (2020). Processor Scheduling in High-Performance Computing (HPC) Environment. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 151-179). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch009
Processor scheduling is one of the thrust areas in the field of computer science. The future technologies use a huge amount of processing for execution of their tasks like huge games, programming software, and in the field of quantum computing. In real-time, many complex problems are solved by GPU programming. The primary concern of scheduling is to reduce the time complexity and manpower. Several traditional techniques exit for processor scheduling. The performance of traditional techniques is reduced when it comes to the huge processing of tasks. Most scheduling problems are NP-hard in nature. Many of the complex problems are recently solved by GPU programming. GPU scheduling is another complex issue as it runs thousands of threads in parallel and needs to be scheduled efficiently. For such large-scale scheduling problems, the performance of state-of-the-art algorithms is very poor. It is observed that evolutionary and genetic-based algorithms exhibit better performance for large-scale combinatorial and internet of things (IoT) problems.
Kirsch, B. (2020). Virtual Reality in Libraries. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 180-193). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch010
Librarians are beginning to offer virtual reality (VR) services in libraries. This chapter reviews how libraries are currently using virtual reality for both consumption and creation purposes. Virtual reality tools will be compared and contrasted, and recommendations will be given for purchasing and circulating headsets and VR equipment. Google Tour Creator and a smartphone or 360-degree camera can be used to create a virtual tour of the library and other virtual reality content. These new library services will be discussed along with practical advice and best practices for incorporating virtual reality into the library for instructional and entertainment purposes.
Heffernan, K. L., & Chartier, S. (2020). Augmented Reality Gamifies the Library: A Ride Through the Technological Frontier. In Holland, B. (Ed.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 194-210). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch011
Two librarians at a University in New Hampshire attempted to integrate gamification and mobile technologies into the exploration of, and orientation to, the library’s services and resources. From augmented reality to virtual escape rooms and finally an in-house app created by undergraduate, campus-based, game design students, the library team learned much about the triumphs and challenges that come with attempting to utilize new technologies to reach users in the 21st century. This chapter is a narrative describing years of various attempts, innovation, and iteration, which have led to the library team being on the verge of introducing an app that could revolutionize campus discovery and engagement.
Miltenoff, P. (2020). Video 360 and Augmented Reality: Visualization to Help Educators Enter the Era of eXtended Reality. In Holland, B. (Eds.), Emerging Trends and Impacts of the Internet of Things in Libraries (pp. 211-225). IGI Global. http://doi:10.4018/978-1-7998-4742-7.ch012
The advent of all types of eXtended Reality (XR)—VR, AR, MR—raises serious questions, both technological and pedagogical. The setup of campus services around XR is only the prelude to the more complex and expensive project of creating learning content using XR. In 2018, the authors started a limited proof-of-concept augmented reality (AR) project for a library tour. Building on their previous research and experience creating a virtual reality (VR) library tour, they sought a scalable introduction of XR services and content for the campus community. The AR library tour aimed to start us toward a matrix for similar services for the entire campus. They also explored the attitudes of students, faculty, and staff toward this new technology and its incorporation in education, as well as its potential and limitations toward the creation of a “smart” library.

1 2 3 5