What can the government do about big data fairness?
https://fcw.com/articles/2016/05/23/big-data-fairness.aspx
At a Ford Foundation conference dubbed Fairness by Design, officials, academics and advocates discussed how to address the problem of encoding human bias in algorithmic analysis. The White House recently issued a report on the topic to accelerate research into the issue.
The FTC released two studies on how big data is used to segment consumers into profiles and interests.
U.S. CTO Megan Smith said the government has been “creating a seat for these techies,” but that training future generations of data scientists to tackle these issues depends on what we do today. “It’s how did we teach our children?” she said. “Why don’t we teach math and science the way we teach P.E. and art and music and make it fun?”
“Ethics is not just an elective, but some portion of the main core curriculum.”
more on big data in this IMS blog:
https://blog.stcloudstate.edu/ims?s=big+data
Higher Ed Can Be a One-Two Punch
According to a recent survey, many colleges lack critical analytics skills to effectively leverage data.
The
U.S. Bureau of Labor Statistics backs that up, predicting that employment of statisticians will grow 34 percent between 2014 and 2024. Not surprisingly, the bureau notes, that is “much faster than the average for all occupations.”
More on analytics and big data in this IMS blog:
https://blog.stcloudstate.edu/ims?s=analytics
https://blog.stcloudstate.edu/ims?s=big+data
Center for Digital Education (CDE)
real-time impact on curriculum structure, instruction delivery and student learning, permitting change and improvement. It can also provide insight into important trends that affect present and future resource needs.
Big Data: Traditionally described as high-volume, high-velocity and high-variety information.
Learning or Data Analytics: The measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs.
Educational Data Mining: The techniques, tools and research designed for automatically extracting meaning from large repositories of data generated by or related to people’s learning activities in educational settings.
Predictive Analytics: Algorithms that help analysts predict behavior or events based on data.
Predictive Modeling: The process of creating, testing and validating a model to best predict the probability of an outcome.
Data analytics, or the measurement, collection, analysis and reporting of data, is driving decisionmaking in many institutions. However, because of the unique nature of each district’s or college’s data needs, many are building their own solutions.
For example, in 2014 the nonprofit company inBloom, Inc., backed by $100 million from the Gates Foundation and the Carnegie Foundation for the Advancement of Teaching, closed its doors amid controversy regarding its plan to store, clean and aggregate a range of student information for states and districts and then make the data available to district-approved third parties to develop tools and dashboards so the data could be used by classroom educators.22
Tips for Student Data Privacy
Know the Laws and Regulations
There are many regulations on the books intended to protect student privacy and safety: the Family Educational Rights and Privacy Act (FERPA), the Protection of Pupil Rights Amendment (PPRA), the Children’s Internet Protection Act (CIPA), the Children’s Online Privacy Protection Act (COPPA) and the Health Insurance Portability and Accountability Act (HIPAA)
— as well as state, district and community laws. Because technology changes so rapidly, it is unlikely laws and regulations will keep pace with new data protection needs. Establish a committee to ascertain your institution’s level of understanding of and compliance with these laws, along with additional safeguard measures.
Make a Checklist Your institution’s privacy policies should cover security, user safety, communications, social media, access, identification rules, and intrusion detection and prevention.
Include Experts
To nail down compliance and stave off liability issues, consider tapping those who protect privacy for a living, such as your school attorney, IT professionals and security assessment vendors. Let them review your campus or district technologies as well as devices brought to campus by students, staff and instructors. Finally, a review of your privacy and security policies, terms of use and contract language is a good idea.
Communicate, Communicate, Communicate
Students, staff, faculty and parents all need to know their rights and responsibilities regarding data privacy. Convey your technology plans, policies and requirements and then assess and re-communicate those throughout each year.
“Anything-as-a-Service” or “X-as-a-Service” solutions can help K-12 and higher education institutions cope with big data by offering storage, analytics capabilities and more. These include:
• Infrastructure-as-a-Service (IaaS): Providers offer cloud-based storage, similar to a campus storage area network (SAN)
• Platform-as-a-Service (PaaS): Opens up application platforms — as opposed to the applications themselves — so others can build their own applications
using underlying operating systems, data models and databases; pre-built application components and interfaces
• Software-as-a-Service (SaaS): The hosting of applications in the cloud
• Big-Data-as-a-Service (BDaaS): Mix all the above together, upscale the amount of data involved by an enormous amount and you’ve got BDaaS
Suggestions:
Use accurate data correctly
Define goals and develop metrics
Eliminate silos, integrate data
Remember, intelligence is the goal
Maintain a robust, supportive enterprise infrastructure.
Prioritize student privacy
Develop bullet-proof data governance guidelines
Create a culture of collaboration and sharing, not compliance.
more on big data in this IMS blog:
https://blog.stcloudstate.edu/ims/?s=big+data&submit=Search
Researchers use an app to predict GPA based on smartphone use
http://www.engadget.com/2015/05/26/researchers-predict-gpa-with-an-app/
Dartmouth College and the University of Texas at Austin have developed an app that tracks smartphone activity to compute a grade point average that’s within 0.17 of a point.
More on Big Data in education in this blog:
https://blog.stcloudstate.edu/ims/2015/03/30/big-data-and-education/
Big Data is Finally Coming to Education Here’s What We’ve Learned So Far
http://www.edukwest.com/big-data-education/
Long lectures don’t work.
The best predictor of future course behavior is past course behavior.
Data from MOOCs suggest that one way to boost completion rates is to increase engagement early in the course.
Even in online courses, offline support is essential.
More IMS blog entries on Big Data:
https://blog.stcloudstate.edu/ims/?s=big+data
LITA discussion (attached below) on how one can easily do real-time but also big-data like estimate of patrons’ attendance in the library.
GitHub https://github.com/ and listuser@chillco.com Cary, for wifi connected counter
From: Cary Gordon [mailto:listuser@chillco.com]
Sent: Sunday, March 29, 2015 9:35 AM
To: lita-l@lists.ala.org
Subject: [lita-l] Re: patron/door counter
I am not an expert on door counters, but I think that it would be pretty simple — no, really — to make your own system using a small, inexpensive computer like a Raspberry Pi with a wifi adapter and connect it to your current counter. It would take a little programming, but the result could be something that the community could share.
If you are interested in this, we could create a project on GitHub. I would be happy to help.
Cary
On Mar 28, 2015, at 2:49 PM, Mason Yang <hyang@marymount.edu> wrote:
Hi,
We have a old door counter which can only be checked manually. We are looking for a new door counter system which can help us to find out how many patrons come in during certain hours. I found a couple systems online and would like know if some libraries recently installed any door counter systems and what’s your experience with them. I made a short list of questions below. If you can take a few minutes to answer those questions or just drop a line or two of your comments to reply to this email, I will really appreciate it.
Thanks in advance for your time and inputs!
- what’s the model and the brand of the door counter system?
- Wired to your network or wireless connected to the internet?
- Does the system count the number of entries/exists hourly?
- Dose the system generate reports,if any, automatically?
- What’s your general experience of the system?
- Will you recommend the system to other libraries?
Thanks,
—
Mason Yang
Electronic Services Librarian
Library & Learning Services
Marymount University
Phone: 703-526-6844
Fax: 703-284-1685
mason.yang@marymount.edu
A Bried History of BIG Data
Volume, Velocity, Variety
Business Intelligence
Internet of Things
privacy, security, intellectual property
mobile Internet
For all the data and feedback they provide, student information systems interfere with learning.
“School isn’t about learning. It’s about doing well.”
The singular focus on grades that these systems encourage turns learning into a competitive, zero-sum game for students.
My notes:
the parallel with the online grades systems at K12 is the Big Data movement at Higher Ed. Big Data must be about assisting teaching, not about determining teaching and instructors must be very well aware and very carefully navigating in this nebulous areas of assisting versus determining.
This article about quantifying management of teaching and learning in K12 reminds me the big hopes put on technocrats governing counties and economies in the 70s of the last centuries when the advent of the computers was celebrated as the solution of all our problems. Haven’t we, as civilization learned anything from that lesson?