Searching for "collaboration"

Virtual Reality Health Risks

What Researchers Want Teachers to Know About Virtual Reality’s Health Risks

By Jenny Abamu     Feb 16, 2018

https://www.edsurge.com/news/2018-02-16-what-researchers-want-teachers-to-know-about-virtual-reality-s-health-risks

with Google ramping up sales of its Expeditions Kit, and Facebook giving away 500 free Oculus Rift headsets to schools in Arkansas, the number of teachers using VR tools in U.S. classrooms could jump to more than 15 percent by 2021, predicts Futuresource, a market research firm.

A recent study was done by Children and Virtual Reality, a collaboration between researchers, VR companies, universities and health organizations, found that using VR tools could have significant health impacts on children.

What the researchers found in the third phase of the study, published last October, was that usage of VR headsets could impact a child’s vision, balance and spatial awareness

++++++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+health

Literature on Digital Humanities

Burdick, A. (2012). Digital humanities . Cambridge, MA: MIT Press.

https://mnpals-scs.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma990078472690104318&context=L&vid=01MNPALS_SCS:SCS&search_scope=MyInst_and_CI&tab=Everything&lang=en

digital humanities is born f the encounter between traditional humanities and computational methods.

p. 5. From Humanism to Humanities
While the foundations of of humanistic inquiry and the liberal arts can be traced back in the west to the medieval trivium and quadrivium, the modern and human sciences are rooted in the Renaissance shift from a medieval, church dominated, theocratic world view to be human centered one period the gradual transformation of early humanism into the disciplines that make up the humanities today Was profoundly shaped by the editorial practices involved in the recovery of the corpus of works from classical antiquity

P. 6. The shift from humanism to the institution only sanctioned disciplinary practices and protocols that we associate with the humanities today is best described as a gradual process of subdivision and specialization.
P. 7. Text-based disciplines in studies (classics, literature, philosophy, the history of ideas) make up, from the very start, the core of both the humanities and the great books curricular instituted in the 1920s and 1930s.
P. 10. Transmedia modes of argumentation
In the 21st-century, we communicate in media significantly more varied, extensible, and multiplicative then linear text. From scalable databases to information visualizations, from video lectures to multi-user virtual platforms serious content and rigorous argumentation take shape across multiple platforms in media. The best digital humanities pedagogy and research projects train students both in “reading “and “writing “this emergent rhetoric and in understanding how the reshape and three model humanistic knowledge. This means developing critically informed literacy expensive enough to include graphic design visual narrative time based media, and the development of interfaces (Rather then the rote acceptance of them as off-the-shelf products).
P. 11. The visual becomes ever more fundamental to the digital humanities, in ways that compliment, enhance, and sometimes are in pension with the textual.
There is no either/or, no simple interchangeability between language and the visual, no strict sub ordination of the one to the other. Words are themselves visual but other kinds of visual constructs do different things. The question is how to use each to its best effect into device meaningful interpret wing links, to use Theodor Nelson’s ludic neologism.
P. 11. The suite of expressive forms now encompasses the use of sound, motion graphics, animation, screen capture, video, audio, and the appropriation and into remix sink of code it underlines game engines. This expanded range of communicative tools requires those who are engaged in digital humanities world to familiarize themselves with issues, discussions, and debates in design fields, especially communication and interaction design. Like their print predecessors, form at the convention center screen environments can become naturalized all too quickly, with the results that the thinking that informed they were designed goes unperceived.

p. 13.

For digital humanists, design is a creative practice harnessing cultural, social, economic, and technological constraints in order to bring systems and objects into the world. Design in dialogue with research is simply a picnic, but when used to pose in frame questions about knowledge, design becomes an intellectual method. Digital humanities is a production based in Denver in which theoretical issues get tested in the design of implementations and implementations or loci after your radical reflection and elaboration.
Did you thaw humanists have much to learn from communication and media design about how to juxtapose and integrate words and images create hire he is of reading, Forge pathways of understanding, deployed grades in templates to best effect, and develop navigational schemata that guide in produce meaningful interactions.
P. 15.  The field of digital digital humanities me see the emergence of polymaths who can “ do it all” : Who can research, write, shoot, edit, code, model, design, network, and dialogue with users. But there is also ample room for specialization and, particularly, for collaboration.
P. 16. Computational activities in digital humanities.
The foundational layer, computation, relies on principles that are, on the surface, at odds with humanistic methods.
P. 17. The second level involves processing in a way that conform to computational capacities, and this were explored in the first generation of digital scholarship and stylometrics, concordance development, and indexing.
P. 17.
Duration, analysis, editing, modeling.
Duration, analysis, editing, and modeling comprise fundamental activities at the core of digital humanities. Involving archives, collections, repositories, and other aggregations of materials, duration is the selection and organization of materials in an interpretive framework, argument, or exhibit.
P. 18. Analysis refers to the processing of text or data: statistical and quantitative methods of analysis have brought close readings of texts (stylometrics and genre analysis, correlation, comparisons of versions for alter attribution or usage patterns ) into dialogue with distant reading (The crunching cuff large quantities of information across the corpus of textual data or its metadata).
Edit think has been revived with the advent of digital media and the web and to continue to be an integral activity in textual as well as time based formats.
P. 18. Model link highlights the notion of content models- shapes of argument expressed in information structures in their design he digital project is always an expression of assumptions about knowledge: usually domain specific knowledge given an explicit form by the model in which it is designed.
P. 19.  Each of these areas of activity- cure ration, analysis, editing, and modeling is supported by the basic building blocks of digital activity. But they also depend upon networks and infrastructure that are cultural and institutional as well as technical. Servers, software, and systems administration are key elements of any project design.
P. 30. Digital media are not more “evolved” have them print media nor are books obsolete; but the multiplicity of media in the very processes of mediation entry mediation in the formation of cultural knowledge and humanistic inquiry required close attention. Tug link between distant and clothes, macro and micro, and surface in depth becomes the norm. Here, we focus on the importance of visualization to the digital humanities before moving on to other, though often related, genre and methods such as Locative investigation, thick mapping, animated archives, database documentaries, platform studies, and emerging practices like cultural analytics, data mining and humanities gaming.
P. 35. Fluid texture out what he refers to the mutability of texts in the variants and versions Whether these are produced through Authorial changes, anything, transcription, translation, or print production

Cultural Analytics, aggregation, and data mining.
The field of cultural Analytics has emerged over the past few years, utilizing tools of high-end computational analysis and data visualization today sect large-scale coach data sets. Cultural Analytic does Not analyze cultural artifacts, but operates on the level of digital models of this materials in aggregate. Again, the point is not to pit “close” hermeneutic reading against “distant” data mapping, but rather to appreciate the synergistic possibilities and tensions that exist between a hyper localized, deep analysis and a microcosmic view

p. 42.

Data mining is a term that covers a host of picnics for analyzing digital material by “parameterizing” some feature of information and extract in it. This means that any element of a file or collection of files that can be given explicit specifications,  or parameters, can be extracted from those files for analysis.
Understanding the rehtoric of graphics is another essential skill, therefore, in working at a skill where individual objects are lost in the mass of processed information and data. To date, much humanities data mining has merely involved counting. Much more sophisticated statistical methods and use of probability will be needed for humanists to absorb the lessons of the social sciences into their methods
P. 42. Visualization and data design
Currently, visualization in the humanities uses techniques drawn largely from the social sciences, Business applications, and the natural sciences, all of which require self-conscious criticality in their adoption. Such visual displays including graphs and charts, may present themselves is subjective or even unmediated views of reality, rather then is rhetorical constructs.

+++++++++++++++++++++++++++
Warwick, C., Terras, M., & Nyhan, J. (2012). Digital humanities in practice . London: Facet Publishing in association with UCL Centre for Digital Humanities.

https://mnpals-scs.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma990078423690104318&context=L&vid=01MNPALS_SCS:SCS&search_scope=MyInst_and_CI&tab=Everything&lang=en

 

game based learning

How Game-Based Learning Empowers Students for the Future

https://www.edsurge.com/news/2019-01-22-its-2019-so-why-do-21st-century-skills-still-matter

educators’ guide to game-based learning, packed with resources for gaming gurus and greenhorns alike.

How are schools and districts preparing students for future opportunities? What is the impact of game-based learning?

It’s 2019. So Why Do 21st-Century Skills Still Matter?

By Suzie Boss     Jan 22, 2019

21st-century trends such as makerspaces, flipped learning, genius hour, gamification, and more.

EdLeader21, a national network of Battelle for Kids.has developed a toolkit to guide districts and independent schools in developing their own “portrait of a graduate” as a visioning exercise. In some communities, global citizenship rises to the top of the wish list of desired outcomes. Others emphasize entrepreneurship, civic engagement, or traits like persistence or self-management.

ISTE Standards for Students highlight digital citizenship and computational thinking as key skills that will enable students to thrive as empowered learners. The U.S. Department of Education describes a globally competent student as one who can investigate the world, weigh perspectives, communicate effectively with diverse audiences, and take action.

Frameworks provide mental models, but “don’t usually help educators know what to do differently,” argues technology leadership expert Scott McLeod in his latest book, Harnessing Technology for Deeper Learning. He and co-author Julie Graber outline deliberate shifts that help teachers redesign traditional lessons to emphasize goals such as critical thinking, authenticity, and conceptual understanding.

1. Wondering how to teach and assess 21st-century competencies? The Buck Institute for Education offers a wide range of resources, including the book, PBL for 21st Century Success: Teaching Critical Thinking, Collaboration, Communication, and Creativity (Boss, 2013), and downloadable rubrics for each of the 4Cs.

2. For more strategies about harnessing technology for deeper learning,listen to the EdSurge podcast featuring edtech expert and author Scott McLeod.

3. Eager to see 21st-century learning in action? Getting Smart offers suggestions for using school visits as a springboard for professional learning, including a list of recommended sites. Bob Pearlman, a leader in 21st century learning, offers more recommendations.

++++++++++++++
more on game- based learning in this IMS blog
https://blog.stcloudstate.edu/ims?s=game+based

Microsoft BrightBytes DataSense

Microsoft Takes a Bite Out of BrightBytes, Acquiring Its DataSense Platform and Team

Tony Wan     Feb 5, 2019

https://www.edsurge.com/news/2019-02-04-microsoft-takes-a-bite-out-of-brightbytes-acquires-its-datasense-platform-and-team

From launching new tablets to virtual-reality curriculum, Microsoft has added plenty to its educational offerings

DataSense, a data management platform developed by Brightbytes.

DataSense is a set of professional services that work with K-12 districts to collect data from different data systems, translate them into unified formats and aggregate that information into a unified dashboard for reporting purposes.

DataSense traces its origins to Authentica Solutions, an education data management company founded in 2013.

A month later, BrightBytes acquired Authentica. The deal was hailed as a “major milestone in the industry” and appeared to be a complement to BrightBytes’ flagship offering, Clarity, a suite of data analytics tools that help educators understand the impact of technology spending and usage on student outcomes.

Of the “Big Five” technology giants, Microsoft has become the most acqui-hungry as of late in the learning and training space. In recent years it purchased several consumer brand names whose services reach into education, including LinkedIn (which owns Lynda.com, now a part of the LinkedIn Learning suite), Minecraft (which has been adapted for use in the classroom) and Github (which released an education bundle).

Last year, Microsoft also acquired a couple of smaller education tools, including Flipgrid, a video-discussion platform popular among teachers, and Chalkup, whose services have been rolled into Microsoft Teams, its competitor to Slack.

MinnState Online Strategies Team 3

SCTCC continue from

Tuesday, October 30 from 9:00am-3:00pm at the System Office, Wells Fargo Place (Saint Paul, MN).

Team 3 is charged with developing a process for prioritizing and selecting collaborative curriculum development and course offering projects that require the use of enterprise instructional design and technology services.

Have expertise in online education that you are willing to share?

The Online Strategy Workgroup needs subject matter experts to participate on one of the three teams below.

  • Team 1 (Access) –  Team 1 is charged with reviewing the existing services provided by the Minnesota State Info Hub and aligning the services they provide with the needs outlined in the corresponding action steps of the Online Strategy report.  This team will utilize the existing levels of funding allocated to the Minnesota State Info Hub without seeking additional financial compensation from campuses.  See what subject matter experts are needed for this team.
  • Team 2 (Quality) –  Team 2 is charged with reviewing the existing services provided by the Minnesota Online Quality Initiative (MOQI) and aligning these services with the needs outlined in the corresponding action steps of this report.  In addition to evaluating faculty development programming options available through MOQI, this team will be responsibility for developing the tools intended to support the quality improvement processes used by campuses.   See what subject matter experts are needed for this team.
  • Team 3 (Collaboration) -Team 3 is charged with developing a process for prioritizing and selecting online collaborative curriculum development and  online course offering projects that require the use of enterprise instructional design and technology services.  See what subject matter experts are needed for this team.

https://mnscu.sharepoint.com/teams/ENTPR-Online-Strategy/SitePages/Team-3—Collaboration.aspx  MinnState STAR ID login: STARID@minnstate.edu

+++++++++++++
November 20, 2016

Becky Lindseth, MIchael Olesen, Bob Bilyk, Stephen Kelly, Kim Lynch, Scott Wojtanowski, Wilson Garland, Martin Springborg, Scott W and Kim Lynch

Proposal Request / Background (description of project proposal)

where does CETL fit here.

https://www.grayassociates.com/

https://distanceminnesota.org/

program level course mapping.
course level modules and learning objectives.

RCE reasonable credit equivalency

IAA inter-agency agreement

RFP request for proposal

Collaborate on Curriculum and Course Offerings (Action A)
Adopting Open Educational Resources (OER) (Action A)
Revenue Sharing Model (Action D)
Instructional Design and Technology Services (Action C)

U of St. Thomas HyFlex model of course delivery

ELI Annual Meeting 2018

https://events.educause.edu/eli/annual-meeting/2018/agenda/the-hyflex-model-of-course-delivery-tribulations-triumphs-and-technology

From: EDUCAUSE Listserv <BLEND-ONLINE@LISTSERV.EDUCAUSE.EDU> on behalf of “Kinsella, John R.” <jrkinsella@STTHOMAS.EDU>
Reply-To: EDUCAUSE Listserv <BLEND-ONLINE@LISTSERV.EDUCAUSE.EDU>
Date: Thursday, November 15, 2018 at 11:43 AM
To: EDUCAUSE Listserv <BLEND-ONLINE@LISTSERV.EDUCAUSE.EDU>
Subject: Re: [BLEND-ONLINE] Flexible Training/Learning Incubation Spaces

We launched our group, STELAR (St. Thomas E-Learning and Research), almost 2 years ago.  Part of that launch included a physical space that offers: Innovative individual and collaborative group study spaces for students, consultation spaces for faculty and our staff, meeting spaces, a Technology Showcase providing access to leading edge technology for faculty and students (VR/AR, AI, ML,) an Active Learning classroom space used for training and for faculty to experiment, and a video recording space for faculty to create course video objects using a Lightboard, touch Panel computer or just talking to the camera.

We’ve seen exceptional usage among our students for this space, likely in part because we partnered with our library to include our space along with the other learning resources for students in our main library.  We have had numerous faculty not only experiment with but then integrate VR/AR and other leading edge technologies in their classes and research projects.  Our classroom is busy consistently for training, class sessions, meetings, etc. and our learning spaces see student use throughout the day and into the evening.  In short, our physical space has become an essential and highly visible part of the work we do around providing opportunities, expertise, and technology for the innovation of teaching and learning (Our tagline: … at the intersection of Pedagogy and Technology)

The reception has been so positive that our space has been used as a model for some new student-focus collaboration spaces around campus.

We have a good deal of information about STELAR as a team on our website: https://www.stthomas.edu/stelar/

It does include some information about our physical space but we’ve also pared that down since our launch.  I’d be happy to connect you with our team if you’d like to learn more about what we’ve done here, where we’ve seen success and ideas that didn’t pan out as we expected.

John Kinsella
Instructional Systems Consultant

ITS – STELAR: St. Thomas E-Learning and Research
(651) 962-7839
jrkinsella@stthomas.edu

24/7 Canvas Support: 1.877.704.2127 or Help button in Canvas course.
Other tech needs contact:Techdesk@stthomas.edu

Digital Learning Essentials: Students/faculty self-enroll here

MoreBlogOnline ShowcaseTrainings & Events, &  Online Teaching Certificate

POD conference 2018 Portland OR

2018 POD Network Conference

Date: November 14, 2018 – November 18, 2018
Location: 921 SW Sixth Ave  Portland, OR, 97204 USA
https://guidebook.com/guide/149245/
https://guidebook.com/guide/149245/event/21577490/
Respondents on the 2016 POD Membership Survey indicated a strong need for learning center management and leadership skills. This session, facilitated by four center directors from very different institutions, responds to this need. Session participants will examine: 1) management and leadership responsibilities, especially in the context of continual change; 2) strategic alignment of the center’s work with institutional mission; and 3) evaluation of center work and demonstration of impact. Participants will leave with an individualized professional development plan, practical tools, and guiding questions that enable them to seek out relevant sessions and colleagues during the conference.
https://guidebook.com/guide/149245/event/21577321/
In this workshop, we explore powerful model (Symposium) for engaging faculty in campus initiatives and supporting them to take a more active role in leading during times of change. We have successfully used symposium to broaden faculty participation in change initiatives, connecting this work to what matters most to faculty and providing avenues for more inclusive collaboration across disciplines and divisions. Much of the workshop will be devoted to helping participants (1) identify areas where they can lead change on their campuses and (2) develop a draft plan for using symposium to increase faculty engagement in these efforts.
https://guidebook.com/guide/149245/event/21577217/
Faculty are often unable to complete a proper learner analysis because they know little about the students that comprise their classlist. At our university, we have been surveying incoming students for five years to collect enhanced demographic data and for the past two years have been sharing aggregate, anonymous data with faculty. Resources have been provided on how to make sense of the data for teaching purposes. In this study, we conducted focus groups with faculty to learn how they have used the data and resources and also to find out what additional data would further support their teaching. (My note: big data in education, as discussed by Nancy Sims keynote at LITA Nov, 2018)
https://guidebook.com/guide/149245/event/21577219/
Summative peer review of teaching (SPRT) is used in many higher education institutions. Unfortunately, the evaluative “power” of SPRT for making high-stakes career decisions can be limited due to lack of meaningful criteria and faculty resistance (Chism, 2008). To address this situation, our teaching and learning centre engaged in a collaborative culture-change initiative to develop a rubric for SPRT that would serve the University-wide committee with responsibility for final recommendation on matters of promotion and tenure. In this session, we discuss our collaborative process, debrief challenges and how we addressed and/or anticipated these, and share the SPRT rubric. (My Note: CETL)
https://guidebook.com/guide/149245/event/21577409/
This session will introduce participants to the gamification of faculty development through an interactive small group design scenario that asks participants to take a traditional faculty development experience and then gamify it using the gamification design framework [1]. Gamification involves the use of game design elements and experiences in non-gaming environments. When applied in faculty development settings, gamification has the potential to encourage faculty engagement and motivation and can lead to behavioral change that can impact their teaching. (My note: ask me; i have been trying to educate CETL directors for the past four years on this opportunity)

++++++++++
more on POD conferences in this IMS blog
https://blog.stcloudstate.edu/ims?s=POD+conference

VR training workers

I explored the inside of a human nose and it convinced me that the real business in VR isn’t gaming, it’s all about training workers

https://www.businessinsider.com/htc-vive-releases-headset-that-shows-the-future-of-vr-is-enterprise-2018-11

Rosalie Chan

  • On Thursday, virtual reality company HTC VIVE announced its new headset called the Vive Focus, which is aimed at enterprises.
  • It can be used for business collaboration, training and education, such as teaching medical students about sleep apnea, showing car designers how to fix and prototype a car, and conducting remote meetings in a 3D virtual space.

Although virtual reality is typically associated with consumers, such as for video gaming, the technology is increasingly being adopted for use in professional settings. VR and augmented reality are projected to grow to $162 billion by 2020, and more products are targeting enterprise use.

What makes this hardware significant is that it’s much simpler and more portable for customers to use, says Dan O’Brien, General Manager of the Americas at HTC VIVE (My note: so he said…). Other VR headsets that only developers may use might involve expensive hardware and require users to stay in one place.

VIVE Sync. This can be used to help employees collaborate with each other in a virtual space, especially when they work remotely. Each employee’s avatar can share ideas, show presentations, import images, show videos and more all in a 3D virtual space (My note: Second Life tried this; and failed; Do you have any NEW ideas, Dan?).

+++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

can XR help students learn

Giving Classroom Experiences (Like VR) More … Dimension

https://www.insidehighered.com/digital-learning/article/2018/11/02/virtual-reality-other-3-d-tools-enhance-classroom-experiences

at a session on the umbrella concept of “mixed reality” (abbreviated XR) here Thursday, attendees had some questions for the panel’s VR/AR/XR evangelists: Can these tools help students learn? Can institutions with limited budgets pull off ambitious projects? Can skeptical faculty members be convinced to experiment with unfamiliar technology?

All four — one each from Florida International UniversityHamilton CollegeSyracuse University and Yale University — have just finished the first year of a joint research project commissioned by Educause and sponsored by Hewlett-Packard to investigate the potential for immersive technology to supplement and even transform classroom experiences.

Campus of the Future” report, written by Jeffrey Pomerantz

Yale has landed on a “hub model” for project development — instructors propose projects and partner with students with technological capabilities to tap into a centralized pool of equipment and funding. (My note: this is what I suggest in my Chapter 2 of Arnheim, Eliot & Rose (2012) Lib Guides)

Several panelists said they had already been getting started on mixed reality initiatives prior to the infusion of support from Educause and HP, which helped them settle on a direction

While 3-D printing might seem to lend itself more naturally to the hard sciences, Yale’s humanities departments have cottoned to the technology as a portal to answering tough philosophical questions.

institutions would be better served forgoing an early investment in hardware and instead gravitating toward free online products like UnityOrganon and You by Sharecare, all of which allow users to create 3-D experiences from their desktop computers.

+++++++++

Campus of the Future” report, written by Jeffrey Pomerantz

https://library.educause.edu/~/media/files/library/2018/8/ers1805.pdf?la=en

XR technologies encompassing 3D simulations, modeling, and production.

This project sought to identify

  • current innovative uses of these 3D technologies,
  • how these uses are currently impacting teaching and learning, and
  • what this information can tell us about possible future uses for these technologies in higher education.

p. 5 Extended reality (XR) technologies, which encompass virtual reality (VR) and augmented reality (AR), are already having a dramatic impact on pedagogy in higher education. XR is a general term that covers a wide range of technologies along a continuum, with the real world at one end and fully immersive simulations at the other.

p. 6The Campus of the Future project was an exploratory evaluation of 3D technologies for instruction and research in higher education: VR, AR, 3D scanning, and 3D printing. The project sought to identify interesting and novel uses of 3D technology

p. 7 HP would provide the hardware, and EDUCAUSE would provide the methodological expertise to conduct an evaluation research project investigating the potential uses of 3D technologies in higher education learning and research.

The institutions that participated in the Campus of the Future project were selected because they were already on the cutting edge of integrating 3D technology into pedagogy. These institutions were therefore not representative, nor were they intended to be representative, of the state of higher education in the United States. These institutions were selected precisely because they already had a set of use cases for 3D technology available for study

p. 9  At some institutions, the group participating in the project was an academic unit (e.g., the Newhouse School of Communications at Syracuse University; the Graduate School of Education at Harvard University). At these institutions, the 3D technology provided by HP was deployed for use more or less exclusively by students and faculty affiliated with the particular academic unit.

p. 10 definitions
there is not universal agreement on the definitions of these
terms or on the scope of these technologies. Also, all of these technologies
currently exist in an active marketplace and, as in many rapidly changing markets, there is a tendency for companies to invent neologisms around 3D technology.

A 3D scanner is not a single device but rather a combination of hardware and
software. There are generally two pieces of hardware: a laser scanner and a digital
camera. The laser scanner bounces laser beams off the surface of an object to
determine its shape and contours.

p. 11 definitions

Virtual reality means that the wearer is completely immersed in a computer
simulation. Several types of VR headsets are currently available, but all involve
a lightweight helmet with a display in front of the eyes (see figure 2). In some
cases, this display may simply be a smartphone (e.g., Google Cardboard); in other
cases, two displays—one for each eye—are integrated into the headset (e.g., HTC
Vive). Most commercially available VR rigs also include handheld controllers
that enable the user to interact with the simulation by moving the controllers
in space and clicking on finger triggers or buttons.

p. 12 definitions

Augmented reality provides an “overlay” of some type over the real world through
the use of a headset or even a smartphone.

In an active technology marketplace, there is a tendency for new terms to be
invented rapidly and for existing terms to be used loosely. This is currently
happening in the VR and AR market space. The HP VR rig and the HTC Vive
unit are marketed as being immersive, meaning that the user is fully immersed in
a simulation—virtual reality. Many currently available AR headsets, however, are
marketed not as AR but rather as MR (mixed reality). These MR headsets have a
display in front of the eyes as well as a pair of front-mounted cameras; they are
therefore capable of supporting both VR and AR functionality.

p. 13 Implementation

Technical difficulties.
Technical issues can generally be divided into two broad categories: hardware
problems and software problems. There is, of course, a common third category:
human error.

p. 15 the technology learning curve

The well-known diffusion of innovations theoretical framework articulates five
adopter categories: innovators, early adopters, early majority, late majority, and
laggards. Everett M. Rogers, Diffusion of Innovations, 5th ed. (New York: Simon and Schuster, 2003).

It is also likely that staff in the campus IT unit or center for teaching and learning already know who (at least some of) these individuals are, since such faculty members are likely to already have had contact with these campus units.
Students may of course also be innovators and early adopters, and in fact
several participating institutions found that some of the most creative uses of 3D technology arose from student projects

p. 30  Zeynep Tufekci, in her book Twitter and Tear Gas

definition: There is no necessary distinction between AR and VR; indeed, much research
on the subject is based on a conception of a “virtuality continuum” from entirely
real to entirely virtual, where AR lies somewhere between those ends of the
spectrum.  Paul Milgram and Fumio Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information Systems, vol. E77-D, no. 12 (1994); Steve Mann, “Through the Glass, Lightly,” IEEE Technology and Society Magazine 31, no. 3 (2012): 10–14.

For the future of 3D technology in higher education to be realized, that
technology must become as much a part of higher education as any technology:
the learning management system (LMS), the projector, the classroom. New
technologies and practices generally enter institutions of higher education as
initiatives. Several active learning classroom initiatives are currently under
way,36 for example, as well as a multi-institution open educational resources
(OER) degree initiative.37

p. 32 Storytelling

Some scholars have argued that all human communication
is based on storytelling;41 certainly advertisers have long recognized that
storytelling makes for effective persuasion,42 and a growing body of research
shows that narrative is effective for teaching even topics that are not generally
thought of as having a natural story, for example, in the sciences.43

p. 33 accessibility

The experience of Gallaudet University highlights one of the most important
areas for development in 3D technology: accessibility for users with disabilities.

p. 34 instructional design

For that to be the case, 3D technologies must be incorporated into the
instructional design process for building and redesigning courses. And for that
to be the case, it is necessary for faculty and instructional designers to be familiar
with the capabilities of 3D technologies. And for that to be the case, it may
not be necessary but would certainly be helpful for instructional designers to
collaborate closely with the staff in campus IT units who support and maintain
this hardware.

Every institution of higher
education has a slightly different organizational structure, of course, but these
two campus units are often siloed. This siloing may lead to considerable friction
in conducting the most basic organizational tasks, such as setting up meetings
and apportioning responsibilities for shared tasks. Nevertheless, IT units and
centers for teaching and learning are almost compelled to collaborate in order
to support faculty who want to integrate 3D technology into their teaching. It
is necessary to bring the instructional design expertise of a center for teaching
and learning to bear on integrating 3D technology into an instructor’s teaching (My note: and where does this place SCSU?) Therefore,
one of the most critical areas in which IT units and centers for teaching and
learning can collaborate is in assisting instructors to develop this integration
and to develop learning objects that use 3D technology. p. 35 For 3D technology to really gain traction in higher education, it will need to be easier for instructors to deploy without such a large support team.

p. 35 Sites such as Thingiverse, Sketchfab, and Google Poly are libraries of freely
available, user-created 3D models.

ClassVR is a tool that enables the simultaneous delivery of a simulation to
multiple headsets, though the simulation itself may still be single-user.

p. 37 data management:

An institutional repository is a collection of an institution’s intellectual output, often consisting of preprint journal articles and conference papers and the data sets behind them.49 An
institutional repository is often maintained by either the library or a partnership
between the library and the campus IT unit. An institutional repository therefore has the advantage of the long-term curatorial approach of librarianship combined with the systematic backup management of the IT unit. (My note: leaves me wonder where does this put SCSU)

Sharing data sets is critical for collaboration and increasingly the default for
scholarship. Data is as much a product of scholarship as publications, and there
is a growing sentiment among scholars that it should therefore be made public.50

++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+definition

smart classroom

Are ‘Smart’ Classrooms the Future?

Indiana University explores that question by bringing together tech partners and university leaders to share ideas on how to design classrooms that make better use of faculty and student time.

By Julie Johnston 10/31/18 https://campustechnology.com/articles/2018/10/31/are-smart-classrooms-the-future.aspx

  • Untether instructors from the room’s podium, allowing them control from anywhere in the room;
  • Streamline the start of class, including biometric login to the room’s technology, behind-the-scenes routing of course content to room displays, control of lights and automatic attendance taking;
  • Offer whiteboards that can be captured, routed to different displays in the room and saved for future viewing and editing;
  • Provide small-group collaboration displays and the ability to easily route content to and from these displays; and
  • Deliver these features through a simple, user-friendly and reliable room/technology interface.

Key players from CrestronGoogleSonySteelcase and Spectrum met with Indiana University faculty, technologists and architects to generate new ideas related to current and emerging technologies. Activities included collaborative brainstorming focusing on these questions:

  • What else can we do to create the classroom of the future?
  • What current technology exists to solve these problems?
  • What could be developed that doesn’t yet exist?
  • What’s next?

top five findings:

  • Screenless and biometric technology will play an important role in the evolution of classrooms in higher education. We plan to research how voice activation and other Internet of Things technologies can streamline the process for faculty and students.
  • The entire classroom will become a space for student activity and brainstorming; walls, windows, desks and all activities are easily captured to the cloud, allowing conversations to continue outside of class or at the next class meeting.
  • Technology will be leveraged to include advance automation for a variety of tasks, so the faculty member is released from duties to focus on teaching.
  • The technology will become invisible to the process and enhance and customize the experience for the learner.
  • Virtual assistants could play an important role in providing students with a supported experience throughout their entire campus career.

A full report on the summit findings is available here.

Further, this article

Kelly, B. R., & 10/11/17. (n.d.). Faculty Predict Virtual/Augmented/Mixed Reality Will Be Key to Ed Tech in 10 Years -. Retrieved October 31, 2018, from https://campustechnology.com/articles/2017/10/11/faculty-predict-virtual-augmented-mixed-reality-will-be-key-to-ed-tech-in-10-years.aspx

My note:

In September 2015, the back-then library dean (they change every 2-3 years) requested a committee of librarians to meet and discuss the remodeling of Miller Center 2018. By that time the SCSU CIO was asserting the BYOx as a new policy for SCSU. BYOx in essence means the necessity for stronger (wider) WiFI pipe. Based on that assertion, I, Plamen Miltenoff, was insisting to shift the cost of hardware (computers, laptops) to infrastructure (more WiFi nods in the room and around it) and prepare for the upcoming IoT by learning to remodel our syllabi for mobile devices and use those (students) mobile devices, rather squander University money on hardware. At least one faculty member from the committee honestly admitted she has no idea about IoT and respectively the merit of my proposal. Thus, my proposal was completely disregarded by the self-nominated chair of the committee of librarians, who pushed for her idea to replace the desktops with a cart of laptops (a very 2010 idea, which by 2015 was already passe). As per Kelly (2018) (second article above), it is obvious the failure of her proposal to the dean to choose laptops over mobile devices, considering that faculty DO see mobile devices completely replacing desktops and laptops; that faculty DO not see document cameras and overhead projectors as a tool to stay.
Here are the notes from September 2015 https://blog.stcloudstate.edu/ims/2015/09/25/mc218-remodel/
As are result, my IoT proposal as now reflected in the Johnston (2018) (first article above), did not make it even formally to the dean, hence the necessity to make it available through the blog.
The SCSU library thinking regarding physical remodeling of classrooms is behind its times and that costs money for the university, if that room needs to be remodeled again to be with the contemporary times.

1 5 6 7 8 9 22