The EDUCAUSE Learning Initiative has just launched its 2018 Key Issues in Teaching and Learning Survey, so vote today: http://www.tinyurl.com/ki2018.
Each year, the ELI surveys the teaching and learning community in order to discover the key issues and themes in teaching and learning. These top issues provide the thematic foundation or basis for all of our conversations, courses, and publications for the coming year. Longitudinally they also provide the way to track the evolving discourse in the teaching and learning space. More information about this annual survey can be found at https://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning.
ACADEMIC TRANSFORMATION (Holistic models supporting student success, leadership competencies for academic transformation, partnerships and collaborations across campus, IT transformation, academic transformation that is broad, strategic, and institutional in scope)
ACCESSIBILITY AND UNIVERSAL DESIGN FOR LEARNING (Supporting and educating the academic community in effective practice; intersections with instructional delivery modes; compliance issues)
ADAPTIVE TEACHING AND LEARNING (Digital courseware; adaptive technology; implications for course design and the instructor’s role; adaptive approaches that are not technology-based; integration with LMS; use of data to improve learner outcomes)
COMPETENCY-BASED EDUCATION AND NEW METHODS FOR THE ASSESSMENT OF STUDENT LEARNING (Developing collaborative cultures of assessment that bring together faculty, instructional designers, accreditation coordinators, and technical support personnel, real world experience credit)
DIGITAL AND INFORMATION LITERACIES (Student and faculty literacies; research skills; data discovery, management, and analysis skills; information visualization skills; partnerships for literacy programs; evaluation of student digital competencies; information evaluation)
EVALUATING TECHNOLOGY-BASED INSTRUCTIONAL INNOVATIONS (Tools and methods to gather data;data analysis techniques; qualitative vs. quantitative data; evaluation project design; using findings to change curricular practice; scholarship of teaching and learning; articulating results to stakeholders; just-in-time evaluation of innovations). here is my bibliographical overview on Big Data (scroll down to “Research literature”: https://blog.stcloudstate.edu/ims/2017/11/07/irdl-proposal/ )
EVOLUTION OF THE TEACHING AND LEARNING SUPPORT PROFESSION (Professional skills for T&L support; increasing emphasis on instructional design; delineating the skills, knowledge, business acumen, and political savvy for success; role of inter-institutional communities of practices and consortia; career-oriented professional development planning)
FACULTY DEVELOPMENT (Incentivizing faculty innovation; new roles for faculty and those who support them; evidence of impact on student learning/engagement of faculty development programs; faculty development intersections with learning analytics; engagement with student success)
GAMIFICATION OF LEARNING (Gamification designs for course activities; adaptive approaches to gamification; alternate reality games; simulations; technological implementation options for faculty)
INSTRUCTIONAL DESIGN (Skills and competencies for designers; integration of technology into the profession; role of data in design; evolution of the design profession (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/10/04/instructional-design-3/); effective leadership and collaboration with faculty)
INTEGRATED PLANNING AND ADVISING FOR STUDENT SUCCESS (Change management and campus leadership; collaboration across units; integration of technology systems and data; dashboard design; data visualization (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=data+visualization); counseling and coaching advising transformation; student success analytics)
LEARNING ANALYTICS (Leveraging open data standards; privacy and ethics; both faculty and student facing reports; implementing; learning analytics to transform other services; course design implications)
LEARNING SPACE DESIGNS (Makerspaces; funding; faculty development; learning designs across disciplines; supporting integrated campus planning; ROI; accessibility/UDL; rating of classroom designs)
MICRO-CREDENTIALING AND DIGITAL BADGING (Design of badging hierarchies; stackable credentials; certificates; role of open standards; ways to publish digital badges; approaches to meta-data; implications for the transcript; Personalized learning transcripts and blockchain technology (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=blockchain)
MOBILE LEARNING (Curricular use of mobile devices (here previous blog postings on this issue:
MULTI-DIMENSIONAL TECHNOLOGIES (Virtual, augmented, mixed, and immersive reality; video walls; integration with learning spaces; scalability, affordability, and accessibility; use of mobile devices; multi-dimensional printing and artifact creation)
NEXT-GENERATION DIGITAL LEARNING ENVIRONMENTS AND LMS SERVICES (Open standards; learning environments architectures (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/; social learning environments; customization and personalization; OER integration; intersections with learning modalities such as adaptive, online, etc.; LMS evaluation, integration and support)
ONLINE AND BLENDED TEACHING AND LEARNING (Flipped course models; leveraging MOOCs in online learning; course development models; intersections with analytics; humanization of online courses; student engagement)
OPEN EDUCATION (Resources, textbooks, content; quality and editorial issues; faculty development; intersections with student success/access; analytics; licensing; affordability; business models; accessibility and sustainability)
PRIVACY AND SECURITY (Formulation of policies on privacy and data protection; increased sharing of data via open standards for internal and external purposes; increased use of cloud-based and third party options; education of faculty, students, and administrators)
WORKING WITH EMERGING LEARNING TECHNOLOGY (Scalability and diffusion; effective piloting practices; investments; faculty development; funding; evaluation methods and rubrics; interoperability; data-driven decision-making)
An introduction to digital badges and a brief history
Simply put, a digital badge is an indicator of accomplishment or skill that can be displayed, accessed, and verified online. These badges can be earned in a wide variety of environments, an increasing number of which are online.
The anatomy of digital badges
In addition to the image-based design we think of as a digital badge, badges have meta-data to communicate details of the badge to anyone wishing to verify it, or learn more about the context of the achievement it signifies.
The many functions of digital badges
Just like their real-world counterparts, digital badges serve a wide variety of purposes depending on the issuing body and the individual. For the most part, badges’ functions can be bucketed into one of five categories.
Badges are issued by individual organizations who set criteria for what constitutes earning a badge. They’re most often issued through an online credential or badging platform.
Criticism of digital badges
There are various arguments to be made against the implementation of digital badges, including the common issuance of seemingly “meaningless” badges.
The future of digital badges
With the rise of online education and the increasing availability of high quality massive open online courses, there will be an increasing need for verifiable digital badges and digital credentials.
Students match their preference for hybrid learning with a belief that it is the most effective learning environment for them.
Despite the fact that faculty prefer teaching in a hybrid environment, they remain skeptical of online learning. Nearly half do not agree online 45% learning is effective.
Students asked what technologies they wish their instructors used more, and we asked faculty what technologies they think could make them more effective instructors. Both agree that content and resource-focused technologies should be incorporated more and social media and tablets should be incorporated less.
con?:with the advent of personal assistants like Siri and Google Now that aim to serve up information before you even know you need it, you don’t even need to type the questions.
pro: Whenever new technology emerges — including newspapers and television — discussions about how it will threaten our brainpower always crops up, Harvard psychology professor Steven Pinker wrote in a 2010 op-ed in The New York Times. Instead of making us stupid, he wrote, the Internet and technology “are the only things that will keep us smart.”
Pro and con: Daphne Bavelier, a professor at the University of Geneva, wrote in 2011 that we may have lost the ability for oral memorization valued by the Greeks when writing was invented, but we gained additional skills of reading and text analysis.
con: Daphne Bavelier, a professor at the University of Geneva, wrote in 2011 that we may have lost the ability for oral memorization valued by the Greeks when writing was invented, but we gained additional skills of reading and text analysis.
con: A 2008 study commissioned by the British Library found that young people go through information online very quickly without evaluating it for accuracy.
pro or con?: A 2011 study in the journal Science showed that when people know they have future access to information, they tend to have a better memory of how and where to find the information — instead of recalling the information itself.
pro: The bright side lies in a 2009 study conducted by Gary Small, the director of University of California Los Angeles’ Longevity Center, that explored brain activity when older adults used search engines. He found that among older people who have experience using the Internet, their brains are two times more active than those who don’t when conducting Internet searches.
the Internet holds great potential for education — but curriculum must change accordingly. Since content is so readily available, teachers should not merely dole out information and instead focus on cultivating critical thinking
make questions “Google-proof.”
“Design it so that Google is crucial to creating a response rather than finding one,” he writes in his company’s blog. “If students can Google answers — stumble on (what) you want them to remember in a few clicks — there’s a problem with the instructional design.”
he General Services Administration (GSA) has ordered the removal of Kaspersky software platforms from its catalogues of approved vendors. Meanwhile, the Senate is considering a draft bill of the 2018 National Defense Acquisition Authorization (known as the NDAA, it specifies the size of and uses for the fiscal year 2018 US Defense Department budget) that would bar the use of Kaspersky products in the military.
W.H. cybersecurity coordinator warns against using Kaspersky Lab software
The whole ordeal is a nightmare for Kaspersky Lab. The company looks incompetent at preventing state-sponsored hacks in the best-case scenario and complicit with the Russian government in the worst-case scenario. However it plays out, the unfolding drama will certainly hurt the software maker’s footprint in the U.S., where Congress has already taken action to purge the government of the company’s software.
All wifi networks’ are vulnerable to hacking, security expert discovers
WPA2 protocol used by vast majority of wifi connections has been broken by Belgian researchers, highlighting potential for internet traffic to be exposed
The United States Computer Emergency Readiness Team (Cert) issued a warning on Sunday in response to the vulnerability.
“The impact of exploiting these vulnerabilities includes decryption, packet replay, TCP connection hijacking, HTTP content injection and others,” the alert says, detailing a number of potential attacks. It adds that, since the vulnerability is in the protocol itself, rather than any specific device or software, “most or all correct implementations of the standard will be affected”.
Setting cell phone expectations early is key to accessing the learning potential of these devices and minimizing the distraction factor.Liz Kolb September 11, 2017
Ten is now the average age when children receive their first cell phones
develop a positive mobile mental health in the first weeks of school by discussing their ideas on cell phone use, setting up a stoplight management system, and establishing a class contract
What do you like to do on your cell phone and why? (If they don’t have one, what would they like to do?)
What are the most popular apps and websites you use?
What do you think are inappropriate ways that cell phones have been used?
What is poor cell phone etiquette? Why?
How can cell phones help you learn?
How can cell phones distract from your learning?
How do you feel about your cell phone and the activities you do on your phone?
What should teachers know about your cell phone use that you worry we do not understand?
Do you know how to use your cell phone to gather information, to collaborate on academic projects, to evaluate websites?
How can we work together to create a positive mobile mental health?
Using a Stoplight Management Approach
Post a red button on the classroom door:the cell phone parking lot. Post a yellow button on the classroom door
Post a green button on the classroom door
Establishing a Class Contract: Ask them to brainstorm consequences and write them into a class contract.
Oculus Connect, starting Wednesday in San Jose, California. Facebook’s Oculus VR division promises discussions on how health care, movies and video games are adapting to this still nascent technology. One panel will explore how the disability community can benefit from VR gear and presentations.
Over the summer, Apple and Google announced new technologies called ARKit and ARCore, respectively, that are designed to help iPhones and iPads or any device powered by Google’s Android software marry computer-generated images with the real world.
A $2.99 app, Star Guide AR, highlights stars and constellations in the sky once you point your phone at them. Another, Ikea Place, previews furniture in your home with a tap. Walk around your living room and you can see the furniture you placed while looking through the screen on your phone. So far, both are available only for the iPhone.
App developers I spoke with say they’re excited by augmented reality and believe it may help spur people to buy VR systems as well.