Indiana University explores that question by bringing together tech partners and university leaders to share ideas on how to design classrooms that make better use of faculty and student time.
Untether instructors from the room’s podium, allowing them control from anywhere in the room;
Streamline the start of class, including biometric login to the room’s technology, behind-the-scenes routing of course content to room displays, control of lights and automatic attendance taking;
Offer whiteboards that can be captured, routed to different displays in the room and saved for future viewing and editing;
Provide small-group collaboration displays and the ability to easily route content to and from these displays; and
Deliver these features through a simple, user-friendly and reliable room/technology interface.
Key players from Crestron, Google, Sony, Steelcase and Spectrum met with Indiana University faculty, technologists and architects to generate new ideas related to current and emerging technologies. Activities included collaborative brainstorming focusing on these questions:
What else can we do to create the classroom of the future?
What current technology exists to solve these problems?
What could be developed that doesn’t yet exist?
What’s next?
top five findings:
Screenless and biometric technology will play an important role in the evolution of classrooms in higher education. We plan to research how voice activation and other Internet of Things technologies can streamline the process for faculty and students.
The entire classroom will become a space for student activity and brainstorming; walls, windows, desks and all activities are easily captured to the cloud, allowing conversations to continue outside of class or at the next class meeting.
Technology will be leveraged to include advance automation for a variety of tasks, so the faculty member is released from duties to focus on teaching.
The technology will become invisible to the process and enhance and customize the experience for the learner.
Virtual assistants could play an important role in providing students with a supported experience throughout their entire campus career.
In September 2015, the back-then library dean (they change every 2-3 years) requested a committee of librarians to meet and discuss the remodeling of Miller Center 2018. By that time the SCSU CIO was asserting the BYOx as a new policy for SCSU. BYOx in essence means the necessity for stronger (wider) WiFI pipe. Based on that assertion, I, Plamen Miltenoff, was insisting to shift the cost of hardware (computers, laptops) to infrastructure (more WiFi nods in the room and around it) and prepare for the upcoming IoT by learning to remodel our syllabi for mobile devices and use those (students) mobile devices, rather squander University money on hardware. At least one faculty member from the committee honestly admitted she has no idea about IoT and respectively the merit of my proposal. Thus, my proposal was completely disregarded by the self-nominated chair of the committee of librarians, who pushed for her idea to replace the desktops with a cart of laptops (a very 2010 idea, which by 2015 was already passe). As per Kelly (2018) (second article above), it is obvious the failure of her proposal to the dean to choose laptops over mobile devices, considering that faculty DO see mobile devices completely replacing desktops and laptops; that faculty DO not see document cameras and overhead projectors as a tool to stay.
Here are the notes from September 2015 https://blog.stcloudstate.edu/ims/2015/09/25/mc218-remodel/
As are result, my IoT proposal as now reflected in the Johnston (2018) (first article above), did not make it even formally to the dean, hence the necessity to make it available through the blog.
The SCSU library thinking regarding physical remodeling of classrooms is behind its times and that costs money for the university, if that room needs to be remodeled again to be with the contemporary times.
Blockchain: Recommendations for the Information Profession
Monday, September 24, 2018 12:00 pm
Central Daylight Time (Chicago, GMT-05:00)
Blockchain technology is being discussed widely, but without clear directions for library applications. The Blockchain National Forum, funded by IMLS and held at San Jose State University’s iSchool in Summer 2018, brought together notable experts in the information professions, business, government, and urban planning to discuss the issues and develop recommendations on the future uses of blockchain technology within the information professions. In this free webinar, Drs. Sandy Hirsh and Sue Alman, co-PIs of the project, will present the recommendations made throughout the year in the Blockchain blog, Library 2.0 Conference,Blockchain Applied: Impact on the Information Profession, and the National Forum.
Q/S TO ASK: WHAT KINDS OF DATA AND RECORDS MUST BE STORED AND PRESERVES exactly the way they were created (provenance records, transcripts). what kinds of info are at risk to be altered and compromised by changing circumstances (personally identifiable data)
515 rule: BC can be hacked if attacked by a group of miners controlling more than 50% of the network
Standards Issues: BC systems- open ledger technology for managing metadata. baseline standards will impact future options. can BC make management of metadata worth. Is it worth, or more cautious.
Potential Use cases: archives and special collections where provenance and authenticity are essential for authoritative tracking. digital preservation to track distributed digital assets. BC-based currencies for international financial transactions (to avoid exchange rates ILL and publishing) . potential to improve ownership and first sale record management. credentialing: personal & academic documents (MIT already has transcripts and diplomas of students in BC – personal data management and credentialing electronically).
public libraries: house docs of temporarily displaced or immigrants. but power usage and storage usage became problems.
a city south of Denver CO is build right now, and will be build on these principles.
benefits for recordkeeping: LOCKSS (lot of copies keeps stuff safe) – Stanford U; chain of custody (SAA Glossary); Trust and Immutability (BC) vs confidentiality and performance (dbase)
Libarians role: need to understand BC (how does it work and what can it do for us; provide BC education for users; use BC in various applications
recommendations from National Forum:
ASIS&T presentation in Vancouver, Nov. 2018; MOOC on BLockchain Basics; Libary Futures Series, BOok3 Alman & Hirsh
Significant Challenges Impeding Technology Adoption in K–12 Education
Improving Digital Literacy.
Schools are charged with developing students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online etiquette and digital rights and responsibilities in blended and online learning settings. Due to the multitude of elements comprising digital literacy, it is a challenge for schools to implement a comprehensive and cohesive approach to embedding it in curricula.
Rethinking the Roles of Teachers.
Pre-service teacher training programs are also challenged to equip educators with digital and social–emotional competencies, such as the ability to analyze and use student data, amid other professional requirements to ensure classroom readiness.
p. 28 Improving Digital Literacy
Digital literacy spans across subjects and grades, taking a school-wide effort to embed it in curricula. This can ensure that students are empowered to adapt in a quickly changing world
Education Overview: Digital Literacy Has to Encompass More Than Social Use
The American Library Association (ALA) defines digital literacy as “the ability to use information and communication technologies to find, evaluate, create, and communicate or share information, requiring both cognitive and technical skills.” While the ALA’s definition does align to some of the skills in “Participate”, it does not specifically mention the skills related to the “Open Practice.”
The library community’s digital and information literacy standards do not specifically include the coding, revision and remixing of digital content as skills required for creating digital information. Most digital content created for the web is “dynamic,” rather than fixed, and coding and remixing skills are needed to create new content and refresh or repurpose existing content. Leaving out these critical skills ignores the fact that library professionals need to be able to build and contribute online content to the ever-changing Internet.
p. 30 Rethinking the Roles of Teachers
Teachers implementing new games and software learn alongside students, which requires
a degree of risk on the teacher’s part as they try new methods and learn what works
p. 32 Teaching Computational Thinking
p. 36 Sustaining Innovation through Leadership Changes
shift the role of teachers from depositors of knowledge to mentors working alongside students;
p. 38 Important Developments in Educational Technology for K–12 Education
Consumer technologies are tools created for recreational and professional purposes and were not designed, at least initially, for educational use — though they may serve well as learning aids and be quite adaptable for use in schools.
Drones > Real-Time Communication Tools > Robotics > Wearable Technology
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching and learning, whether inside or outside the classroom.
> Games and Gamification > Location Intelligence > Makerspaces > Preservation and Conservation Technologies
Enabling technologies are those technologies that have the potential to transform what we expect of our devices and tools. The link to learning in this category is less easy to make, but this group of technologies is where substantive technological innovation begins to be visible. Enabling technologies expand the reach of our tools, making them more capable and useful
Affective Computing > Analytics Technologies > Artificial Intelligence > Dynamic Spectrum and TV White Spaces > Electrovibration > Flexible Displays > Mesh Networks > Mobile Broadband > Natural User Interfaces > Near Field Communication > Next Generation Batteries > Open Hardware > Software-Defined Networking > Speech-to-Speech Translation > Virtual Assistants > Wireless Powe
Internet technologies include techniques and essential infrastructure that help to make the technologies underlying how we interact with the network more transparent, less obtrusive, and easier to use.
Bibliometrics and Citation Technologies > Blockchain > Digital Scholarship Technologies > Internet of Things > Syndication Tools
Learning technologies include both tools and resources developed expressly for the education sector, as well as pathways of development that may include tools adapted from other purposes that are matched with strategies to make them useful for learning.
Adaptive Learning Technologies > Microlearning Technologies > Mobile Learning > Online Learning > Virtual and Remote Laboratories
Social media technologies could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category.
Crowdsourcing > Online Identity > Social Networks > Virtual Worlds
Visualization technologies run the gamut from simple infographics to complex forms of visual data analysis
3D Printing > GIS/Mapping > Information Visualization > Mixed Reality > Virtual Reality
p. 46 Virtual Reality
p. 48 AI
p. 50 IoT
+++++++++++++++
more on NMC Horizon Reports in this IMS blog
The Internet of Things (IoT), augmented reality, and advancements in online learning have changed the way universities reach prospective students, engage with their current student body, and provide them the resources they need.
The Internet of Things has opened up a whole new world of possibilities in higher education. The increased connectivity between devices and “everyday things” means better data tracking and analytics, and improved communication between student, professor, and institution, often without ever saying a word. IoT is making it easier for students to learn when, how, and where they want, while providing professors support to create a more flexible and connected learning environment.
Virtual/Augmented Reality
Virtual and augmented reality technologies have begun to take Higher Ed into the realm of what used to be considered science fiction.
By 2020 more than 50 billion things, ranging from cranes to coffee machines, will be connected to the internet. That means a lot of data will be created — too much data, in fact, to be manageable or to be kept forever affordably.
One by-product of more devices creating more data is that they are speaking lots of different programming languages. Machines are still using languages from the 1970s and 80s as well as the new languages of today. In short, applications need to have data translated for them — by an IoT babelfish, if you will — before they can make sense of the information.
Then there are analytics and data storage.
security becomes even more important as there is little human interaction in the flow of data from device to datacentre — so called machine-to-machine communication.
a report from ISACA, a nonprofit association focused on knowledge and practices for information systems. The 2017 State of Cyber Security Study surveyed IT security leaders around the globe on security issues, the emerging threat landscape, workforce challenges and more.
53 percent of survey respondents reported a year-over-year increase in cyber attacks;
62 percent experienced ransomware in 2016, but only 53 percent have a formal process in place to address a ransomware attack;
78 percent reported malicious attacks aimed at impairing an organization’s operations or user data;
Only 31 percent said they routinely test their security controls, while 13 percent never test them; and
16 percent do not have an incident response plan.
65 percent of organizations now employ a chief information security officers, up from 50 percent in 2016, yet still struggle to fill open cyber security positions;
48 percent of respondents don’t feel comfortable with their staff’s ability to address complex cyber security issues;
More than half say cyber security professionals “lack an ability to understand the business”;
One in four organizations allot less than $1,000 per cyber security team member for training; and
About half of the organizations surveyed will see an increase in their cyber security budget, down from 61 percent in 2016.
++++++++++++++++++++++++++
IoT to Represent More Than Half of Connected Device Landscape by 2021
analysis comes from Cisco’s recent Visual Networking Index for the 2016-2021 forecast period.
IP video traffic will increase from 73 percent of all internet consumer traffic in 2016 to 82 percent in 2021 (with live streaming accounting for 13 percent);
Virtual and augmented reality traffic is expected to increase 20-fold during the forecast period at a compound annual growth rate of 82 percent; and
Internet video surveillance traffic is anticipated to grow during the forecast period, comprising 3.4 percent of all internet traffic.
the privacy concerns such use might raise; as universities implement systems that integrate wearables, they will encounter this hurdle and have to implement policies to address it.
5. Research
Laboratories are often required to be completely controlled spaces with considerations made for climate, light, and sometimes even biometric data inside the lab.
A Strategist’s Guide to Industry 4.0. Global businesses are about to integrate their operations into a seamless digital whole, and thereby change the world.
Industrial revolutions are momentous events. By most reckonings, there have been only three. The first was triggered in the 1700s by the commercial steam engine and the mechanical loom. The harnessing of electricity and mass production sparked the second, around the start of the 20th century. The computer set the third in motion after World War II.
Henning Kagermann, the head of the German National Academy of Science and Engineering (Acatech), did exactly that in 2011, when he used the term Industrie 4.0 to describe a proposed government-sponsored industrial initiative.
The term Industry 4.0 refers to the combination of several major innovations in digital technology
These technologies include advanced robotics and artificial intelligence; sophisticated sensors; cloud computing; the Internet of Things; data capture and analytics; digital fabrication (including 3D printing); software-as-a-service and other new marketing models; smartphones and other mobile devices; platforms that use algorithms to direct motor vehicles (including navigation tools, ride-sharing apps, delivery and ride services, and autonomous vehicles); and the embedding of all these elements in an interoperable global value chain, shared by many companies from many countries.
Companies that embrace Industry 4.0 are beginning to track everything they produce from cradle to grave, sending out upgrades for complex products after they are sold (in the same way that software has come to be updated). These companies are learning mass customization: the ability to make products in batches of one as inexpensively as they could make a mass-produced product in the 20th century, while fully tailoring the product to the specifications of the purchaser
.
Three aspects of digitization form the heart of an Industry 4.0 approach.
• The full digitization of a company’s operations
• The redesign of products and services
• Closer interaction with customers
Making Industry 4.0 work requires major shifts in organizational practices and structures. These shifts include new forms of IT architecture and data management, new approaches to regulatory and tax compliance, new organizational structures, and — most importantly — a new digitally oriented culture, which must embrace data analytics as a core enterprise capability.
Klaus Schwab put it in his recent book The Fourth Industrial Revolution (World Economic Forum, 2016), “Contrary to the previous industrial revolutions, this one is evolving at an exponential rather than linear pace.… It is not only changing the ‘what’ and the ‘how’ of doing things, but also ‘who’ we are.”
This great integrating force is gaining strength at a time of political fragmentation — when many governments are considering making international trade more difficult. It may indeed become harder to move people and products across some national borders. But Industry 4.0 could overcome those barriers by enabling companies to transfer just their intellectual property, including their software, while letting each nation maintain its own manufacturing networks.
+++++++++++++++++++++++++++
more on the Internet of Things in this IMS blog https://blog.stcloudstate.edu/ims?s=internet+of+things
As social networking platforms proliferate and more interactions take place digitally, there are more opportunities for propagation of misinformation, copyright infringement, and privacy breaches.
Empathy as a critical quality for leaders was popularized in Daniel Goleman’s work about emotional intelligence. It is also a core component of Karol Wasylyshyn’s formula for achieving remarkable leadership. Elizabeth Borges, a women’s leadership program organizer and leadership consultant, recommends a particular practice, cognitive empathy.
What is library leadership? a library leader is defined as the individual who articulates a vision for the organization/task and is able to inspire support and action to achieve the vision. A manager, on the other hand, is the individual tasked with organizing and carrying out the day-to-day operational activities to achieve the vision.Work places are organized in hierarchical and in team structures. Managers are appointed to administer business units or organizations whereas leaders may emerge from all levels of the hierarchical structures. Within a volatile climate the need for strong leadership is essential.
Leaders are developed and educated within the working environment where they act and co-work with their partners and colleagues. Effective leadership complies with the mission and goals of the organization. Several assets distinguish qualitative leadership:
Mentoring. Motivation. Personal development and skills. Inspiration and collaboration. Engagement. Success and failure. Risk taking. Attributes of leaders.
Leaders require having creative minds in shaping strategies and solving problems. They are mentors for the staff, work hard and inspire them to do more with less and to start small and grow big. Staff need to be motivated to work at their optimum performance level. Leadership entails awareness of the responsibilities inherent to the roles of a leader. However, effective leadership requires the support of the upper management.
p. 36. Developments in Technology for Academic and Research Libraries
Digital strategies are not so much technologies as they are ways of using devices and software to enrich teaching, learning, research and information management, whether inside or outside the library. Effective Digital strategies can be used in both information and formal learning; what makes them interesting is that they transcended conventional ideas to create something that feels new, meaningful, and 21st century.
enabling technologies
this group of technologies is where substantive technological innovation begins to be visible.
Internet technologies.
learning technologies
social media technologies. could have been subsumed under the consumer technology category, but they have become so ever-present and so widely used in every part of society that they have been elevated to their own category. As well-established as social media is, it continues to evolve at a rapid pace, with new ideas, tools, and developments coming online constantly.
Visualization technologies. from simple infographics to complex forms of visual data analysis. What they have in common is that they tap the brain’s inherent ability to rapidly process visual information, identify patterns, and sense order in complex situations. These technologies are a growing cluster of tools and processes for mining large data sets, exploring dynamic processes, and generally making the complex simple.
p. 38 Big Data
Big data has significant implications for academic libraries in their roles as facilitators and supporters of the research process. big data use in the form of digital humanities research. Libraries are increasingly seeking to recruit for positions such as research data librarians, data curation specialists, or data visualization specialists
p. 40 Digital Scholarship Technologies
digital humanities scholars are leveraging new tools to aid in their work. ubiquity of new forms of communication including social media, text analysis software such as Umigon is helping researchers gauge public sentiment. The tool aggregates and classifies tweets as negative, positive, or neutral.
p. 42 Library Services Platforms
Diversity of format and materials, in turn, required new approaches to content collection and curation that were unavailable in the incumbent integrated library systems (ILS), which are primarily designed for print materials. LSP is different from ILS in numerous ways. Conceptually, LSPs are modeled on the idea of software as a service (SaaS),which entails delivering software applications over the internet.
p. 44 Online Identity.
incorporated the management of digital footprints into their programming and resources
simplify the idea of digital footprint as“data about the data” that people are searching or using online. As resident champions for advancing digital literacy,304 academic and research libraries are well-positioned to guide the process of understanding and crafting online identities.
Libraries are becoming integral players in helping students understand how to create and manage their online identities. website includes a social media skills portal that enables students to view their digital presence through the lens in which others see them, and then learn how they compare to their peers.
beacons are another iteration of the IoT that libraries have adopted; these small wireless devices transmit a small package of data continuously so that when devices come into proximity of the beacon’s transmission, functions are triggered based on a related application.340 Aruba Bluetooth low-energy beacons to link digital resources to physical locations, guiding patrons to these resources through their custom navigation app and augmenting the user experience with location-based information, tutorials, and videos.
students and their computer science professor have partnered with Bavaria’s State Library to develop a library app that triggers supplementary information about its art collection or other points of interest as users explore the space