Searching for "data"

Cloud-Native Technologies

Beyond Kubernetes – 5 Promising Cloud-Native Technologies To Watch

  1. Istio

After Kubernetes,Istio is the most popular cloud-native technology. It is a service mesh that securely connects multiple microservices of an application. Think of Istio as an internal and external load balancer with a policy-driven firewall with support for comprehensive metrics. The reason why developers and operators love Istio is the non-intrusive deployment pattern. Almost any Kubernetes service can be seamlessly integrated with Istio without explicit code or configuration changes.

Google recently announced a managed Istio service on GCP.  Apart from Google, IBM, Pivotal, Red Hat, Tigera and Weaveworks are the active contributors and supporters of the project.

Istio presents an excellent opportunity for ISVs to deliver custom solutions and tools to enterprises. This project is bound to become one of the core building blocks of cloud-native platforms. I expect every managed Kubernetes service to have a hosted Istio service.

  1. Prometheus

Prometheus is a cloud-native monitoring tool for workloads deployed on Kubernetes. It plugs a critical gap that exists in the cloud-native world through comprehensive metrics and rich dashboards.

  1. Helm

If Kubernetes is the new OS, Helm is the application installer. Designed on the lines of Debian packages and Red Hat Linux RPMs, Helm brings the ease and power of deploying cloud-native workloads with a single command.

  1. Spinnaker

One of the promises of cloud-native technology is the rapid delivery of software. Spinnaker, an open source project initially built at Netflix delivers that promise. It is a release management tool that adds velocity to deploying cloud-native applications.

  1. Kubeless

Event-driven computing is becoming an integral part of modern application architecture. Functions as a Service (FaaS) is one of the delivery models of serverless computing which complements containers through event-based invocation. Modern applications will have services packaged as containers and functions running within the same environment.

Augmented Reality Apple

Apple is hiring for an Augmented Reality team, possibly focused on Apple Maps

Joshua Fruhlinger

https://www.linkedin.com/pulse/apple-hiring-augmented-reality-team-possibly-focused-maps-fruhlinger/

Earlier this week, Apple ($NASDAQ:AAPL) acquired augmented reality (AR) lens and glasses company Akonia Holographics ($AKONIAHOLOGRAPHICS), which spawned plenty of speculation on Apple getting serious about AR.

Augmented reality overlays digital information over the real world and differs from virtual reality (VR), where the whole environment is simulated. Akonia describes its AR product as “thin, transparent smart glass lenses that display vibrant, full-color, wide field-of-view images.”

“Digital maps have become essential tools of our everyday lives, yet despite their ubiquity, they are still in their infancy. From urban mobility to indoor positioning, from LIDAR to Augmented Reality, advances in technology and new kinds of data are powering innovations in all areas of digital mapping. If you love maps and are passionate about what is possible, you will be in great company.”

+++++++++
more about augmented reality in this IMS blog
https://blog.stcloudstate.edu/ims?s=augmented+reality+education

coding ethics unpredictability

Franken-algorithms: the deadly consequences of unpredictable code

by  Thu 30 Aug 2018 

https://www.theguardian.com/technology/2018/aug/29/coding-algorithms-frankenalgos-program-danger

Between the “dumb” fixed algorithms and true AI lies the problematic halfway house we’ve already entered with scarcely a thought and almost no debate, much less agreement as to aims, ethics, safety, best practice. If the algorithms around us are not yet intelligent, meaning able to independently say “that calculation/course of action doesn’t look right: I’ll do it again”, they are nonetheless starting to learn from their environments. And once an algorithm is learning, we no longer know to any degree of certainty what its rules and parameters are. At which point we can’t be certain of how it will interact with other algorithms, the physical world, or us. Where the “dumb” fixed algorithms – complex, opaque and inured to real time monitoring as they can be – are in principle predictable and interrogable, these ones are not. After a time in the wild, we no longer know what they are: they have the potential to become erratic. We might be tempted to call these “frankenalgos” – though Mary Shelley couldn’t have made this up.

Twenty years ago, George Dyson anticipated much of what is happening today in his classic book Darwin Among the Machines. The problem, he tells me, is that we’re building systems that are beyond our intellectual means to control. We believe that if a system is deterministic (acting according to fixed rules, this being the definition of an algorithm) it is predictable – and that what is predictable can be controlled. Both assumptions turn out to be wrong.“It’s proceeding on its own, in little bits and pieces,” he says. “What I was obsessed with 20 years ago that has completely taken over the world today are multicellular, metazoan digital organisms, the same way we see in biology, where you have all these pieces of code running on people’s iPhones, and collectively it acts like one multicellular organism.“There’s this old law called Ashby’s law that says a control system has to be as complex as the system it’s controlling, and we’re running into that at full speed now, with this huge push to build self-driving cars where the software has to have a complete model of everything, and almost by definition we’re not going to understand it. Because any model that we understand is gonna do the thing like run into a fire truck ’cause we forgot to put in the fire truck.”

Walsh believes this makes it more, not less, important that the public learn about programming, because the more alienated we become from it, the more it seems like magic beyond our ability to affect. When shown the definition of “algorithm” given earlier in this piece, he found it incomplete, commenting: “I would suggest the problem is that algorithm now means any large, complex decision making software system and the larger environment in which it is embedded, which makes them even more unpredictable.” A chilling thought indeed. Accordingly, he believes ethics to be the new frontier in tech, foreseeing “a golden age for philosophy” – a view with which Eugene Spafford of Purdue University, a cybersecurity expert, concurs. Where there are choices to be made, that’s where ethics comes in.

our existing system of tort law, which requires proof of intention or negligence, will need to be rethought. A dog is not held legally responsible for biting you; its owner might be, but only if the dog’s action is thought foreseeable.

model-based programming, in which machines do most of the coding work and are able to test as they go.

As we wait for a technological answer to the problem of soaring algorithmic entanglement, there are precautions we can take. Paul Wilmott, a British expert in quantitative analysis and vocal critic of high frequency trading on the stock market, wryly suggests “learning to shoot, make jam and knit

The venerable Association for Computing Machinery has updated its code of ethics along the lines of medicine’s Hippocratic oath, to instruct computing professionals to do no harm and consider the wider impacts of their work.

+++++++++++
more on coding in this IMS blog
https://blog.stcloudstate.edu/ims?s=coding

ethics and AI

Ethik und Künstliche Intelligenz: Die Zeit drängt – wir müssen handeln

8/7/2108 Prof. Dr. theol. habil. Arne Manzeschke

https://www.pcwelt.de/a/ethik-und-ki-die-zeit-draengt-wir-muessen-handeln,3451885

Das Europäische Parlament hat es im vergangenen Jahr ganz drastisch formuliert. Eine neue industrielle Revolution steht an
1954 wurdeUnimate, der erste Industrieroboter , von George Devol entwickelt [1]. Insbesondere in den 1970er Jahren haben viele produzierende Gewerbe eine Roboterisierung ihrer Arbeit erfahren (beispielsweise die Automobil- und Druckindustrie).
Definition eines Industrieroboters in der ISO 8373 (2012) vergegenwärtigt: »Ein Roboter ist ein frei und wieder programmierbarer, multifunktionaler Manipulator mit mindestens drei unabhängigen Achsen, um Materialien, Teile, Werkzeuge oder spezielle Geräte auf programmierten, variablen Bahnen zu bewegen zur Erfüllung der verschiedensten Aufgaben«.

Ethische Überlegungen zu Robotik und Künstlicher Intelligenz

Versucht man sich einen Überblick über die verschiedenen ethischen Probleme zu verschaffen, die mit dem Aufkommen von ›intelligenten‹ und in jeder Hinsicht (Präzision, Geschwindigkeit, Kraft, Kombinatorik und Vernetzung) immer mächtigeren Robotern verbunden sind, so ist es hilfreich, diese Probleme danach zu unterscheiden, ob sie

1. das Vorfeld der Ethik,

2. das bisherige Selbstverständnis menschlicher Subjekte (Anthropologie) oder

3. normative Fragen im Sinne von: »Was sollen wir tun?« betreffen.

Die folgenden Überlegungen geben einen kurzen Aufriss, mit welchen Fragen wir uns jeweils beschäftigen sollten, wie die verschiedenen Fragenkreise zusammenhängen, und woran wir uns in unseren Antworten orientieren können.

Aufgabe der Ethik ist es, solche moralischen Meinungen auf ihre Begründung und Geltung hin zu befragen und so zu einem geschärften ethischen Urteil zu kommen, das idealiter vor der Allgemeinheit moralischer Subjekte verantwortet werden kann und in seiner Umsetzung ein »gelungenes Leben mit und für die Anderen, in gerechten Institutionen« [8] ermöglicht. Das ist eine erste vage Richtungsangabe.

Normative Fragen lassen sich am Ende nur ganz konkret anhand einer bestimmten Situation bearbeiten. Entsprechend liefert die Ethik hier keine pauschalen Urteile wie: »Roboter sind gut/schlecht«, »Künstliche Intelligenz dient dem guten Leben/ist dem guten Leben abträglich«.

+++++++++++
more on Artificial Intelligence in this IMS blog
https://blog.stcloudstate.edu/ims?s=artifical+intelligence

netiquette and email

‘Reattaching for convenience’: nine passive-aggressive email phrases that must end now

A poll has uncovered the most irksome phrases colleagues write in emails. But what do they actually mean?   @stuheritage  M

https://www.theguardian.com/technology/shortcuts/2018/aug/27/re-attaching-for-convenience-passive-aggressive-email-phrases-poll

Apoll by Adobe has uncovered the most annoying phrases to receive in a work email.

‘Not sure if you saw my last email’

‘Per my last email’

‘Per our conversation’

‘Any updates on this?’

‘Sorry for the double email’

‘Please advise’

‘As previously stated’

‘As discussed’

‘Reattaching for convenience’

+++++++++++
more on netiquette in this IMS blog
https://blog.stcloudstate.edu/ims?s=netiquette

IoT and libraries

The Internet of Things (IoT) and Libraries

The Internet of Things (IoT) and Libraries

breakdown of IoT functionality, from Deloitte. They give 5 general types of services that IoT “things” can do:

  1. Internal state: Heartbeat- and ping-like broadcasts of health, potentially including diagnostics and additional status reporting (for example, battery level, CPU/memory utilization, strength of network signal, up-time or software/platform version).
  2. Location: Communication of physical location via GPS, GSM, triangulation or proximity techniques
  3. Physical attributes: Monitoring the world surrounding the device, including altitude, orientation, temperature, humidity, radiation, air quality, noise and vibration
  4. Functional attributes: Higher-level intelligence rooted in the device’s purpose for describing business process or workload attributes
  5. Actuation services: Ability to remotely trigger, change or stop physical properties or actions on the device.

Examples of IoT in action

There are some pretty well-known IoT products that some of you already use, including:

  • Nest Thermostat (and others). These allow you to control your AC from your phone, anywhere that you can connect to the Internet.
  • Smart lights: Same concept, but for lights. You can turn lights on/off from your phone. Phillips Hue is an example of this
  • Bluetooth Trackers – Tile (https://www.thetileapp.com/) is an example of a Bluetooth Tracker. Put one on that thing you always lose (i.e., car keys). The next time you lose those keys, you can find them again via an app on your phone.
  • Smart Home appliances – things like Google Home, Amazon Echo, and Apple HomeKit.
  • Smart power switches – Belkin’s Wemo Insight Wi-Fi Smart Plug is an example. They let you turn the plug (and therefore anything connected to it) on and off, set schedules for the plug, monitor energy consumption and use, etc. You can also connect it to Amazon Alexa and Google Home for hands-free voice control
  • Health and exercise trackers – Fitbits “fit” into this category, too.

How does IoT affect libraries?

Here are some ways libraries are already incorporating IoT technology into their libraries:

  • Smart Building Technology: As libraries retrofit their buildings with newer technology (or build new buildings/branches), they are starting to see more IoT-based technology. For example, some libraries can can adjust heating, cooling and lights from a smartphone app. Some newer building monitoring and security systems can be monitored via mobile apps.
  • RFID: RFID technology (sensors in books) is a type of IoT technology, and has been around for awhile.
  • Beacon Technology: There are at least two library-focused companies experimenting with Beacon technology (Capira Technologies and Bluubeam).
  • People counters: Check out Jason Griffey’s Measure the Future project. Here’s what he says about Measure the Future: “Imagine having a Google-Analytics-style dashboard for your library building: number of visits, what patrons browsed, what parts of the library were busy during which parts of the day, and more. Measure the Future is working to make that happen by using open-hardware based sensors that can collect data about building usage that is now invisible. Making these invisible occurrences explicit will allow librarians to make strategic decisions that create more efficient and effective experiences for their patrons.”
  • Library classes! Libraries are also teaching classes about the Internet of Things. These include classes focused on introducing patrons to IoT technology, and classes that focus on an aspect of IoT, like a class on making things with Arduinos or how to use your new Fitbit.

++++++++
more on IoT in this IMS blog
https://blog.stcloudstate.edu/ims?s=internet+of+things

proposal for Arduino library counter: https://blog.stcloudstate.edu/ims/2017/11/18/service-based-learning-library-counter/

Blockchain Platforms 2018

A Comprehensive List of Best Blockchain Platforms To Watch Out in 2018

https://medium.com/@anubhav.2709/a-comprehensive-list-of-best-blockchain-platforms-to-watch-out-in-2018-a4a14ee0c166

http://blockchain.oodles.io/blogs/best-blockchain-platforms-2018/

https://www.reddit.com/r/TechNewsToday/comments/9a7elq/a_comprehensive_list_of_best_blockchain_platforms

Best Blockchain Platforms 2018

1. Ethereum

Founded in 2014 by Vitalik Buterin, Gavin Wood, and Jeffery Wilcke, Ethereum is one of the fastest growing blockchain technology-based platforms and a cryptocurrency like bitcoin.

 

2. Ripple

Ripple was developed in 2012. Currently, the cryptocurrency that represents Ripple blockchain, XRP, is one the high performing cryptocurrencies in the crypto world.

3. Hyperledger

Based on the blockchain technology, Hyperledger offers distributed ledger frameworks to a variety of industry leaders in the fields of banking, finance, Internet of Things, supply chains, manufacturing, and technology.

 

4. IBM Bluemix Blockchain:

Developed using the base of Hyperledger, IBM Bluemix offers transparency in transactions and security in information for enterprises. At present, IBM Bluemix runs on the IBM cloud.

 

5. Multichain

Multichain is one of the best Blockchain platforms that enables the creation and execution of private blockchains. This multi-asset exchange is becoming popular for solving real problems in finance, infrastructure, and e-commerce.

 

6. Openchain: 

Developed by Coinprism, Open-chain is a Blockchain infrastructure that’s used for the perseverance and management of digital assets.  Open-chain is an enterprise-ready platform for digital assets. Its approach is different than the standard Bitcoin approach to implementing Blockchain.

Conclusion: 

With the above-mentioned blockchain platforms, you can get unprecedented services for the security of digital transactions and assets. The blockchain technology provides independent and secure work structure and is a reliable solution that can be utilized to streamline an organization’s processes and transfer of assets without getting into any extensive documentation or periodical controls.

++++++++++++
more on blockchain in this IMS blog
https://blog.stcloudstate.edu/ims?s=blockchain

Google China

Alphabet’s Plans for a China Comeback Go Beyond Google Search

Google has faced sharp criticism, including from its own employees, for its efforts to rebuild an internet search presence in Chinaafter quitting the country eight years ago over censorship issues.

for Google’s corporate parent, Alphabet, the opportunities in the world’s largest internet market may be too good to resist. And the full scope of the company’s interest in China now appears to be broader than just internet search.

The latest hint came from Waymo, the driverless-car company that was spun out of Google in 2016. Chinese media noticed this week that the business had quietly registered a Shanghai subsidiary in May, suggesting that it wants a piece of an industry that the Chinese government has made a priority.

Unlike Google, Apple runs its own app store in China, heeding government directives about the kinds of apps that can be available to Chinese users. Microsoft and Amazon offer cloud computing services, working with local partners and following strict controls on how customers’ data is stored.

Baidu, maker of the country’s leading search engine, has made its autonomous-vehicle software platform available to dozens of local and foreign companies. SAIC Motor, China’s largest carmaker, is working with the e-commerce titan Alibaba. BMW and Daimler have received permission in China to test their own self-driving vehicles.

++++++++++
more on Google and China in this IMS blog
https://blog.stcloudstate.edu/ims?s=google+china

AI tracks students writings

Schools are using AI to track what students write on their computers

By Simone Stolzoff August 19, 2018
50 million k-12 students in the US
Under the Children’s Internet Protection Act (CIPA), any US school that receives federal funding is required to have an internet-safety policy. As school-issued tablets and Chromebook laptops become more commonplace, schools must install technological guardrails to keep their students safe. For some, this simply means blocking inappropriate websites. Others, however, have turned to software companies like GaggleSecurly, and GoGuardian to surface potentially worrisome communications to school administrators
In an age of mass school-shootings and increased student suicides, SMPs Safety Management Platforms can play a vital role in preventing harm before it happens. Each of these companies has case studies where an intercepted message helped save lives.
Over 50% of teachers say their schools are one-to-one (the industry term for assigning every student a device of their own), according to a 2017 survey from Freckle Education
But even in an age of student suicides and school shootings, when do security precautions start to infringe on students’ freedoms?
When the Gaggle algorithm surfaces a word or phrase that may be of concern—like a mention of drugs or signs of cyberbullying—the “incident” gets sent to human reviewers before being passed on to the school. Using AI, the software is able to process thousands of student tweets, posts, and status updates to look for signs of harm.
SMPs help normalize surveillance from a young age. In the wake of the Cambridge Analytica scandal at Facebook and other recent data breaches from companies like Equifax, we have the opportunity to teach kids the importance of protecting their online data
in an age of increased school violence, bullying, and depression, schools have an obligation to protect their students. But the protection of kids’ personal information is also a matter of their safety

+++++++++
more on cybersecurity in this IMS blog
https://blog.stcloudstate.edu/ims?s=cybersecurity

more on surveillance  in this IMS blog
https://blog.stcloudstate.edu/ims?s=surveillance

more on privacy in this IMS blog
https://blog.stcloudstate.edu/ims?s=privacy

Media Manipulation and Disinformation Online

A Review of ‘Media Manipulation and Disinformation Online’

In Media Manipulation and Disinformation Online, Marwick and Lewis (2017) of the Data & Society Research Institute described the agents of media manipulation, their modus operandi, motivators, and how they’ve taken advantage of the vulnerability of online media. The researchers described the manipulators as right-wing extremists (RWE), also known as alt-right, who run the gamut from sexists (including male sexual conquest communities) to white nationalists to anti-immigration activists and even those who rebuke RWE identification but whose actions confer such classification. These manipulators rally behind a shared belief on online forums, blogs, podcasts, and social media through pranks or ruinous trolling anonymity, usurping participatory culture methods (networking, humor, mentorship) for harassment, and competitive cyber brigades that earn status by escalating bullying such as the sharing of a target’s private information.

Marwick and Lewis reported on how RWE groups have taken advantage of certain media tactics to gain viewers’ attention such as novelty and sensationalism, as well as their interactions with the public via social media, to manipulate it for their agenda. For instance, YouTube provides any individual with a portal and potential revenue to contribute to the media ecosystem. The researchers shared the example of the use of YouTube by conspiracy theorists, which can be used as fodder for extremist networks as conspiracies generally focus on loss of control of important ideals, health, and safety.

One tactic they’re using is to package their hate in a way that appeals to millennials. They use attention hacking to increase their status such as hate speech, which is later recanted as trickster trolling all the while gaining the media’s attention for further propagation

SHARED MODUS OPERANDI

Marwick and Lewis reported the following shared tactics various RWE groups use for online exploits:

  • Ambiguity of persona or ideology,
  • Baiting a single or community target’s emotions,
  • Bots for amplification of propaganda that appears legitimately from a real person,
  • “…Embeddedness in Internet culture… (p. 28),”
  • Exploitation of young male rebelliousness,
  • Hate speech and offensive language (under the guise of First Amendment protections),
  • Irony to cloak ideology and/or skewer intended targets,
  • Memes for stickiness of propaganda,
  • Mentorship in argumentation, marketing strategies, and subversive literature in their communities of interest,
  • Networked and agile groups,
  • “…Permanent warfare… (p.12)” call to action,
  • Pseudo scholarship to deceive readers,
  • “…Quasi moral arguments… (p. 7)”
  • Shocking images for filtering network membership,
  • “Trading stories up the chain… (p. 38)” from low-level news outlets to mainstream, and
  • Trolling others with asocial behavior.

teenagers in Veles, Macedonia who profited around 16K dollars per month via Google’s AdSense from Facebook post engagements

a long history of mistrust with mainstream media

If you’re a college instructor of communications or teach digital literacy as a librarian, see the corresponding syllabus for this article. It provides discussion questions and assignments for teaching students about media manipulation. To teach your students how to combat fake news online, see my post on Navigating Post-Truth Societies: Strategies, Resources, and Technologies.

+++++++++
more on fake news in this iMS blog
https://blog.stcloudstate.edu/ims?s=fake+news

1 72 73 74 75 76 133