Searching for "learning management"

mobile apps education

5 questions to ask before your university goes mobile

Here’s how to evaluate the potential for mobile solutions

Before they set foot in their first class, incoming college students face a maze of requirements and resources that will be critical to their success. So-called “student supports” abound. Yet forty percent of first-year students don’t return the following year, and a growing number report information overload as they navigate campus life amid newfound independence.

The nine in 10 undergraduates who own smartphones are probably familiar with the xkcd about it. College-aged Americans check their devices more than 150 times per day. So it should be no surprise that a growing body of research suggests that mobile solutions can play a critical role in enhancing the student experience.

1. Is the mobile app native?
We’ve all had the frustrating experience of using a smartphone to navigate a page that was designed for a computer. But when designing native mobile apps, developers start with the small screen, which leads to simpler, cleaner platforms that get rid of the clutter of the desktop browsing experience.

As smartphones overtake laptops and desktops as the most popular way for young people to get online, native design is critical for universities to embrace.

2. Is there a simple content management system?

It’s also critical to explore whether mobile apps integrate with an institution’s existing LMS, CMS, and academic platforms. The most effective apps will allow you to draw upon and translate existing content and resources directly into the mobile experience.
My note: this is why it is worth experimenting with alternatives to LMS, such as Facebook Groups: they allow ready-to-use SIMPLE mobile interface.

3. Does it allow you to take targeted action?

At-risk or disengaged students often require more targeted communication and engagement which, if used effectively, can prevent them falling into those categories in the first place.

Unlike web-based tools, mobile apps should not only communicate information, but also generate insights and reports, highlighting key information into how students use the platform.

4. Does it offer communication and social networking opportunities?

Teenagers who grew up with chatbots and Snapchat expect instant communication to be part of any online interaction. Instead of making students toggle between the student affairs office and conversations with advisors, mobile platforms that offer in-app messaging can streamline the experience and keep users engaged.

5. Does it empower your staff?

++++++++
more on mobile in education in this IMS blog:
https://blog.stcloudstate.edu/ims?s=mobile+education

publish metrics ranking and citation info

EdTech Research – Where to Publish, How to Share (Part 2): Journal Metrics, Rankings and Citation Information

EdTech Research – Where to Publish, How to Share (Part 1): Journal Overview

electronic journals

International Review of Research in Open and Distributed Learning (IRRODL)

Publisher / Organization: Athabasca University Press

Year founded: 2000

Description: The International Review of Research in Open and Distributed Learning disseminates original research, theory, and best practice in open and distributed learning worldwide.

First Monday

Publisher / Organization: The University of Illinois at Chicago- University Library

Year founded: 1996

Description: First Monday is among the very first open access journals in the EdTech field. The journal’s subject matter encompasses the full range of Internet issues, including educational technologies, social media and web search. Contributors are urged via author guidelines to use simple explanations and less complex sentences and to be mindful that a large proportion of their readers are not part of academia and do not have English as a first language.

URL: http://firstmonday.org/

International Journal of Educational Technology in Higher Education(ETHE)

Publisher / Organization: Springer (from 2013)

Academic Management: University of Catalonia (UOC)

Year founded: 2004

Description: This journal aims to: provide a vehicle for scholarly presentation and exchange of information between professionals, researchers and practitioners in the technology-enhanced education field; contribute to the advancement of scientific knowledge regarding the use of technology and computers in higher education; and inform readers about the latest developments in the application of information technologies (ITs) in higher education learning, training, research and management.

URL: https://educationaltechnologyjournal.springeropen.com/

Online Learning (formerly JOLT / JALN)

Publisher / Organization: Online Learning Consortium

Year founded: 1997

Description: Online Learning promotes the development and dissemination of new knowledge at the intersection of pedagogy, emerging technology, policy, and practice in online environments. The journal has been published for over 20 years as the Journal of Asynchronous Learning Networks (JALN) and recently merged with the Journal of Online Learning and Teaching (JOLT).

URL: https://olj.onlinelearningconsortium.org/

Journal of Educational Technology & Society

Publisher / Organization: International Forum of Educational Technology & Society

Year founded:1998

Description: Educational Technology & Society seeks academic articles on the issues affecting the developers of educational systems and educators who implement and manage these systems. Articles should discuss the perspectives of both communities – the programmers and the instructors. The journal is currently still accepting submissions for ongoing special issues, but will cease publication in the future as the editors feel that the field of EdTech is saturated with high quality publications.

URL: http://www.ds.unipi.gr/et&s/index.php

Australasian Journal of Educational Technology

Publisher / Organization: Ascilite (Organization) & PKP Publishing Services Network

Year founded: 1985

Description: The Australasian Journal of Educational Technology aims to promote research and scholarship on the integration of technology in tertiary education, promote effective practice, and inform policy. The goal is to advance understanding of educational technology in post-school education settings, including higher and further education, lifelong learning, and training.

URL: https://ajet.org.au/index.php/AJET

Print Journals

The Internet and Higher Education

Publisher / Organization: Elsevier Ltd.

YEAR FOUNDED: 1998

DESCRIPTION: The Internet and Higher Education is devoted to addressing contemporary issues and future developments related to online learning, teaching, and administration on the Internet in post-secondary settings. Articles should significantly address innovative deployments of Internet technology in instruction and report on research to demonstrate the effects of information technology on instruction in various contexts in higher education.

URL: https://www.journals.elsevier.com/the-internet-and-higher-education

British Journal of Educational Technology

Publisher / Organization: British Educational Research Association (BERA)

YEAR FOUNDED: 1970

DESCRIPTION: The journal publishes theoretical perspectives, methodological developments and empirical research that demonstrate whether and how applications of instructional/educational technology systems, networks, tools and resources lead to improvements in formal and non-formal education at all levels, from early years through to higher, technical and vocational education, professional development and corporate training.

LINK: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-8535

Computers & Education

Publisher / Organization: Elsevier Ltd.

Year founded: 1976

Description: Computers & Education aims to increase knowledge and understanding of ways in which digital technology can enhance education, through the publication of high quality research, which extends theory and practice.

URL: https://www.journals.elsevier.com/computers-and-education/

Tech Trends

Publisher / Organization: Springer US

Year founded: 1985

Description: TechTrends targets professionals in the educational communication and technology field. It provides a vehicle that fosters the exchange of important and current information among professional practitioners. Among the topics addressed are the management of media and programs, the application of educational technology principles and techniques to instructional programs, and corporate and military training.

URL: https://link.springer.com/journal/11528

International Journal on E-Learning (IJEL)

Year founded: 2002

Description: Advances in technology and the growth of e-learning to provide educators and trainers with unique opportunities to enhance learning and teaching in corporate, government, healthcare, and higher education. IJEL serves as a forum to facilitate the international exchange of information on the current research, development, and practice of e-learning in these sectors.

Led by an Editorial Review Board of leaders in the field of e-Learning, the Journal is designed for the following audiences: researchers, developers, and practitioners in corporate, government, healthcare, and higher education. IJEL is a peer-reviewed journal.

URL: http://www.aace.org/pubs/ijel/

Journal of Computers in Mathematics and Science Teaching (JCMST)

Year founded: 1981

Description: JCMST is a highly respected scholarly journal which offers an in-depth forum for the interchange of information in the fields of science, mathematics, and computer science. JCMST is the only periodical devoted specifically to using information technology in the teaching of mathematics and science.

URL: https://www.aace.org/pubs/jcmst/

Just as researchers build reputation over time that can be depicted (in part) through quantitative measures such as h-index and i10-index, journals are also compared based on the number of citations they receive..

Journal of Interactive Learning Research (JILR)

Year founded: 1997

Description: The Journal of Interactive Learning Research (JILR) publishes papers related to the underlying theory, design, implementation, effectiveness, and impact on education and training of the following interactive learning environments: authoring systems, cognitive tools for learning computer-assisted language learning computer-based assessment systems, computer-based training computer-mediated communications, computer-supported collaborative learning distributed learning environments, electronic performance support systems interactive learning environments, interactive multimedia systems interactive simulations and games, intelligent agents on the Internet intelligent tutoring systems, microworlds, virtual reality based learning systems.

URL: http://learntechlib.org/j/JILR/

Journal of Educational Multimedia and Hypermedia (JEMH)

Year founded: 1996

Description: JEMH is designed to provide a multi-disciplinary forum to present and discuss research, development and applications of multimedia and hypermedia in education. It contributes to the advancement of the theory and practice of learning and teaching in environments that integrate images, sound, text, and data.

URL: https://www.aace.org/pubs/jemh/

Journal of Technology and Teacher Education (JTATE)

Publisher / Organization: Society for Information Technology and Teacher Education (SITE)

Year founded: 1997

Description: JTATE serves as a forum for the exchange of knowledge about the use of information technology in teacher education. Journal content covers preservice and inservice teacher education, graduate programs in areas such as curriculum and instruction, educational administration, staff development instructional technology, and educational computing.

URL: https://www.aace.org/pubs/jtate/

Journal on Online Learning Research (JOLR)

Publisher / Organization: Association for the Advancement of Computing in Education (AACE)

YEAR FOUNDED: 2015

DESCRIPTION: The Journal of Online Learning Research (JOLR) is a peer-reviewed, international journal devoted to the theoretical, empirical, and pragmatic understanding of technologies and their impact on primary and secondary pedagogy and policy in primary and secondary (K-12) online and blended environments. JOLR is focused on publishing manuscripts that address online learning, catering particularly to the educators who research, practice, design, and/or administer in primary and secondary schooling in online settings. However, the journal also serves those educators who have chosen to blend online learning tools and strategies in their face-to-face classroom.

URL: https://www.aace.org/pubs/jolr/

 

++++++++++++++
part 2

The most commonly used index to measure the relative importance of journals is the annual Journal Citation Reports (JCR). This report is published by Clarivate Analytics (previously Thomson Reuters).

SCImago

SCImago Journal Rank (SJR indicator) measures the influence of journals based on the number of citations the articles in the journal receive and the importance or prestige of the journals where such citations come from. The SJR indicator is a free journal metric which uses an algorithm similar to PageRank and provides an open access alternative to the journal impact factor in the Web of Science Journal Citation Report. The portal draws from the information contained in the Scopus database (Elsevier B.V.).

Google Scholar Journal Rank

Introduced by Google in 2004, Scholar is a freely accessible search engine that indexes the full text or metadata of scholarly publications across an array of publishing formats and disciplines.

Scopus Journal Metrics

Introduced by Elsevier in 2004, Scopus is an abstract and citation database that covers nearly 18,000 titles from more than 5,000 publishers. It offers journal metrics that go beyond just journals to include most serial titles, including supplements, special issues and conference proceedings. Scopus offers useful information such as the total number of citations, the total number of articles published, and the percent of articles cited.

Anne-Wil Harzing:

Citations are not just a reflection of the impact that a particular piece of academic work has generated. Citations can be used to tell stories about academics, journals and fields of research, but they can also be used to distort stories”.

Harzing, A.-W. (2013). The publish or perish book: Your guide to effective and responsible citation analysis. http://harzing.com/popbook/index.htm

ResearchGate

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. The community was founded in May 2008. Today it has over 14 million members.

Google Scholar

Google Scholar allows users to search for digital or physical copies of articles, whether online or in libraries. It indexes “full-text journal articles, technical reports, preprints, theses, books, and other documents, including selected Web pages that are deemed to be ‘scholarly. It comprises an estimated 160 million documents.

Academia.edu

Academia.edu is a social-networking platform for academics to share research papers. You can upload your own work, and follow the updates of your peers. Founded in 2008, the network currently has 59 million users, and adding 20 million documents.

ORCID

The ORCHID (Open Researcher and Contributor ID) is a nonproprietary alphanumeric code to uniquely identify scientific and other academic authors and contributors. It provides a persistent identity for humans, similar to content-related entities on digital networks that utilize digital object identifiers (DOIs). The organization offers an open and independent registry intended to be the de facto standard for contributor identification in research and academic publishing.

SCOPUS

The Scopus Author Identifier assigns a unique number to groups of documents written by the same author via an algorithm that matches authorship based on a certain criteria. If a document cannot be confidently matched with an author identifier, it is grouped separately. In this case, you may see more than one entry for the same author.

 

+++++++++++++++++
more on metrics in this iMS blog

https://blog.stcloudstate.edu/ims?s=metrics

Principalship EDAD

Link to this blog entry: http://bit.ly/principaledad

Fri, Feb. 2, 2018, Principalship class, 22 people, Plymouth room 103

Instructor Jim Johnson  EDAD principalship class

The many different roles of the principals:

Communication

Effective communication is one critical characteristics of effective and successful school principal. Research on effective schools and instructional leadership emphasizes the impact of principal leadership on creating safe and secure learning environment and positive nurturing school climate (Halawah, 2005, p. 334)

Halawah, I. (2005). The Relationship between Effective Communication of High School Principal and School Climate. Education, 126(2), 334-345.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ765683%26site%3dehost-live%26scope%3dsite

Selection of school principals in Hong Kong. The findings confirm a four-factor set of expectations sought from applicants; these are Generic Managerial Skills; Communication and Presentation Skills; Knowledge and Experience; and Religious Value Orientation.

Kwan, P. (2012). Assessing school principal candidates: perspectives of the hiring superintendents. International Journal Of Leadership In Education, 15(3), 331-349. doi:10.1080/13603124.2011.617838

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d77658138%26site%3dehost-live%26scope%3dsite

Yee, D. L. (2000). Images of school principals’ information and communications technology leadership. Journal of Information Technology for Teacher Education, 9(3), 287–302. https://doi.org/10.1080/14759390000200097

Catano, N., & Stronge, J. H. (2007). What do we expect of school principals? Congruence between principal evaluation and performance standards. International Journal of Leadership in Education, 10(4), 379–399. https://doi.org/10.1080/13603120701381782

Communication can consist of two large areas:

  • broadcasting information: PR, promotions, notifications etc.
  • two-way communication: collecting feedback, “office hours” type of communication, backchanneling, etc.

Further communication initiated by/from principals can have different audiences

  • staff: teachers, maintenance etc.

Ärlestig, H. (2008). Communication between principals and teachers in successful schools. DIVA. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1927

Reyes, P., & Hoyle, D. (1992). Teachers’ Satisfaction With Principals’ Communication. The Journal of Educational Research, 85(3), 163–168. https://doi.org/10.1080/00220671.1992.9944433

  • parents: involvement, feeling of empowerment, support, volunteering
  • students
  • board members
  • community

Epstein, J. L. (1995). School/family/community partnerships – ProQuest. Phi Delta Kappan, 76(9), 701.

  • Others

Communication and Visualization

The ever-growing necessity to be able to communicate data to different audiences in digestible format.

https://blog.stcloudstate.edu/ims/2017/07/15/large-scale-visualization/

So, how do we organize and exercise communication with these audiences and considering the different content to be communicated?

  • How do you use to do it at your school, when you were students 20-30 years ago?
  • How is it different now?
  • How do you think it must be changed?

Communication tools:

physical

  • paper-based memos, physical boards

Electronic

  • phone, Intercom, email, electronic boards (listservs)

21st century electronic tools

  • Electronic boards
    • Pinterest
  • Internet telephony and desktopsharing
    • Adobe Connect, Webex, Zoom, GoToMeeting, Teamviewer etc.
    • Skype, Google Hangouts, Facebook Messenger
  • Electronic calendars
    • Doodle, MS Offce365, Google Calendar
  • Social media / The Cloud
    • Visuals: Flickr, YouTube, TeacherTube, MediaSpace
    • Podasts
    • Direct two-way communication
      • Asynchronous
        • Snapchat
        • Facebook
        • Twitter
        • LinkedIn
        • Instagram
      • Synchronous
        • Chat
        • Audio/video/desktopsharing
      • Management tools

 

Tools:

https://blog.stcloudstate.edu/ims/2016/07/16/communication-tool-for-teachers-and-parents/

Top 10 Social Media Management Tools: beyond Hootsuite and TweetDeck

https://blog.stcloudstate.edu/ims/2013/11/17/top-10-social-media-management-tools-beyond-hootsuite-and-tweetdeck/

Manage control of your passwords and logons (Password Managers)

  • 1Password.
  • Okta.
  • Keeper.
  • KeePass.
  • Centrify Application Services.
  • RoboForm.
  • Zoho Vault.
  • Passpack.
  • LastPass

+++++++++++++++++++++
class discussion Feb 2.

PeachJar : https://www.peachjar.com/

Seesaw: https://web.seesaw.me/

Schoology: https://www.schoology.com/

 

++++++++++++++++++++++
Group Assignment

considering the information discussed in class, split in groups of 4 and develop your institution strategy for effective and modern communication across and out of your school.

>>>>>>>>>>> Word of the day: blockchain credentialing <<<<<<<<<<<<<<<<<<<<<

>>>>>>>>>>> K12 Trends 4 2018 <<<<<<<<<<<<<<<<<

 

 

IT Advisory Council

Minutes from November 29 meeting . (all documents are work in progress)

Consultation groups:

CATT (mixed of collective bargaining and various academic areas), student technology groups, TPR (Technological and Pedagogical Roundtable) – tech issue specific to faculty. not tech admin but broad issues.
Student tech fee commitee, ITS staff, SCSU Divisions (?); Management Team, MN stte system office / CIO; It external review members (?); STCC IT
More on charge of these groups

IT Strategic Planning – Lisa Foss, Phil Thorson, Shelly Mumm, Mike Freer, LaVonne, Joe Ben ueckler

Strategic Planning Team meets in the summer with the Management Team.

System office did the Educause survey w faculty and students. Horizon Report

D2L move to the cloud, domain change.

Lisa Foss; mini swats from SCSU deans . summer shaped a “certain perspectives”

2010 strategic vision for IT (30+ pages) never got off the ground, but the teams are the same. An external 2012 consultant (Koludes COmpany)

IT assessment group (?)

latest discussions: how to consult better campus users (Tom ?)

SCSU Strategic Plan as a template. Using similar/same goals and objectives: 1. engage students. objectives (come from the SCSU plan) a. integrate student learning and support. Strategy and source. This is on the Sharepoint site (Phil Thorson email

SCSU Tech Plan Engaged Students Objectives: what people will be able to do, if the plan is successful.  1.D. change from Engagement to Student Belonging. Analytics and Social Media is in the objectives. the objectives as they are too broad. I understand the need to keep them broad, but as they are they are too broad, which poses the danger of each stakeholder to interpret differently.

training and instruction what is the state and what is the plan. instead of department, can we build a network of people spread across departments. nationally 92% ecar survey https://www.educause.edu/ecar

engaged campus strategic priority. comprehensive technology training (?). the text reads as it is pertaining to IT staff only. Is it? if it is the entire campus, why does not mention it. so it is IT only at this point and needs to be reworded to be clear that included the entire campus. 2010 plan did not think about all different issues of technology in each department. one size fit the entire campus.

Engaged Communities: four campuses – Alnwick, Plymouth, SC and online
technology consortia: how to partner, lead etc
serving community members as community patrons.
what are the tactics comes late. aspirational
what the roadblocks. innovation
efficiencies, automation.

Tom (the faculty from the School of Health and Human Services – telemedicine) Janet Tilstred Communication Disorders

Phil Thorson: how is risk management fit in the complex issues.
Next step: what is this plan mean for COSE, for the other schools?

 

digital humanities

7 Things You Should Know About Digital Humanities

Published:   Briefs, Case Studies, Papers, Reports  

https://library.educause.edu/resources/2017/11/7-things-you-should-know-about-digital-humanities

Lippincott, J., Spiro, L., Rugg, A., Sipher, J., & Well, C. (2017). Seven Things You Should Know About Digital Humanities (ELI 7 Things You Should Know). Retrieved from https://library.educause.edu/~/media/files/library/2017/11/eli7150.pdf

definition

The term “digital humanities” can refer to research and instruction that is about information technology or that uses IT. By applying technologies in new ways, the tools and methodologies of digital humanities open new avenues of inquiry and scholarly production. Digital humanities applies computational capabilities to humanistic questions, offering new pathways for scholars to conduct research and to create and publish scholarship. Digital humanities provides promising new channels for learners and will continue to influence the ways in which we think about and evolve technology toward better and more humanistic ends.

As defined by Johanna Drucker and colleagues at UCLA, the digital humanities is “work at the intersection of digital technology and humanities disciplines.” An EDUCAUSE/CNI working group framed the digital humanities as “the application and/or development of digital tools and resources to enable researchers to address questions and perform new types of analyses in the humanities disciplines,” and the NEH Office of Digital Humanities says digital humanities “explore how to harness new technology for thumanities research as well as those that study digital culture from a humanistic perspective.” Beyond blending the digital with the humanities, there is an intentionality about combining the two that defines it.

digital humanities can include

  • creating digital texts or data sets;
  • cleaning, organizing, and tagging those data sets;
  • applying computer-based methodologies to analyze them;
  • and making claims and creating visualizations that explain new findings from those analyses.

Scholars might reflect on

  • how the digital form of the data is organized,
  • how analysis is conducted/reproduced, and
  • how claims visualized in digital form may embody assumptions or biases.

Digital humanities can enrich pedagogy as well, such as when a student uses visualized data to study voter patterns or conducts data-driven analyses of works of literature.

Digital humanities usually involves work by teams in collaborative spaces or centers. Team members might include

  • researchers and faculty from multiple disciplines,
  • graduate students,
  • librarians,
  • instructional technologists,
  • data scientists and preservation experts,
  • technologists with expertise in critical computing and computing methods, and undergraduates

projects:

downsides

  • some disciplinary associations, including the Modern Language Association and the American Historical Association, have developed guidelines for evaluating digital proj- ects, many institutions have yet to define how work in digital humanities fits into considerations for tenure and promotion
  • Because large projects are often developed with external funding that is not readily replaced by institutional funds when the grant ends sustainability is a concern. Doing digital humanities well requires access to expertise in methodologies and tools such as GIS, mod- eling, programming, and data visualization that can be expensive for a single institution to obtain
  • Resistance to learning new tech- nologies can be another roadblock, as can the propensity of many humanists to resist working in teams. While some institutions have recognized the need for institutional infrastructure (computation and storage, equipment, software, and expertise), many have not yet incorporated such support into ongoing budgets.

Opportunities for undergraduate involvement in research, provid ing students with workplace skills such as data management, visualization, coding, and modeling. Digital humanities provides new insights into policy-making in areas such as social media, demo- graphics, and new means of engaging with popular culture and understanding past cultures. Evolution in this area will continue to build connections between the humanities and other disci- plines, cross-pollinating research and education in areas like med- icine and environmental studies. Insights about digital humanities itself will drive innovation in pedagogy and expand our conceptualization of classrooms and labs

++++++++++++
more on digital humanities in this IMS blog
https://blog.stcloudstate.edu/ims?s=digital+humanities

IRDL proposal

Applications for the 2018 Institute will be accepted between December 1, 2017 and January 27, 2018. Scholars accepted to the program will be notified in early March 2018.

Title:

Learning to Harness Big Data in an Academic Library

Abstract (200)

Research on Big Data per se, as well as on the importance and organization of the process of Big Data collection and analysis, is well underway. The complexity of the process comprising “Big Data,” however, deprives organizations of ubiquitous “blue print.” The planning, structuring, administration and execution of the process of adopting Big Data in an organization, being that a corporate one or an educational one, remains an elusive one. No less elusive is the adoption of the Big Data practices among libraries themselves. Seeking the commonalities and differences in the adoption of Big Data practices among libraries may be a suitable start to help libraries transition to the adoption of Big Data and restructuring organizational and daily activities based on Big Data decisions.
Introduction to the problem. Limitations

The redefinition of humanities scholarship has received major attention in higher education. The advent of digital humanities challenges aspects of academic librarianship. Data literacy is a critical need for digital humanities in academia. The March 2016 Library Juice Academy Webinar led by John Russel exemplifies the efforts to help librarians become versed in obtaining programming skills, and respectively, handling data. Those are first steps on a rather long path of building a robust infrastructure to collect, analyze, and interpret data intelligently, so it can be utilized to restructure daily and strategic activities. Since the phenomenon of Big Data is young, there is a lack of blueprints on the organization of such infrastructure. A collection and sharing of best practices is an efficient approach to establishing a feasible plan for setting a library infrastructure for collection, analysis, and implementation of Big Data.
Limitations. This research can only organize the results from the responses of librarians and research into how libraries present themselves to the world in this arena. It may be able to make some rudimentary recommendations. However, based on each library’s specific goals and tasks, further research and work will be needed.

 

 

Research Literature

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”
– Dan Ariely, 2013  https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Big Data is becoming an omnipresent term. It is widespread among different disciplines in academia (De Mauro, Greco, & Grimaldi, 2016). This leads to “inconsistency in meanings and necessity for formal definitions” (De Mauro et al, 2016, p. 122). Similarly, to De Mauro et al (2016), Hashem, Yaqoob, Anuar, Mokhtar, Gani and Ullah Khan (2015) seek standardization of definitions. The main connected “themes” of this phenomenon must be identified and the connections to Library Science must be sought. A prerequisite for a comprehensive definition is the identification of Big Data methods. Bughin, Chui, Manyika (2011), Chen et al. (2012) and De Mauro et al (2015) single out the methods to complete the process of building a comprehensive definition.

In conjunction with identifying the methods, volume, velocity, and variety, as defined by Laney (2001), are the three properties of Big Data accepted across the literature. Daniel (2015) defines three stages in big data: collection, analysis, and visualization. According to Daniel, (2015), Big Data in higher education “connotes the interpretation of a wide range of administrative and operational data” (p. 910) and according to Hilbert (2013), as cited in Daniel (2015), Big Data “delivers a cost-effective prospect to improve decision making” (p. 911).

The importance of understanding the process of Big Data analytics is well understood in academic libraries. An example of such “administrative and operational” use for cost-effective improvement of decision making are the Finch & Flenner (2016) and Eaton (2017) case studies of the use of data visualization to assess an academic library collection and restructure the acquisition process. Sugimoto, Ding & Thelwall (2012) call for the discussion of Big Data for libraries. According to the 2017 NMC Horizon Report “Big Data has become a major focus of academic and research libraries due to the rapid evolution of data mining technologies and the proliferation of data sources like mobile devices and social media” (Adams, Becker, et al., 2017, p. 38).

Power (2014) elaborates on the complexity of Big Data in regard to decision-making and offers ideas for organizations on building a system to deal with Big Data. As explained by Boyd and Crawford (2012) and cited in De Mauro et al (2016), there is a danger of a new digital divide among organizations with different access and ability to process data. Moreover, Big Data impacts current organizational entities in their ability to reconsider their structure and organization. The complexity of institutions’ performance under the impact of Big Data is further complicated by the change of human behavior, because, arguably, Big Data affects human behavior itself (Schroeder, 2014).

De Mauro et al (2015) touch on the impact of Dig Data on libraries. The reorganization of academic libraries considering Big Data and the handling of Big Data by libraries is in a close conjunction with the reorganization of the entire campus and the handling of Big Data by the educational institution. In additional to the disruption posed by the Big Data phenomenon, higher education is facing global changes of economic, technological, social, and educational character. Daniel (2015) uses a chart to illustrate the complexity of these global trends. Parallel to the Big Data developments in America and Asia, the European Union is offering access to an EU open data portal (https://data.europa.eu/euodp/home ). Moreover, the Association of European Research Libraries expects under the H2020 program to increase “the digitization of cultural heritage, digital preservation, research data sharing, open access policies and the interoperability of research infrastructures” (Reilly, 2013).

The challenges posed by Big Data to human and social behavior (Schroeder, 2014) are no less significant to the impact of Big Data on learning. Cohen, Dolan, Dunlap, Hellerstein, & Welton (2009) propose a road map for “more conservative organizations” (p. 1492) to overcome their reservations and/or inability to handle Big Data and adopt a practical approach to the complexity of Big Data. Two Chinese researchers assert deep learning as the “set of machine learning techniques that learn multiple levels of representation in deep architectures (Chen & Lin, 2014, p. 515). Deep learning requires “new ways of thinking and transformative solutions (Chen & Lin, 2014, p. 523). Another pair of researchers from China present a broad overview of the various societal, business and administrative applications of Big Data, including a detailed account and definitions of the processes and tools accompanying Big Data analytics.  The American counterparts of these Chinese researchers are of the same opinion when it comes to “think about the core principles and concepts that underline the techniques, and also the systematic thinking” (Provost and Fawcett, 2013, p. 58). De Mauro, Greco, and Grimaldi (2016), similarly to Provost and Fawcett (2013) draw attention to the urgent necessity to train new types of specialists to work with such data. As early as 2012, Davenport and Patil (2012), as cited in Mauro et al (2016), envisioned hybrid specialists able to manage both technological knowledge and academic research. Similarly, Provost and Fawcett (2013) mention the efforts of “academic institutions scrambling to put together programs to train data scientists” (p. 51). Further, Asomoah, Sharda, Zadeh & Kalgotra (2017) share a specific plan on the design and delivery of a big data analytics course. At the same time, librarians working with data acknowledge the shortcomings in the profession, since librarians “are practitioners first and generally do not view usability as a primary job responsibility, usually lack the depth of research skills needed to carry out a fully valid” data-based research (Emanuel, 2013, p. 207).

Borgman (2015) devotes an entire book to data and scholarly research and goes beyond the already well-established facts regarding the importance of Big Data, the implications of Big Data and the technical, societal, and educational impact and complications posed by Big Data. Borgman elucidates the importance of knowledge infrastructure and the necessity to understand the importance and complexity of building such infrastructure, in order to be able to take advantage of Big Data. In a similar fashion, a team of Chinese scholars draws attention to the complexity of data mining and Big Data and the necessity to approach the issue in an organized fashion (Wu, Xhu, Wu, Ding, 2014).

Bruns (2013) shifts the conversation from the “macro” architecture of Big Data, as focused by Borgman (2015) and Wu et al (2014) and ponders over the influx and unprecedented opportunities for humanities in academia with the advent of Big Data. Does the seemingly ubiquitous omnipresence of Big Data mean for humanities a “railroading” into “scientificity”? How will research and publishing change with the advent of Big Data across academic disciplines?

Reyes (2015) shares her “skinny” approach to Big Data in education. She presents a comprehensive structure for educational institutions to shift “traditional” analytics to “learner-centered” analytics (p. 75) and identifies the participants in the Big Data process in the organization. The model is applicable for library use.

Being a new and unchartered territory, Big Data and Big Data analytics can pose ethical issues. Willis (2013) focusses on Big Data application in education, namely the ethical questions for higher education administrators and the expectations of Big Data analytics to predict students’ success.  Daries, Reich, Waldo, Young, and Whittinghill (2014) discuss rather similar issues regarding the balance between data and student privacy regulations. The privacy issues accompanying data are also discussed by Tene and Polonetsky, (2013).

Privacy issues are habitually connected to security and surveillance issues. Andrejevic and Gates (2014) point out in a decision making “generated by data mining, the focus is not on particular individuals but on aggregate outcomes” (p. 195). Van Dijck (2014) goes into further details regarding the perils posed by metadata and data to the society, in particular to the privacy of citizens. Bail (2014) addresses the same issue regarding the impact of Big Data on societal issues, but underlines the leading roles of cultural sociologists and their theories for the correct application of Big Data.

Library organizations have been traditional proponents of core democratic values such as protection of privacy and elucidation of related ethical questions (Miltenoff & Hauptman, 2005). In recent books about Big Data and libraries, ethical issues are important part of the discussion (Weiss, 2018). Library blogs also discuss these issues (Harper & Oltmann, 2017). An academic library’s role is to educate its patrons about those values. Sugimoto et al (2012) reflect on the need for discussion about Big Data in Library and Information Science. They clearly draw attention to the library “tradition of organizing, managing, retrieving, collecting, describing, and preserving information” (p.1) as well as library and information science being “a historically interdisciplinary and collaborative field, absorbing the knowledge of multiple domains and bringing the tools, techniques, and theories” (p. 1). Sugimoto et al (2012) sought a wide discussion among the library profession regarding the implications of Big Data on the profession, no differently from the activities in other fields (e.g., Wixom, Ariyachandra, Douglas, Goul, Gupta, Iyer, Kulkami, Mooney, Phillips-Wren, Turetken, 2014). A current Andrew Mellon Foundation grant for Visualizing Digital Scholarship in Libraries seeks an opportunity to view “both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets (Hwangbo, 2014).

The importance of the library with its traditional roles, as described by Sugimoto et al (2012) may continue, considering the Big Data platform proposed by Wu, Wu, Khabsa, Williams, Chen, Huang, Tuarob, Choudhury, Ororbia, Mitra, & Giles (2014). Such platforms will continue to emerge and be improved, with librarians as the ultimate drivers of such platforms and as the mediators between the patrons and the data generated by such platforms.

Every library needs to find its place in the large organization and in society in regard to this very new and very powerful phenomenon called Big Data. Libraries might not have the trained staff to become a leader in the process of organizing and building the complex mechanism of this new knowledge architecture, but librarians must educate and train themselves to be worthy participants in this new establishment.

 

Method

 

The study will be cleared by the SCSU IRB.
The survey will collect responses from library population and it readiness to use and use of Big Data.  Send survey URL to (academic?) libraries around the world.

Data will be processed through SPSS. Open ended results will be processed manually. The preliminary research design presupposes a mixed method approach.

The study will include the use of closed-ended survey response questions and open-ended questions.  The first part of the study (close ended, quantitative questions) will be completed online through online survey. Participants will be asked to complete the survey using a link they receive through e-mail.

Mixed methods research was defined by Johnson and Onwuegbuzie (2004) as “the class of research where the researcher mixes or combines quantitative and qualitative research techniques, methods, approaches, concepts, or language into a single study” (Johnson & Onwuegbuzie, 2004 , p. 17).  Quantitative and qualitative methods can be combined, if used to complement each other because the methods can measure different aspects of the research questions (Sale, Lohfeld, & Brazil, 2002).

 

Sampling design

 

  • Online survey of 10-15 question, with 3-5 demographic and the rest regarding the use of tools.
  • 1-2 open-ended questions at the end of the survey to probe for follow-up mixed method approach (an opportunity for qualitative study)
  • data analysis techniques: survey results will be exported to SPSS and analyzed accordingly. The final survey design will determine the appropriate statistical approach.

 

Project Schedule

 

Complete literature review and identify areas of interest – two months

Prepare and test instrument (survey) – month

IRB and other details – month

Generate a list of potential libraries to distribute survey – month

Contact libraries. Follow up and contact again, if necessary (low turnaround) – month

Collect, analyze data – two months

Write out data findings – month

Complete manuscript – month

Proofreading and other details – month

 

Significance of the work 

While it has been widely acknowledged that Big Data (and its handling) is changing higher education (https://blog.stcloudstate.edu/ims?s=big+data) as well as academic libraries (https://blog.stcloudstate.edu/ims/2016/03/29/analytics-in-education/), it remains nebulous how Big Data is handled in the academic library and, respectively, how it is related to the handling of Big Data on campus. Moreover, the visualization of Big Data between units on campus remains in progress, along with any policymaking based on the analysis of such data (hence the need for comprehensive visualization).

 

This research will aim to gain an understanding on: a. how librarians are handling Big Data; b. how are they relating their Big Data output to the campus output of Big Data and c. how librarians in particular and campus administration in general are tuning their practices based on the analysis.

Based on the survey returns (if there is a statistically significant return), this research might consider juxtaposing the practices from academic libraries, to practices from special libraries (especially corporate libraries), public and school libraries.

 

 

References:

 

Adams Becker, S., Cummins M, Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., … Wolfson, N. (2017). NMC Horizon Report: 2017 Library Edition.

Andrejevic, M., & Gates, K. (2014). Big Data Surveillance: Introduction. Surveillance & Society, 12(2), 185–196.

Asamoah, D. A., Sharda, R., Hassan Zadeh, A., & Kalgotra, P. (2017). Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decision Sciences Journal of Innovative Education, 15(2), 161–190. https://doi.org/10.1111/dsji.12125

Bail, C. A. (2014). The cultural environment: measuring culture with big data. Theory and Society, 43(3–4), 465–482. https://doi.org/10.1007/s11186-014-9216-5

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press.

Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and academic scholarship. First Monday, 18(10). Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/4879

Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.

Chen, X. W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514–525. https://doi.org/10.1109/ACCESS.2014.2325029

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proc. VLDB Endow., 2(2), 1481–1492. https://doi.org/10.14778/1687553.1687576

Daniel, B. (2015). Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. https://doi.org/10.1111/bjet.12230

Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., … Chuang, I. (2014). Privacy, Anonymity, and Big Data in the Social Sciences. Commun. ACM, 57(9), 56–63. https://doi.org/10.1145/2643132

De Mauro, A. D., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. AIP Conference Proceedings, 1644(1), 97–104. https://doi.org/10.1063/1.4907823

Dumbill, E. (2012). Making Sense of Big Data. Big Data, 1(1), 1–2. https://doi.org/10.1089/big.2012.1503

Eaton, M. (2017). Seeing Library Data: A Prototype Data Visualization Application for Librarians. Publications and Research. Retrieved from http://academicworks.cuny.edu/kb_pubs/115

Emanuel, J. (2013). Usability testing in libraries: methods, limitations, and implications. OCLC Systems & Services: International Digital Library Perspectives, 29(4), 204–217. https://doi.org/10.1108/OCLC-02-2013-0009

Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261. https://doi.org/10.1177/2043820613513121

Harper, L., & Oltmann, S. (2017, April 2). Big Data’s Impact on Privacy for Librarians and Information Professionals. Retrieved November 7, 2017, from https://www.asist.org/publications/bulletin/aprilmay-2017/big-datas-impact-on-privacy-for-librarians-and-information-professionals/

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47(Supplement C), 98–115. https://doi.org/10.1016/j.is.2014.07.006

Hwangbo, H. (2014, October 22). The future of collaboration: Large-scale visualization. Retrieved November 7, 2017, from http://usblogs.pwc.com/emerging-technology/the-future-of-collaboration-large-scale-visualization/

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and Variety.

Miltenoff, P., & Hauptman, R. (2005). Ethical dilemmas in libraries: an international perspective. The Electronic Library, 23(6), 664–670. https://doi.org/10.1108/02640470510635746

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015

Power, D. J. (2014). Using ‘Big Data’ for analytics and decision support. Journal of Decision Systems, 23(2), 222–228. https://doi.org/10.1080/12460125.2014.888848

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508

Reilly, S. (2013, December 12). What does Horizon 2020 mean for research libraries? Retrieved November 7, 2017, from http://libereurope.eu/blog/2013/12/12/what-does-horizon-2020-mean-for-research-libraries/

Reyes, J. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends: Linking Research & Practice to Improve Learning, 59(2), 75–80. https://doi.org/10.1007/s11528-015-0842-1

Schroeder, R. (2014). Big Data and the brave new world of social media research. Big Data & Society, 1(2), 2053951714563194. https://doi.org/10.1177/2053951714563194

Sugimoto, C. R., Ding, Y., & Thelwall, M. (2012). Library and information science in the big data era: Funding, projects, and future [a panel proposal]. Proceedings of the American Society for Information Science and Technology, 49(1), 1–3. https://doi.org/10.1002/meet.14504901187

Tene, O., & Polonetsky, J. (2012). Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of Technology and Intellectual Property, 11, [xxvii]-274.

van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society; Newcastle upon Tyne, 12(2), 197–208.

Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010

Weiss, A. (2018). Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals. Rowman & Littlefield Publishers. Retrieved from https://rowman.com/ISBN/9781538103227/Big-Data-Shocks-An-Introduction-to-Big-Data-for-Librarians-and-Information-Professionals

West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 4, 1–0.

Willis, J. (2013). Ethics, Big Data, and Analytics: A Model for Application. Educause Review Online. Retrieved from https://docs.lib.purdue.edu/idcpubs/1

Wixom, B., Ariyachandra, T., Douglas, D. E., Goul, M., Gupta, B., Iyer, L. S., … Turetken, O. (2014). The current state of business intelligence in academia: The arrival of big data. CAIS, 34, 1.

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Wu, Z., Wu, J., Khabsa, M., Williams, K., Chen, H. H., Huang, W., … Giles, C. L. (2014). Towards building a scholarly big data platform: Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital Libraries (pp. 117–126). https://doi.org/10.1109/JCDL.2014.6970157

 

+++++++++++++++++
more on big data





pedagogically sound Minecraft examples

FridayLive!! Oct 27 THIS WEEK 2:00 PM EDT 

Minecraft for Higher Ed? Try it. Pros, Cons, Recommendations? 

Description: Why Minecraft, the online video game? How can Minecraft improve learning for higher education?
We’ll begin with a live demo in which all can participate (see “Minecraft for Free”).
We’ll review “Examples, Not Rumors” of successful adaptations and USES of Minecraft for teaching/learning in higher education. Especially those submitted in advance
And we’ll try to extract from these activities a few recommendations/questions/requests re Minecraft in higher education.

++++++++++
Examples:

Minecraft Education Edition: https://education.minecraft.net/
(more info: https://blog.stcloudstate.edu/ims/2017/05/23/minecraft-education-edition/)

K12: 

Minecraft empathy skillshttp://www.gettingsmart.com/wp-content/uploads/2017/04/How-Minecraft-Supports-SEL.pdf 

coding w MineCraft

Minecraft for Math

Higher Ed: 

Minecraft Higher Education?

Using MCEE in Higher Education

Why NOT to use minecraft in education:

https://higheredrevolution.com/why-educators-probably-shouldn-t-use-minecraft-in-their-classrooms-989f525c6e62

College Students Get Virtual Look at the Real World with ‘Minecraft’

Carnegie Mellon University uses the game-based learning tool to help students demonstrate engineering skills. SEP182017

https://edtechmagazine.com/higher/article/2017/09/college-students-get-virtual-look-real-world-minecraft

Using Minecraft in Higher Education

https://groups.google.com/forum/#!topic/minecraft-teachers/cED6MM0E0bQ

Using MinecraftEdu – Part 1 – Introduction

https://www.youtube.com/watch?v=Lsfd9J5UgVk

Physics with Minecraft example

Chemistry with Minecraft example

Biology

other disciplines

+++++++++++

Does learning really happen w Minecraft?

Callaghan, N. (2016). Investigating the role of Minecraft in educational learning environments. Educational Media International53(4), 244-260. doi:10.1080/09523987.2016.1254877

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d119571817%26site%3dehost-live%26scope%3dsite

Noelene Callaghan dissects the evolution in Australian education from a global perspective. She rightfully draws attention (p. 245) to inevitable changes in the educational world, which still remain ignored: e.g., the demise of “traditional” LMS (Educase is calling for their replacement with digital learning environments https://blog.stcloudstate.edu/ims/2017/07/06/next-gen-digital-learning-environment/ and so does the corporate world of learning: https://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/ ), the inevitability of BYOD (mainly by the “budget restrictions and sustainability challenges” (p. 245); by the assertion of cloud computing, and, last but not least, by the gamification of education.

p. 245 literature review. In my paper, I am offering more comprehensive literature review. While Callaghan focuses on the positive, my attempt is to list both pros and cons: http://scsu.mn/1F008Re

 

  1. 246 General use of massive multiplayer online role playing games (MMORPGs)

levels of interaction have grown dramatically and have led to the creation of general use of massive multiplayer online role playing games (MMORPGs)

  1. 247 In teaching and learning environments, affordances associated with edugames within a project-based learning (PBL) environment permit:
  • (1)  Learner-centered environments
  • (2)  Collaboration
  • (3)  Curricular content
  • (4)  Authentic tasks
  • (5)  Multiple expression modes
  • (6)  Emphasis on time management
  • (7)  Innovative assessment (Han & Bhattacharya, 2001).

These affordances develop both social and cognitive abilities of students

 

Nebel, S., Schneider, S., Beege, M., Kolda, F., Mackiewicz, V., & Rey, G. (2017). You cannot do this alone! Increasing task interdependence in cooperative educational videogames to encourage collaboration. Educational Technology Research & Development65(4), 993-1014. doi:10.1007/s11423-017-9511-8

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d124132216%26site%3dehost-live%26scope%3dsite

Abrams, S. S., & Rowsell, J. (2017). Emotionally Crafted Experiences: Layering Literacies in Minecraft. Reading Teacher70(4), 501-506.

Nebel, S., Schneider, S., & Daniel Rey, G. (2016). Mining Learning and Crafting Scientific Experiments: A Literature Review on the Use of Minecraft in Education and Research. Source: Journal of Educational Technology & Society, 19(192), 355–366. Retrieved from http://www.jstor.org/stable/jeductechsoci.19.2.355

Cipollone, M., Schifter, C. C., & Moffat, R. A. (2014). Minecraft as a Creative Tool: A Case Study. International Journal Of Game-Based Learning4(2), 1-14.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3deric%26AN%3dEJ1111251%26site%3dehost-live%26scope%3dsite

Niemeyer, D. J., & Gerber, H. R. (2015). Maker culture and Minecraft : implications for the future of learning. Educational Media International52(3), 216-226. doi:10.1080/09523987.2015.1075103

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dkeh%26AN%3d111240626%26site%3dehost-live%26scope%3dsite

Nebel, S., Schneider, S., & Daniel Rey, G. (2016). Mining Learning and Crafting Scientific Experiments: A Literature Review on the Use of Minecraft in Education and Research. Journal of Educational Technology & Society, 19(192), 355–366. Retrieved from http://www.jstor.org/stable/jeductechsoci.19.2.355

 

Wilkinson, B., Williams, N., & Armstrong, P. (2013). Improving Student Understanding, Application and Synthesis of Computer Programming Concepts with Minecraft. In The European Conference on Technology in the Classroom 2013. Retrieved from http://iafor.info/archives/offprints/ectc2013-offprints/ECTC2013_0477.pdf

Berg Marklund, B., & Alklind Taylor, A.-S. (2015). Teachers’ Many Roles in Game-Based Learning Projects. In Academic Conferences International Limited (pp. 359–367). Retrieved from https://search.proquest.com/openview/15e084a1c52fdda188c27b9d2de6d361/1?pq-origsite=gscholar&cbl=396495

Uusi-Mäkelä, M., & Uusi-Mäkelä, M. (2014). Immersive Language Learning with Games: Finding Flow in MinecraftEdu. EdMedia: World Conference on Educational Media and Technology (Vol. 2014). Association for the Advancement of Computing in Education (AACE). Retrieved from https://www.learntechlib.org/noaccess/148409/

Birt, J., & Hovorka, D. (2014). Effect of mixed media visualization on learner perceptions and outcomes. In 25th Australasian Conference on Information Systems (pp. 1–10). Retrieved from http://epublications.bond.edu.au/fsd_papers/74

Al Washmi, R., Bana, J., Knight, I., Benson, E., Afolabi, O., Kerr, A., Hopkins, G. (2014). Design of a Math Learning Game Using a Minecraft Mod. https://doi.org/10.13140/2.1.4660.4809
https://www.researchgate.net/publication/267135810_Design_of_a_Math_Learning_Game_Using_a_Minecraft_Mod
https://docs.google.com/document/d/1uch2iC_CGsESdF9lpATGwWkamNbqQ7JOYEu_D-V03LQ/edit?usp=sharing

+++++++++++++
more on Minecraft in this IMS blog
https://blog.stcloudstate.edu/ims?s=minecraft

managing phone use in class

3 Tips for Managing Phone Use in Class

Setting cell phone expectations early is key to accessing the learning potential of these devices and minimizing the distraction factor.Liz Kolb September 11, 2017

https://www.edutopia.org/article/3-tips-managing-phone-use-class

Ten is now the average age when children receive their first cell phones

develop a positive mobile mental health in the first weeks of school by discussing their ideas on cell phone use, setting up a stoplight management system, and establishing a class contract
Build a digital citizenship curriculum that includes mobile device use.

Ask your students questions such as:

  • What do you like to do on your cell phone and why? (If they don’t have one, what would they like to do?)
  • What are the most popular apps and websites you use?
  • What do you think are inappropriate ways that cell phones have been used?
  • What is poor cell phone etiquette? Why?
  • How can cell phones help you learn?
  • How can cell phones distract from your learning?
  • How do you feel about your cell phone and the activities you do on your phone?
  • What should teachers know about your cell phone use that you worry we do not understand?
  • Do you know how to use your cell phone to gather information, to collaborate on academic projects, to evaluate websites?
  • How can we work together to create a positive mobile mental health?

Using a Stoplight Management Approach

Post a red button on the classroom door:  the cell phone parking lot.
Post a yellow button on the classroom door
Post a green button on the classroom door

Establishing a Class Contract: Ask them to brainstorm consequences and write them into a class contract.

++++++++++++
more on the use of BYOD in this IMS blog
https://blog.stcloudstate.edu/ims/2017/04/03/use-of-laptops-in-the-classroom/

Scopus webinar

Scopus Content: High quality, historical depth and expert curation

Bibliographic Indexing Leader

Register for the September 28th webinar

https://www.brighttalk.com/webcast/13703/275301

metadata: counts of papers by yer, researcher, institution, province, region and country. scientific fields subfields
metadata in one-credit course as a topic:

publisher – suppliers =- Elsevier processes – Scopus Data

h-index: The h-index is an author-level metric that attempts to measure both the productivity and citation impact of the publications of a scientist or scholar. The index is based on the set of the scientist’s most cited papers and the number of citations that they have received in other publications.

+++++++++++++++++++

https://www.brighttalk.com/webcast/9995/275813

Librarians and APIs 101: overview and use cases
Christina Harlow, Library Data Specialist;Jonathan Hartmann, Georgetown Univ Medical Center; Robert Phillips, Univ of Florida

https://zenodo.org/

+++++++++++++++

Slides | Research data literacy and the library from Library_Connect

 The era of e-science demands new skill sets and competencies of researchers to ensure their work is accessible, discoverable and reusable. Librarians are naturally positioned to assist in this education as part of their liaison and information literacy services.

Research data literacy and the library

Christian Lauersen, University of Copenhagen; Sarah Wright, Cornell University; Anita de Waard, Elsevier

https://www.brighttalk.com/webcast/9995/226043

Data Literacy: access, assess, manipulate, summarize and present data

Statistical Literacy: think critically about basic stats in everyday media

Information Literacy: think critically about concepts; read, interpret, evaluate information

data information literacy: the ability to use, understand and manage data. the skills needed through the whole data life cycle.

Shield, Milo. “Information literacy, statistical literacy and data literacy.” I ASSIST Quarterly 28. 2/3 (2004): 6-11.

Carlson, J., Fosmire, M., Miller, C. C., & Nelson, M. S. (2011). Determining data information literacy needs: A study of students and research faculty. Portal: Libraries & the Academy, 11(2), 629-657.

data information literacy needs

embedded librarianship,

Courses developed: NTRESS 6600 research data management seminar. six sessions, one-credit mini course

http://guides.library.cornell.edu/ntres6600
BIOG 3020: Seminar in Research skills for biologists; one-credit semester long for undergrads. data management organization http://guides.library.cornell.edu/BIOG3020

lessons learned:

  • lack of formal training for students working with data.
  • faculty assumed that students have or should have acquired the competencies earlier
  • students were considered lacking in these competencies
  • the competencies were almost universally considered important by students and faculty interviewed

http://www.datainfolit.org/

http://www.thepress.purdue.edu/titles/format/9781612493527

ideas behind data information literacy, such as the twelve data competencies.

http://blogs.lib.purdue.edu/dil/the-twelve-dil-competencies/

http://blogs.lib.purdue.edu/dil/what-is-data-information-literacy/

Johnston, L., & Carlson, J. (2015). Data Information Literacy : Librarians, Data and the Education of a New Generation of Researchers. Ashland: Purdue University Press.  http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d987172%26site%3dehost-live%26scope%3dsite

NEW ROLESFOR LIbRARIANS: DATAMANAgEMENTAND CURATION

the capacity to manage and curate research data has not kept pace with the ability to produce them (Hey & Hey, 2006). In recognition of this gap, the NSF and other funding agencies are now mandating that every grant proposal must include a DMP (NSF, 2010). These mandates highlight the benefits of producing well-described data that can be shared, understood, and reused by oth-ers, but they generally offer little in the way of guidance or instruction on how to address the inherent issues and challenges researchers face in complying. Even with increasing expecta-tions from funding agencies and research com-munities, such as the announcement by the White House for all federal funding agencies to better share research data (Holdren, 2013), the lack of data curation services tailored for the “small sciences,” the single investigators or small labs that typically comprise science prac-tice at universities, has been identified as a bar-rier in making research data more widely avail-able (Cragin, Palmer, Carlson, & Witt, 2010).Academic libraries, which support the re-search and teaching activities of their home institutions, are recognizing the need to de-velop services and resources in support of the evolving demands of the information age. The curation of research data is an area that librar-ians are well suited to address, and a num-ber of academic libraries are taking action to build capacity in this area (Soehner, Steeves, & Ward, 2010)

REIMAgININg AN ExISTINg ROLEOF LIbRARIANS: TEAChINg INFORMATION LITERACY SkILLS

By combining the use-based standards of information literacy with skill development across the whole data life cycle, we sought to support the practices of science by develop-ing a DIL curriculum and providing training for higher education students and research-ers. We increased ca-pacity and enabled comparative work by involving several insti-tutions in developing instruction in DIL. Finally, we grounded the instruction in the real-world needs as articu-lated by active researchers and their students from a variety of fields

Chapter 1 The development of the 12 DIL competencies is explained, and a brief compari-son is performed between DIL and information literacy, as defined by the 2000 ACRL standards.

chapter 2 thinking and approaches toward engaging researchers and students with the 12 competencies, a re-view of the literature on a variety of educational approaches to teaching data management and curation to students, and an articulation of our key assumptions in forming the DIL project.

Chapter 3 Journal of Digital Curation. http://www.ijdc.net/

http://www.dcc.ac.uk/digital-curation

https://blog.stcloudstate.edu/ims/2017/10/19/digital-curation-2/

https://blog.stcloudstate.edu/ims/2016/12/06/digital-curation/

chapter 4 because these lon-gitudinal data cannot be reproduced, acquiring the skills necessary to work with databases and to handle data entry was described as essential. Interventions took place in a classroom set-ting through a spring 2013 semester one-credit course entitled Managing Data to Facilitate Your Research taught by this DIL team.

chapter 5 embedded librar-ian approach of working with the teaching as-sistants (TAs) to develop tools and resources to teach undergraduate students data management skills as a part of their EPICS experience.
Lack of organization and documentation presents a bar-rier to (a) successfully transferring code to new students who will continue its development, (b) delivering code and other project outputs to the community client, and (c) the center ad-ministration’s ability to understand and evalu-ate the impact on student learning.
skill sessions to deliver instruction to team lead-ers, crafted a rubric for measuring the quality of documenting code and other data, served as critics in student design reviews, and attended student lab sessions to observe and consult on student work

chapter 6 Although the faculty researcher had created formal policies on data management practices for his lab, this case study demonstrated that students’ adherence to these guidelines was limited at best. Similar patterns arose in discus-sions concerning the quality of metadata. This case study addressed a situation in which stu-dents are at least somewhat aware of the need to manage their data;

chapter 7 University of Minnesota team to design and implement a hybrid course to teach DIL com-petencies to graduate students in civil engi-neering.
stu-dents’ abilities to understand and track issues affecting the quality of the data, the transfer of data from their custody to the custody of the lab upon graduation, and the steps neces-sary to maintain the value and utility of the data over time.

++++++++++++++
more on Scopus in this IMS blog
https://blog.stcloudstate.edu/ims?s=scopus

measuring library outcomes and value

THE VALUE OF ACADEMIC LIBRARIES
A Comprehensive Research Review and Report. Megan Oakleaf

http://www.ala.org/acrl/sites/ala.org.acrl/files/content/issues/value/val_report.pdf

Librarians in universities, colleges, and community colleges can establish, assess, and link
academic library outcomes to institutional outcomes related to the following areas:
student enrollment, student retention and graduation rates, student success, student
achievement, student learning, student engagement, faculty research productivity,
faculty teaching, service, and overarching institutional quality.
Assessment management systems help higher education educators, including librarians, manage their outcomes, record and maintain data on each outcome, facilitate connections to
similar outcomes throughout an institution, and generate reports.
Assessment management systems are helpful for documenting progress toward
strategic/organizational goals, but their real strength lies in managing learning
outcomes assessments.
to determine the impact of library interactions on users, libraries can collect data on how individual users engage with library resources and services.
increase library impact on student enrollment.
p. 13-14improved student retention and graduation rates. High -impact practices include: first -year seminars and experiences, common intellectual experiences, learning communities, writing – intensive courses, collaborative assignments and projects, undergraduate research, Value of Academic Libraries diversity/global learning, service learning/community -based learning, internships, capstone courses and projects

p. 14

Libraries support students’ ability to do well in internships, secure job placements, earn salaries, gain acceptance to graduate/professional schools, and obtain marketable skills.
librarians can investigate correlations between student library interactions and their GPA well as conduct test item audits of major professional/educational tests to determine correlations between library services or resources and specific test items.
p. 15 Review course content, readings, reserves, and assignments.
Track and increase library contributions to faculty research productivity.
Continue to investigate library impact on faculty grant proposals and funding, a means of generating institutional income. Librarians contribute to faculty grant proposals in a number of ways.
Demonstrate and improve library support of faculty teaching.
p. 20 Internal Focus: ROI – lib value = perceived benefits / perceived costs
production of a commodity – value=quantity of commodity produced × price per unit of commodity
p. 21 External focus
a fourth definition of value focuses on library impact on users. It asks, “What is the library trying to achieve? How can librarians tell if they have made a difference?” In universities, colleges, and community colleges, libraries impact learning, teaching, research, and service. A main method for measuring impact is to “observe what the [users] are actually doing and what they are producing as a result”
A fifth definition of value is based on user perceptions of the library in relation to competing alternatives. A related definition is “desired value” or “what a [user] wants to have happen when interacting with a [library] and/or using a [library’s] product or service” (Flint, Woodruff and Fisher Gardial 2002) . Both “impact” and “competing alternatives” approaches to value require libraries to gain new understanding of their users’ goals as well as the results of their interactions with academic libraries.
p. 23 Increasingly, academic library value is linked to service, rather than products. Because information products are generally produced outside of libraries, library value is increasingly invested in service aspects and librarian expertise.
service delivery supported by librarian expertise is an important library value.
p. 25 methodology based only on literature? weak!
p. 26 review and analysis of the literature: language and literature are old (e.g. educational administrators vs ed leaders).
G government often sees higher education as unresponsive to these economic demands. Other stakeholder groups —students, pa rents, communities, employers, and graduate/professional schools —expect higher education to make impacts in ways that are not primarily financial.

p. 29

Because institutional missions vary (Keeling, et al. 2008, 86; Fraser, McClure and
Leahy 2002, 512), the methods by which academic libraries contribute value vary as
well. Consequently, each academic library must determine the unique ways in which they contribute to the mission of their institution and use that information to guide planning and decision making (Hernon and Altman, Assessing Service Quality 1998, 31) . For example, the University of Minnesota Libraries has rewritten their mission and vision to increase alignment with their overarching institution’s goals and emphasis on strategic engagement (Lougee 2009, allow institutional missions to guide library assessment
Assessment vs. Research
In community colleges, colleges, and universities, assessment is about defining the
purpose of higher education and determining the nature of quality (Astin 1987)
.
Academic libraries serve a number of purposes, often to the point of being
overextended.
Assessment “strives to know…what is” and then uses that information to change the
status quo (Keeling, et al. 2008, 28); in contrast, research is designed to test
hypotheses. Assessment focuses on observations of change; research is concerned with the degree of correlation or causation among variables (Keeling, et al. 2008, 35) . Assessment “virtually always occurs in a political context ,” while research attempts to be apolitical” (Upcraft and Schuh 2002, 19) .
 p. 31 Assessment seeks to document observations, but research seeks to prove or disprove ideas. Assessors have to complete assessment projects, even when there are significant design flaws (e.g., resource limitations, time limitations, organizational contexts, design limitations, or political contexts); whereas researchers can start over (Upcraft and Schuh 2002, 19) . Assessors cannot always attain “perfect” studies, but must make do with “good enough” (Upcraft and Schuh 2002, 18) . Of course, assessments should be well planned, be based on clear outcomes (Gorman 2009, 9- 10) , and use appropriate methods (Keeling, et al. 2008, 39) ; but they “must be comfortable with saying ‘after’ as well as ‘as a result of’…experiences” (Ke eling, et al. 2008, 35) .
Two multiple measure approaches are most significant for library assessment: 1) triangulation “where multiple methods are used to find areas of convergence of data from different methods with an aim of overcoming the biases or limitations of data gathered from any one particular method” (Keeling, et al. 2008, 53) and 2) complementary mixed methods , which “seek to use data from multiple methods to build upon each other by clarifying, enhancing, or illuminating findings between or among methods” (Keeling, et al. 2008, 53) .
p. 34 Academic libraries can help higher education institutions retain and graduate students, a keystone part of institutional missions (Mezick 2007, 561) , but the challenge lies in determining how libraries can contribute and then document their contribution
p. 35. Student Engagement:  In recent years, academic libraries have been transformed to provide “technology and content ubiquity” as well as individualized support
My Note: I read the “technology and content ubiquity” as digital literacy / metaliteracies, where basic technology instructional sessions (everything that IMS offers for years) is included, but this library still clenches to information literacy only.
National Survey of Student Engagement (NSSE) http://nsse.indiana.edu/
http://nsse.indiana.edu/2017_Institutional_Report/pdf/NSSE17%20Snapshot%20%28NSSEville%20State%29.pdf
p. 37 Student Learning
In the past, academic libraries functioned primarily as information repositories; now they are becoming learning enterprises (Bennett 2009, 194) . This shift requires academic librarians to embed library services and resources in the teaching and learning activities of their institutions (Lewis 2007) . In the new paradigm, librarians focus on information skills, not information access (Bundy 2004, 3); they think like educators, not service providers (Bennett 2009, 194) .
p. 38. For librarians, the main content area of student learning is information literacy; however, they are not alone in their interest in student inform ation literacy skills (Oakleaf, Are They Learning? 2011).
My note: Yep. it was. 20 years ago. Metaliteracies is now.
p. 41 surrogates for student learning in Table 3.
p. 42 strategic planning for learning:
According to Kantor, the university library “exists to benefit the students of the educational institution as individuals ” (Library as an Information Utility 1976 , 101) . In contrast, academic libraries tend to assess learning outcomes using groups of students
p. 45 Assessment Management Systems
Tk20
Each assessment management system has a slightly different set of capabilities. Some guide outcomes creation, some develop rubrics, some score student work, or support student portfolios. All manage, maintain, and report assessment data
p. 46 faculty teaching
However, as online collections grow and discovery tools evolve, that role has become less critical (Schonfeld and Housewright 2010; Housewright and Schonfeld, Ithaka’s 2006 Studies of Key Stakeholders 2008, 256) . Now, libraries serve as research consultants, project managers, technical support professionals, purchasers , and archivists (Housewright, Themes of Change 2009, 256; Case 2008) .
Librarians can count citations of faculty publications (Dominguez 2005)
.

+++++++++++++

Tenopir, C. (2012). Beyond usage: measuring library outcomes and value. Library Management33(1/2), 5-13.

http://login.libproxy.stcloudstate.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dllf%26AN%3d70921798%26site%3dehost-live%26scope%3dsite

methods that can be used to measure the value of library products and services. (Oakleaf, 2010; Tenopir and King, 2007): three main categories

  1. Implicit value. Measuring usage through downloads or usage logs provide an implicit measure of value. It is assumed that because libraries are used, they are of value to the users. Usage of e-resources is relatively easy to measure on an ongoing basis and is especially useful in collection development decisions and comparison of specific journal titles or use across subject disciplines.

do not show purpose, satisfaction, or outcomes of use (or whether what is downloaded is actually read).

  1. Explicit methods of measuring value include qualitative interview techniques that ask faculty members, students, or others specifically about the value or outcomes attributed to their use of the library collections or services and surveys or interviews that focus on a specific (critical) incident of use.
  2. Derived values, such as Return on Investment (ROI), use multiple types of data collected on both the returns (benefits) and the library and user costs (investment) to explain value in monetary terms.

++++++++++++++++++
more on ROI in this IMS blog
https://blog.stcloudstate.edu/ims/2014/11/02/roi-of-social-media/

1 10 11 12 13 14 19