Open Learning, Educational Media: An Interview with Theo Bastiaens, Newly Appointed Rector Magnificus of Open University and Chair of AACE Edmedia Conference
Since the Open University was founded in 1984, more than 250,000 students have enrolled in courses. The Open University offers courses of study at the bachelor’s and master’s degree levels in cultural studies, education science, law, management, psychology, science and technology. Five of its master’s degree programs were top-ranked in 2017
Learning Tasks — concrete, authentic, whole task experiences that are provided to learners in order to promote schema construction for non-recurrent aspects and, to a certain degree, rule automation by compilation for recurrent aspects. Instructional methods primarily aim at induction, that is, constructing schemata through mindful abstraction from the concrete experiences that are provided by the learning tasks. Design steps:
Design learning tasks
Sequence task practice
Set performance objectives
Supportive Information — information that is supportive to the learning and performance of non-recurrent aspects of learning tasks. It provides the bridge between learners’ prior knowledge and the learning tasks. Instructional methods primarily aim at elaboration, that is, embellishing schemata by establishing nonarbitrary relationships between new elements and what learners already know. Design steps:
Design supportive information
Analyze cognitive strategies
Analyze mental models
JIT Information — information that is prerequisite to the learning and performance of recurrent aspects of learning tasks. Instructional methods primarily aim at compilation through restricted encoding, that is, embedding procedural information in rules. JIT information is not only relevant to learning tasks but also to Part-time practice. Design steps:
Design procedural information
Analyze cognitive rules
Analyze prerequisite knowledge
Part-task Practice — practice items that are provided to learners in order to promote rule automation for selected recurrent aspects of the whole complex skill. Instructional methods primarily aim at rule automation, including compilation and subsequent strengthening to reach a very high level of automatically. Design step:
Chad, K., & Anderson, H. (2017). The new role of the library in teaching and learning outcomes (p. ). Higher Education Library Technology. https://doi.org/10.13140/rg.2.2.14688.89606/1
p. 4 “Modern university libraries require remote access for large numbers of concurrent users, with fewer authentication steps and more flexible digital rights management (DRM) to satisfy student demand”. They found the most frequent problem was that core reading list titles were not available to libraries as e-books.
p. 5 Overcoming the “textbook taboo”
In the US, academic software firm bepress notes that, in response to increased student textbook costs: “Educators, institutions, and even state legislators are turning their attention toward Open Educational Resources (OER)” in order to save students money while increasing engagement and retention. As a result bepress has developed its infrastructure to host and share OER within and across institutions.21 The UMass Library Open Education Initiative estimates it has saved the institution over $1.3 million since its inception in 2011. 22 Other textbook initiatives include SUNY Open Textbooks, developed by the State University of New York Libraries, which has already published 18 textbooks, and OpenStax, developed by Rice University.
p.5. sceptics about OER rapid progress still see potential in working with publishers.
Knowledge Unlatched 23 is an example of this kind of collaboration: “We believe that by working together libraries and publishers can create a sustainable route to Open Access for scholarly books.” Groups of libraries contribute to fund publication though a crowdfunding platform. The consortium pays a fixed upfront fee for the publisher to publish the book online under a Creative Commons license.
p.6.Technology: from library systems to educational technology.The rise of the library centric reading list system
big increase in the number of universities in the UK, Australia and New Zealand deploying library reading lists solutions.The online reading list can be seen as a sort of course catalogue that gives the user a (sometimes week-by-week) course/module view on core resources and provides a link to print holdings information or the electronic full text. It differs significantly from the integrated library system (ILS) ‘course reserve’ module, notably by providing access to materials beyond the items in the library catalogue. Titles can be characterised, for example as ‘recommended’ or ‘essential’ reading and citations annotated.
Reading list software brings librarians and academics together into a system where they must cooperate to be effective. Indeed some librarians claim that the reading list system is a key library tool for transforming student learning.
Higher education institutions, particularly those in Australia, New Zealand and some other parts of Europe (including the UK) are more likely to operate a reading list model, supplying students with a (sometimes long) list of recommended titles.
p.8. E-book platforms (discusses only UK)
p.9. Data: library management information to learning analytics
p.10. Leadership “Strong digital leadership is a key feature of effective educational organisations and its absence can be a significant barrier to progress. The digital agenda is therefore a leadership issue”. 48 (Rebooting learning for the digital age: What next for technology-enhanced higher education? Sarah Davies, Joel Mullan, Paul Feldman. Higher Education Policy Institute (HEPI) Report 93. February 2017. )
A merging of LibTech and EdTech
The LITA discussion is under RE: [lita-l] Anyone Running Multiple Discovery Layers?
The key campus tech issues are no longer about IT (in the past e.g.: MS versus Apple). IT is the “easy part” of technology on campus. The challenges: people, planning policy, programs, priorities, silos, egos, and IT entitlements
How do we make Digital Learning compelling and safe for the faculty? provide evidence of impact, support, recognition and reward for faculty; communicate about effectiveness of and need for IT resources.
technology is not capital cost, it is operational cost. reoccurring.
Visualization:
underlying issues; can i do this? why should i do this? evidence of benefit?
the more things change, the more things stay the same. new equilibrium.
change: from what did you do wrong to how do we do better. Use data as a resources, not as a weapon. there is a fear of trying, because there is no recognition or reward
Machiavelli: 1. concentrate your efforts 2. pick your issues carefully, know when to fight 3. know the history 4. build coalitions 5. set modest goals – and realistic 6. leverage the value of data (use it as resource not weapon) 7. anticipate personnel turnover 8. set deadlines for decisions
Colleagues,
We apologize for the short notice, but wanted to make you aware of the following opportunity: provide
From Ken Graetz at Winona State University:
As part of our Digital Faculty Fellows Program at WSU, Dr. Kenneth C. Green will be speaking this Thursday, March 22nd in Stark 103 Miller Auditorium from 11:30 to 12:30 on “Innovation, Infrastructure, and Digital Learning.” We will be streaming Casey’s talk using Skype Meeting Broadcast and you can join as a guest using the following link: Join the presentation. This will allow you to see and hear his presentation, as well as post moderated questions. By way of a teaser, here is a recent quote from Dr. Green’s blog, DigitalTweed, published by Inside Higher Ed:
“If trustees, presidents, provosts, deans, and department chairs really want to address the fear of trying and foster innovation in instruction, then they have to recognize that infrastructure fosters innovation. And infrastructure, in the context of technology and instruction, involves more than just computer hardware, software, digital projectors in classrooms, learning management systems, and campus web sites. The technology is actually the easy part. The real challenges involve a commitment to research about the impact of innovation in instruction, and recognition and reward for those faculty who would like to pursue innovation in their instructional activities.”
Dr. Green is the founding director of The Campus Computing Project, the largest continuing study of the role of digital learning and information technology in American colleges and universities. Campus Computing is widely cited as a definitive source for data, information, and insight about IT planning and policy issues affecting higher education. Dr. Green also serves as the director, moderator, and co-producer of TO A DEGREE, the postsecondary success podcast of the Bill & Melinda Gates Foundation. He is the author or editor of some 20 books and published research reports and more than 100 articles and commentaries that have appeared in academic journals and professional publications. In 2002, Dr. Green received the first EDUCAUSE Award for Leadership in Public Policy and Practice. The EDUCAUSE award cites his work in creating The Campus Computing Project and recognizes his, “prominence in the arena of national and international technology agendas, and the linking of higher education to those agendas.”
Definition:
The HyFlex model gives students the choice to attend class in person or via synchronous remote stream and to make that choice on a daily basis. In other words, unlike online and hybrid models which typically have a fixed course structure for the entire semester, the HyFlex model does not require students to make a choice at the beginning of term and then stick with it whether their choice works for them or not; rather students are able to make different choices each day depending on what works best for them on that day (hence the format is “flexible”) (Miller and Baham, 2018, to be published in the Proceedings of the 10th International Conference on Teaching Statistics).
Definition from Horizon Report, HIgher Ed edition, 2014. p. 10 integration of Online Hybrid and Collaborative Learning
Definition from U of Arizona (https://journals.uair.arizona.edu/index.php/itet/article/view/16464/16485)
Beatty (2010) defines HyFlex courses to be those that “enable a flexible participation policy for students whereby students may choose to attend face-to-face synchronous class sessions or complete course learning activities online without physically attending class”
Online courses
Definition
Goette, W. F., Delello, J. A., Schmitt, A. L., Sullivan, J. R., & Rangel, A. (2017). Comparing Delivery Approaches to Teaching Abnormal Psychology: Investigating Student Perceptions and Learning Outcomes. Psychology Learning and Teaching, 16(3), 336–352. https://doi.org/10.1177/1475725717716624
p.2.Online classes are a form of distance learning available completely over the Internet with no F2F interaction between an instructor and students (Helms, 2014).
https://www.oswego.edu/human-resources/section-6-instructional-policies-and-procedures
An online class is a class that is offered 100% through the Internet. Asynchronous courses require no time in a classroom. All assignments, exams, and communication are delivered using a learning management system (LMS). At Oswego, the campus is transitioning from ANGEL to Blackboard, which will be completed by the Fall 2015 semester. Fully online courses may also be synchronous. Synchronous online courses require student participation at a specified time using audio/visual software such as Blackboard Collaborate along with the LMS.
Web-enhanced courses
Web enhanced learning occurs in a traditional face-to-face (f2f) course when the instructor incorporates web resources into the design and delivery of the course to support student learning. The key difference between Web Enhanced Learning versus other forms of e-learning (online or hybrid courses) is that the internet is used to supplement and support the instruction occurring in the classroom rather than replace it. Web Enhanced Learning may include activities such as: accessing course materials, submitting assignments, participating in discussions, taking quizzes and exams, and/or accessing grades and feedback.”
Blended/Hybrid Learning
Definition
Goette, W. F., Delello, J. A., Schmitt, A. L., Sullivan, J. R., & Rangel, A. (2017). Comparing Delivery Approaches to Teaching Abnormal Psychology: Investigating Student Perceptions and Learning Outcomes. Psychology Learning and Teaching, 16(3), 336–352. https://doi.org/10.1177/1475725717716624
p.3.
Helms (2014) described blended education as incorporating both online and F2F character- istics into a single course. This definition captures an important confound to comparing course administration formats because otherwise traditional F2F courses may also incorp- orate aspects of online curriculum. Blended learning may thus encompass F2F classes in which any course content is available online (e.g., recorded lectures or PowerPoints) as well as more traditionally blended courses. Helms recommended the use of ‘‘blended’’ over ‘‘hybrid’’ because these courses combine different but complementary approaches rather than layer opposing methods and formats.
Blended learning can merge the relative strengths of F2F and online education within a flexible course delivery format. As such, this delivery form has a similar potential of online courses to reduce the cost of administration (Bowen et al., 2014) while addressing concerns of quality and achievement gaps that may come from online education. Advantages of blended courses include: convenience and efficiency for the student; promotion of active learning; more effective use of classroom space; and increased class time to spend on higher- level learning activities such as cooperative learning, working with case studies, and discuss- ing big picture concepts and ideas (Ahmed, 2010; Al-Qahtani & Higgins, 2013; Lewis & Harrison, 2012).
Although many definitions of hybrid and blended learning exist, there is a convergence upon three key points: (1) Web-based learning activities are introduced to complement face-to-face work; (2) “seat time” is reduced, though not eliminated altogether; (3) the Web-based and face-to-face components of the course are designed to interact pedagogically to take advantage of the best features of each.
The amount of in class time varies in hybrids from school to school. Some require more than 50% must be in class, others say more than 50% must be online. Others indicate that 20% – 80% must be in class (or online). There is consensus that generally the time is split 50-50, but it depends on the best pedagogy for what the instructor wants to achieve.
definition
“Backchannel” is a mode of communication created by audience members to connect with other observers both inside and outside of the presentation space, with or without the speaker’s awareness (Atkinson, 2009).
ARS (or CRS) are[audience] response systems are instructional technologies that allow instructors to rapidly collect and analyze student responses to questions posed during class” (Bruff, 2009, p. 1)
Distance learning courses are indicated in the schedule of classes on BU Brain with an Instructional Method of Online Asynchronous (OA), Online Synchronous (OS), Online Combined (OC), or Online Hybrid (OH). Online Asynchronous courses are those in which the instruction is recorded/stored and then accessed by the students at another time. Online Synchronous courses are those in which students are at locations remote from the instructor and viewing the instruction as it occurs. Online Combined courses are those in which there is a combination of asynchronous and synchronous instruction that occurs over the length of the course. Online Hybrid courses are those in which there is both in-person and online (asynchronous and/or synchronous) instruction that occurs over the length of the course.
The EDUCAUSE Learning Initiative has just launched its 2018 Key Issues in Teaching and Learning Survey, so vote today: http://www.tinyurl.com/ki2018.
Each year, the ELI surveys the teaching and learning community in order to discover the key issues and themes in teaching and learning. These top issues provide the thematic foundation or basis for all of our conversations, courses, and publications for the coming year. Longitudinally they also provide the way to track the evolving discourse in the teaching and learning space. More information about this annual survey can be found at https://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning.
ACADEMIC TRANSFORMATION (Holistic models supporting student success, leadership competencies for academic transformation, partnerships and collaborations across campus, IT transformation, academic transformation that is broad, strategic, and institutional in scope)
ACCESSIBILITY AND UNIVERSAL DESIGN FOR LEARNING (Supporting and educating the academic community in effective practice; intersections with instructional delivery modes; compliance issues)
ADAPTIVE TEACHING AND LEARNING (Digital courseware; adaptive technology; implications for course design and the instructor’s role; adaptive approaches that are not technology-based; integration with LMS; use of data to improve learner outcomes)
COMPETENCY-BASED EDUCATION AND NEW METHODS FOR THE ASSESSMENT OF STUDENT LEARNING (Developing collaborative cultures of assessment that bring together faculty, instructional designers, accreditation coordinators, and technical support personnel, real world experience credit)
DIGITAL AND INFORMATION LITERACIES (Student and faculty literacies; research skills; data discovery, management, and analysis skills; information visualization skills; partnerships for literacy programs; evaluation of student digital competencies; information evaluation)
EVALUATING TECHNOLOGY-BASED INSTRUCTIONAL INNOVATIONS (Tools and methods to gather data;data analysis techniques; qualitative vs. quantitative data; evaluation project design; using findings to change curricular practice; scholarship of teaching and learning; articulating results to stakeholders; just-in-time evaluation of innovations). here is my bibliographical overview on Big Data (scroll down to “Research literature”: https://blog.stcloudstate.edu/ims/2017/11/07/irdl-proposal/ )
EVOLUTION OF THE TEACHING AND LEARNING SUPPORT PROFESSION (Professional skills for T&L support; increasing emphasis on instructional design; delineating the skills, knowledge, business acumen, and political savvy for success; role of inter-institutional communities of practices and consortia; career-oriented professional development planning)
FACULTY DEVELOPMENT (Incentivizing faculty innovation; new roles for faculty and those who support them; evidence of impact on student learning/engagement of faculty development programs; faculty development intersections with learning analytics; engagement with student success)
GAMIFICATION OF LEARNING (Gamification designs for course activities; adaptive approaches to gamification; alternate reality games; simulations; technological implementation options for faculty)
INSTRUCTIONAL DESIGN (Skills and competencies for designers; integration of technology into the profession; role of data in design; evolution of the design profession (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/10/04/instructional-design-3/); effective leadership and collaboration with faculty)
INTEGRATED PLANNING AND ADVISING FOR STUDENT SUCCESS (Change management and campus leadership; collaboration across units; integration of technology systems and data; dashboard design; data visualization (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=data+visualization); counseling and coaching advising transformation; student success analytics)
LEARNING ANALYTICS (Leveraging open data standards; privacy and ethics; both faculty and student facing reports; implementing; learning analytics to transform other services; course design implications)
LEARNING SPACE DESIGNS (Makerspaces; funding; faculty development; learning designs across disciplines; supporting integrated campus planning; ROI; accessibility/UDL; rating of classroom designs)
MICRO-CREDENTIALING AND DIGITAL BADGING (Design of badging hierarchies; stackable credentials; certificates; role of open standards; ways to publish digital badges; approaches to meta-data; implications for the transcript; Personalized learning transcripts and blockchain technology (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=blockchain)
MOBILE LEARNING (Curricular use of mobile devices (here previous blog postings on this issue:
MULTI-DIMENSIONAL TECHNOLOGIES (Virtual, augmented, mixed, and immersive reality; video walls; integration with learning spaces; scalability, affordability, and accessibility; use of mobile devices; multi-dimensional printing and artifact creation)
NEXT-GENERATION DIGITAL LEARNING ENVIRONMENTS AND LMS SERVICES (Open standards; learning environments architectures (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/; social learning environments; customization and personalization; OER integration; intersections with learning modalities such as adaptive, online, etc.; LMS evaluation, integration and support)
ONLINE AND BLENDED TEACHING AND LEARNING (Flipped course models; leveraging MOOCs in online learning; course development models; intersections with analytics; humanization of online courses; student engagement)
OPEN EDUCATION (Resources, textbooks, content; quality and editorial issues; faculty development; intersections with student success/access; analytics; licensing; affordability; business models; accessibility and sustainability)
PRIVACY AND SECURITY (Formulation of policies on privacy and data protection; increased sharing of data via open standards for internal and external purposes; increased use of cloud-based and third party options; education of faculty, students, and administrators)
WORKING WITH EMERGING LEARNING TECHNOLOGY (Scalability and diffusion; effective piloting practices; investments; faculty development; funding; evaluation methods and rubrics; interoperability; data-driven decision-making)
Venue Hotel – Fourside Hotel City Center Vienna Grieshofgasse 11, A – 1120 Wien / Vienna, AUSTRIA
About the Conference
International Academic Conference in Vienna 2017 is an important international gathering of scholars, educators and PhD students. IAC-GETL 2017 in Vienna will take place in conference facilities located in Vienna, the touristic, business and historic center of Austria.
Conference language: English language
Conferences organized by the Czech Institute of Academic Education z.s. and Czech Technical University in Prague.
Conference Topics
Conference Topics – Education, Teaching, Learning and E-learning
Education, Teaching and Learning
Distance Education, Higher Education, Effective Teaching Pedagogies, Learning Styles and Learning Outcomes, Emerging Technologies, Educational Management, Engineering and Sciences Research, Competitive Skills, Continuing Education, Transferring Disciplines, Imaginative Education, Language Education, Geographical Education, Health Education, Home Education, Science Education, Secondary Education, Second life Educators, Social Studies Education, Special Education, Learning / Teaching Methodologies and Assessment, Assessment Software Tools, Global Issues In Education and Research, Education, Research and Globalization, Barriers to Learning (ethnicity, age, psychosocial factors, …), Women and Minorities in Science and Technology, Indigenous and Diversity Issues, Intellectual Property Rights and Plagiarism, Pedagogy, Teacher Education, Cross-disciplinary areas of Education, Educational Psychology, Education practice trends and issues, Indigenous Education, Academic Research Projects, Research on Technology in Education, Research Centres, Links between Education and Research, Erasmus and Exchange experiences in universities, Students and Teaching staff Exchange programmes
E-learning
Educational Technology, Educational Games and Software, ICT Education, E-Learning, Internet technologies, Accessibility to Disabled Users, Animation, 3D, and Web 3D Applications, Mobile Applications and Learning (M-learning), Virtual Learning Environments, Videos for Learning and Educational Multimedia, Web 2.0, Social Networking and Blogs, Wireless Applications, New Trends And Experiences, Other Areas of Education
Dr. Vijayender NallaRafiat A. I am visiting back to your post to share the insights from engaging students in an e-learning mode. You can review the post here:
While there has been significant attention to improving the key technology (that is the Learning Management Systems) the critical instructional design part (which forms the essence of creating the engagement) is in it’s early stages. Instructional design, the way we at Agribusiness Academy understand is made up of 2-elements: 1) quality of content (the storytelling style is what seems to work which should form the core focus area for the content expert to master); and 2) the manner in which this content is delivered (to the learner) to fulfill the learning objectives .
From attending class to talking with peers and professors, and from going to the local bookstore to having everything on a laptop in a dorm room, students on campus typically have a more “organic” learning experience than an online student who may not know how to best access these features of a higher education in an entirely mobile setting.
The essentials for getting started
Computer terms (Android) (Apple): Online learning means you’ll need to know basic computer technology terms. Both apps are free and break down terms ranging from words like “cache” to “hex code,” all in layman’s language.
Mint (Android) (Apple): Online learning students are usually financially savvy, looking for less expensive alternatives to traditional four-year tuition. This app allows students to keep careful track of personal finances and spending.
Study Tracker (Android) (Apple): These paid apps help track the time spent on courses, tasks and projects to help online students better manage their time and be able to visualize unique study patterns with the aim of ultimately improving efficiency.
Wi-Fi Finder (Android) (Apple): It’s a no-brainer: If you’re learning online and on-the-go, you’ll probably need to find a connection!
To access actual courses (LMS)
Blackboard Mobile (Android) (Apple): Access all courses that are integrated with Blackboard’s LMS.
Canvas (Android) (Apple). Access all courses integrated with Canvas by Instructure.
Moodle (Android) (Apple): Access all courses integrated with this open-source learning platform.
My note: No D2L in this list, folks; choose carefully in 2018, when MnSCU renews its D2L license
For access to files and remote annotation
Documents to Go (Android) (Apple): Students can access the full Microsoft Office suite, as well as edit and create new files without requiring a cloud app for syncing.
Dropbox (Android) (Apple): This app allows students to access any-size files from their computer anytime, anywhere. My Note: Google Drive, SCSU File space as alternatives.
iAnnotate (Android) (Apple): Read, edit and share PDFs, DOCs, PPTs, and image files.
Instapaper (Android) (Apple): Recall websites for research purposes; strip away clutter for an optimized view of content; and read anywhere, since no internet connection is needed.
Marvin (Apple): A completely customizable eBook reader that includes DRM-free books, customizable formats, layouts, and reading gestures, as well as highlighting and annotations tools. Considered one of the best replacements for the Stanza app, which is now discontinued.
Pocket (Android): An app that allows students to save websites, blog posts, videos, and other online resources to access at a later time. It also saves the information to the device, meaning no internet connection is needed.
Wolfram Alpha (Android) (Apple): Considered the scholar’s version of Google, this app is a search engine that reveals precise information for natural-language searches. For example, if you ask “What is the graduation rate for Harvard?” the engine will bring up exact numbers with citations and suggestions for similar queries.
For online communication with peers and profs
Dragon Dictation (Android) (Apple): Create text messages, social media posts, blog posts and more by using your voice (speech-to-text). According to the company, Dragon Dictation is up to five times faster than typing on the keyboard.
Evernote (Android) (Apple): Whenever you look at a list of education apps, Evernote is usually listed. This app allows students to scribble notes, capture text, send notes to computers and other users, and much more for ultimate multi-media communication.
Hangouts (Android) (Apple): Google’s social network shines for its own online video chat solution, which lets teachers, students and third-party experts easily videoconference in groups—it’s even been used to broadcast presenters live to packed auditoriums. My note: desktopsharing is THE most important part. Alternatives: SCSU subscription for Adobe Connect. Skype also has desktopsharing capabilities
Quora (Android) (Apple): Ask questions to experts including astronauts, police officers, lawyers, and much more to receive industry-insider responses.
Smartsheet (Android) (Apple): An app that allows students to create task lists and assign deadlines to share with remote group/team members.
Tom’s planner (Web): A Gantt chart-based, online planning tool that uses color-coded charts to reveal work completed and many more features for project management.
a learning management system (LMS) is never the solution to every problem in education. Edtech is just one part of the whole learning ecosystem and student experience.
Therefore, the next generation digital learning environment (NGDLE), as envisioned by EDUCAUSE in 2015 … Looking at the NGDLE requirements from an LMS perspective, I view the NGDLE as being about five areas: interoperability; personalization; analytics, advising, and learning assessment; collaboration; accessibility and universal design.
Interoperability
Content can easily be exchanged between systems.
Users are able to leverage the tools they love, including discipline-specific apps.
Learning data is available to trusted systems and people who need it.
The learning environment is “future proof” so that it can adapt and extend as the ecosystem evolves.
Personalization
The learning environment reflects individual preferences.
Departments, divisions, and institutions can be autonomous.
Instructors teach the way they want and are not constrained by the software design.
There are clear, individual learning paths.
Students have choice in activity, expression, and engagement.
Analytics, Advising, and Learning Assessment
Learning analytics helps to identify at-risk students, course progress, and adaptive learning pathways.
The learning environment enables integrated planning and assessment of student performance.
More data is made available, with greater context around the data.
The learning environment supports platform and data standards.
Collaboration
Individual spaces persist after courses and after graduation.
Learners are encouraged as creators and consumers.
Courses include public and private spaces.
Accessibility and Universal Design
Accessibility is part of the design of the learning experience.
The learning environment enables adaptive learning and supports different types of materials.
Learning design includes measurement rubrics and quality control.
The core analogy used in the NGDLE paper is that each component of the learning environment is a Lego brick:
The days of the LMS as a “walled garden” app that does everything is over.
Today many kinds of amazing learning and collaboration tools (Lego bricks) should be accessible to educators.
We have standards that let these tools (including an LMS) talk to each other. That is, all bricks share some properties that let them fit together.
Students and teachers sign in once to this “ecosystem of bricks.”
The bricks share results and data.
These bricks fit together; they can be interchanged and swapped at will, with confidence that the learning experience will continue uninterrupted.
Any “next-gen” attempt to completely rework the pedagogical model and introduce a “mash-up of whatever” to fulfil this model would fall victim to the same criticisms levied at the LMS today: there is too little time and training to expect faculty to figure out the nuances of implementation on their own.
The Lego metaphor works only if we’re talking about “old school” Lego design — bricks of two, three, and four-post pieces that neatly fit together. Modern edtech is a lot more like the modern Lego. There are wheels and rocket launchers and belts and all kinds of amazing pieces that work well with each other, but only when they are configured properly. A user cannot simply stick together different pieces and assume they will work harmoniously in creating an environment through which each student can be successful.
As the NGDLE paper states: “Despite the high percentages of LMS adoption, relatively few instructors use its more advanced features — just 41% of faculty surveyed report using the LMS ‘to promote interaction outside the classroom.'”
But this is what the next generation LMS is good at: being a central nervous system — or learning hub — through which a variety of learning activities and tools are used. This is also where the LMS needs to go: bringing together and making sense of all the amazing innovations happening around it. This is much harder to do, perhaps even impossible, if all the pieces involved are just bricks without anything to orchestrate them or to weave them together into a meaningful, personal experience for achieving well-defined learning outcomes.
Making a commitment to build easy, flexible, and smart technology
Working with colleges and universities to remove barriers to adopting new tools in the ecosystem
Standardizing the vetting of accessibility compliance (the Strategic Nonvisual Access Partner Program from the National Federation of the Blind is a great start)
Advancing standards for data exchange while protecting individual privacy
Building integrated components that work with the institutions using them — learning quickly about what is and is not working well and applying those lessons to the next generation of interoperability standards
Letting people use the tools they love [SIC] and providing more ways for nontechnical individuals (including students) to easily integrate new features into learning activities
My note: something just refused to be accepted at SCSU
Technologists are often very focused on the technology, but the reality is that the more deeply and closely we understand the pedagogy and the people in the institutions — students, faculty, instructional support staff, administrators — the better suited we are to actually making the tech work for them.
++++++++++++++++++++++
Under the Hood of a Next Generation Digital Learning Environment in Progress
The challenge is that although 85 percent of faculty use a campus learning management system (LMS),1 a recent Blackboard report found that, out of 70,000 courses across 927 North American institutions, 53 percent of LMS usage was classified as supplemental(content-heavy, low interaction) and 24 percent as complementary (one-way communication via content/announcements/gradebook).2 Only 11 percent were characterized as social, 10 percent as evaluative (heavy use of assessment), and 2 percent as holistic (balanced use of all previous). Our FYE course required innovating beyond the supplemental course-level LMS to create a more holistic cohort-wide NGDLE in order to fully support the teaching, learning, and student success missions of the program.The key design goals for our NGDLE were to:
Create a common platform that could deliver a standard curriculum and achieve parity in all course sections using existing systems and tools and readily available content
Capture, store, and analyze any generated learner data to support learning assessment, continuous program improvement, and research
Develop reports and actionable analytics for administrators, advisors, instructors, and students
Dr. Vijayender Nalla Rafiat A. I am visiting back to your post to share the insights from engaging students in an e-learning mode. You can review the post here:
https://www.linkedin.com/pulse/live-learning-ice-breaker-engaging-e-learners-dr-vijayender-nalla
While there has been significant attention to improving the key technology (that is the Learning Management Systems) the critical instructional design part (which forms the essence of creating the engagement) is in it’s early stages. Instructional design, the way we at Agribusiness Academy understand is made up of 2-elements: 1) quality of content (the storytelling style is what seems to work which should form the core focus area for the content expert to master); and 2) the manner in which this content is delivered (to the learner) to fulfill the learning objectives .
Live Learning initiative