Searching for "educause faculty"

ELI 2018 Key Issues Teaching Learning

Key Issues in Teaching and Learning

https://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning

A roster of results since 2011 is here.

ELI 2018 key issues

1. Academic Transformation

2. Accessibility and UDL

3. Faculty Development

4. Privacy and Security

5. Digital and Information Literacies

https://cdn.nmc.org/media/2017-nmc-strategic-brief-digital-literacy-in-higher-education-II.pdf
Three Models of Digital Literacy: Universal, Creative, Literacy Across Disciplines

United States digital literacy frameworks tend to focus on educational policy details and personal empowerment, the latter encouraging learners to become more effective students, better creators, smarter information consumers, and more influential members of their community.

National policies are vitally important in European digital literacy work, unsurprising for a continent well populated with nation-states and struggling to redefine itself, while still trying to grow economies in the wake of the 2008 financial crisis and subsequent financial pressures

African digital literacy is more business-oriented.

Middle Eastern nations offer yet another variation, with a strong focus on media literacy. As with other regions, this can be a response to countries with strong state influence or control over local media. It can also represent a drive to produce more locally-sourced content, as opposed to consuming material from abroad, which may elicit criticism of neocolonialism or religious challenges.

p. 14 Digital literacy for Humanities: What does it mean to be digitally literate in history, literature, or philosophy? Creativity in these disciplines often involves textuality, given the large role writing plays in them, as, for example, in the Folger Shakespeare Library’s instructor’s guide. In the digital realm, this can include web-based writing through social media, along with the creation of multimedia projects through posters, presentations, and video. Information literacy remains a key part of digital literacy in the humanities. The digital humanities movement has not seen much connection with digital literacy, unfortunately, but their alignment seems likely, given the turn toward using digital technologies to explore humanities questions. That development could then foster a spread of other technologies and approaches to the rest of the humanities, including mapping, data visualization, text mining, web-based digital archives, and “distant reading” (working with very large bodies of texts). The digital humanities’ emphasis on making projects may also increase

Digital Literacy for Business: Digital literacy in this world is focused on manipulation of data, from spreadsheets to more advanced modeling software, leading up to degrees in management information systems. Management classes unsurprisingly focus on how to organize people working on and with digital tools.

Digital Literacy for Computer Science: Naturally, coding appears as a central competency within this discipline. Other aspects of the digital world feature prominently, including hardware and network architecture. Some courses housed within the computer science discipline offer a deeper examination of the impact of computing on society and politics, along with how to use digital tools. Media production plays a minor role here, beyond publications (posters, videos), as many institutions assign multimedia to other departments. Looking forward to a future when automation has become both more widespread and powerful, developing artificial intelligence projects will potentially play a role in computer science literacy.

6. Integrated Planning and Advising Systems for Student Success (iPASS)

7. Instructional Design

8. Online and Blended Learning

In traditional instruction, students’ first contact with new ideas happens in class, usually through direct instruction from the professor; after exposure to the basics, students are turned out of the classroom to tackle the most difficult tasks in learning — those that involve application, analysis, synthesis, and creativity — in their individual spaces. Flipped learning reverses this, by moving first contact with new concepts to the individual space and using the newly-expanded time in class for students to pursue difficult, higher-level tasks together, with the instructor as a guide.

Let’s take a look at some of the myths about flipped learning and try to find the facts.

Myth: Flipped learning is predicated on recording videos for students to watch before class.

Fact: Flipped learning does not require video. Although many real-life implementations of flipped learning use video, there’s nothing that says video must be used. In fact, one of the earliest instances of flipped learning — Eric Mazur’s peer instruction concept, used in Harvard physics classes — uses no video but rather an online text outfitted with social annotation software. And one of the most successful public instances of flipped learning, an edX course on numerical methods designed by Lorena Barba of George Washington University, uses precisely one video. Video is simply not necessary for flipped learning, and many alternatives to video can lead to effective flipped learning environments [http://rtalbert.org/flipped-learning-without-video/].

Myth: Flipped learning replaces face-to-face teaching.

Fact: Flipped learning optimizes face-to-face teaching. Flipped learning may (but does not always) replace lectures in class, but this is not to say that it replaces teaching. Teaching and “telling” are not the same thing.

Myth: Flipped learning has no evidence to back up its effectiveness.

Fact: Flipped learning research is growing at an exponential pace and has been since at least 2014. That research — 131 peer-reviewed articles in the first half of 2017 alone — includes results from primary, secondary, and postsecondary education in nearly every discipline, most showing significant improvements in student learning, motivation, and critical thinking skills.

Myth: Flipped learning is a fad.

Fact: Flipped learning has been with us in the form defined here for nearly 20 years.

Myth: People have been doing flipped learning for centuries.

Fact: Flipped learning is not just a rebranding of old techniques. The basic concept of students doing individually active work to encounter new ideas that are then built upon in class is almost as old as the university itself. So flipped learning is, in a real sense, a modern means of returning higher education to its roots. Even so, flipped learning is different from these time-honored techniques.

Myth: Students and professors prefer lecture over flipped learning.

Fact: Students and professors embrace flipped learning once they understand the benefits. It’s true that professors often enjoy their lectures, and students often enjoy being lectured to. But the question is not who “enjoys” what, but rather what helps students learn the best.They know what the research says about the effectiveness of active learning

Assertion: Flipped learning provides a platform for implementing active learning in a way that works powerfully for students.

9. Evaluating Technology-based Instructional Innovations

Transitioning to an ROI lens requires three fundamental shifts
What is the total cost of my innovation, including both new spending and the use of existing resources?

What’s the unit I should measure that connects cost with a change in performance?

How might the expected change in student performance also support a more sustainable financial model?

The Exposure Approach: we don’t provide a way for participants to determine if they learned anything new or now have the confidence or competence to apply what they learned.

The Exemplar Approach: from ‘show and tell’ for adults to show, tell, do and learn.

The Tutorial Approach: Getting a group that can meet at the same time and place can be challenging. That is why many faculty report a preference for self-paced professional development.build in simple self-assessment checks. We can add prompts that invite people to engage in some sort of follow up activity with a colleague. We can also add an elective option for faculty in a tutorial to actually create or do something with what they learned and then submit it for direct or narrative feedback.

The Course Approach: a non-credit format, these have the benefits of a more structured and lengthy learning experience, even if they are just three to five-week short courses that meet online or in-person once every week or two.involve badges, portfolios, peer assessment, self-assessment, or one-on-one feedback from a facilitator

The Academy Approach: like the course approach, is one that tends to be a deeper and more extended experience. People might gather in a cohort over a year or longer.Assessment through coaching and mentoring, the use of portfolios, peer feedback and much more can be easily incorporated to add a rich assessment element to such longer-term professional development programs.

The Mentoring Approach: The mentors often don’t set specific learning goals with the mentee. Instead, it is often a set of structured meetings, but also someone to whom mentees can turn with questions and tips along the way.

The Coaching Approach: A mentor tends to be a broader type of relationship with a person.A coaching relationship tends to be more focused upon specific goals, tasks or outcomes.

The Peer Approach:This can be done on a 1:1 basis or in small groups, where those who are teaching the same courses are able to compare notes on curricula and teaching models. They might give each other feedback on how to teach certain concepts, how to write syllabi, how to handle certain teaching and learning challenges, and much more. Faculty might sit in on each other’s courses, observe, and give feedback afterward.

The Self-Directed Approach:a self-assessment strategy such as setting goals and creating simple checklists and rubrics to monitor our progress. Or, we invite feedback from colleagues, often in a narrative and/or informal format. We might also create a portfolio of our work, or engage in some sort of learning journal that documents our thoughts, experiments, experiences, and learning along the way.

The Buffet Approach:

10. Open Education

Figure 1. A Model for Networked Education (Credit: Image by Catherine Cronin, building on
Interpretations of
Balancing Privacy and Openness (Credit: Image by Catherine Cronin. CC BY-SA)

11. Learning Analytics

12. Adaptive Teaching and Learning

13. Working with Emerging Technology

In 2014, administrators at Central Piedmont Community College (CPCC) in Charlotte, North Carolina, began talks with members of the North Carolina State Board of Community Colleges and North Carolina Community College System (NCCCS) leadership about starting a CBE program.

Building on an existing project at CPCC for identifying the elements of a digital learning environment (DLE), which was itself influenced by the EDUCAUSE publication The Next Generation Digital Learning Environment: A Report on Research,1 the committee reached consensus on a DLE concept and a shared lexicon: the “Digital Learning Environment Operational Definitions,

Figure 1. NC-CBE Digital Learning Environment

Midpoint Reflection ID2ID

Midpoint Reflection

https://canvas.instructure.com/courses/1288387/assignments/8024238?module_item_id=16052093

While it may take time to do this reflection, it can have many important benefits: 1) research shows that reflecting on experiences creates an environment in which insights and creativity can flourish; 2) taking a moment to consider the positive experiences (and to learn from the challenging ones) generates positive emotions which can benefit everyone during highly stressful moments in the semester; and 3) your experiences in narrative form provide insights to the committee beyond what is possible through surveys. This helps us to tailor the program in the future.

Here are a few questions/topics you should consider in your reflection:

  1. How well is the program working for you so far?

I was not able to collaborate last year, but this year it has been perfect match with my ID2ID buddy Aura Lippincott. It is just marvelous to work with same-minded and driven person

  1. What have you accomplished so far?

We are well underway with one of our two projects – the VRrelax one the project each of us is teaming up with faculty and staff from our universities. We plan to roll out the test at the end of this month (October), do the research in November and compare notes and results in December. The project aims to establish if VR delivered by Oculus Go may have positive impact on stress reduction for students.

Our second project, the Open Learning one is also gathering speed; we intend to have a research topic determined by the end of the month, while we are gathering resources at the time being.

  1. What else do you need to do? Describe the progress you have made toward meeting your program goals.

Each of us is in a daily contact with faculty and staff, searching for the right people to build a team. By mid September, we were able to start forming the research questions with the team and establish responsibilities and deadlines. We keep track of the progress via Google Docs: https://docs.google.com/document/d/1kOgqC7vUaBtOEDaB6ZF-ayEyVw2yBmB0fHXWrrcFkB4/edit and https://docs.google.com/document/d/1huFe1bPE08ha9acDLTsDkCz0blaxQ2bKKSxg97woGIY/edit

  1. What obstacles have you faced that you did not anticipate?

I have difficulty to pinpoint obstacles, because with a determined ID2ID partner and team members, all obstacles start to seem minuscules. We had discussions about the video content of the VR session, or the frequency of the testing and some of these issues is impossible to reconcile for two teams on different campuses, but again, they do not seem crucial when the team is driven by conviction to finish the research

  1. What are your plans for working through them? What are your plans for the rest of the program? Many of you may have chosen to focus on one or more of the ELI Key Issues. If so, briefly summarize and reflect upon your discussions of these key issues.

In regard of the ELI Key issues
https://er.educause.edu/blogs/2018/1/presenting-the-eli-key-issues-for-2018

I see our work falling neatly under: digital and information literacy. The work through ID2ID seems as a intake of fresh air, since digital and information literacy is not considered in the stagnant 90-ish interpretation, as myopically imposed in the library where i work. Our project aims to assert digital literacy as understood by Educause.

To some degree, our work also falls under the ELI issue of “learning space design.” While we advocate for virtual learning spaces, as well as under the ELI issue “academic transformation and faculty development.” Both XR and open learning are ambitious trends, which inadvertently can meet resistance with their novelty and lack of track in former traditional methods of teaching and learning.

 

2018 NMC Horizon Report

2018 NMC Horizon Report

Cross-Institution & Cross-Sector Collaboration Long-Term Trend: Driving Ed Tech adoption in higher education for five or more years

Although a variety of collaborations between higher education and industry have emerged, more-explicit frameworks and guidelines are needed to define how these partnerships should proceed to have the greatest impact.

links to the Webinar on the report:
https://events.educause.edu/educause-live/webinars/2018/exploring-the-2018-horizon-report

link to the transcript: https://events.educause.edu/~/media/files/events/educause-live/2018/live1808/transcript.docx

Proliferation of Open Educational Resources Mid-Term Trend: Driving Ed Tech adoption in higher education for the next three to five years

The United States lags on the policy front. In September 2017, the Affordable College Textbook Act was once again introduced in both the US House of Representatives and the Senate “to expand the use of open textbooks
It is unlikely that ACTA will pass, however, as it has been unsuccessfully introduced to two previous Congresses.

The Rise of New Forms of Interdisciplinary Studies

Faculty members, administrators, and instructional designers are creating innovative pathways to college completion through interdisciplinary experiences, nanodegrees, and other alternative credentials, such as digital badges. Researchers, along with academic technologists and developers, are breaking new ground with data structures, visualizations, geospatial applications, and innovative uses of opensource tools.

Growing Focus on Measuring Learning

As societal and economic factors redefine the skills needed in today’s workforce, colleges and universities must rethink how to define, measure, and demonstrate subject mastery and soft skills such as creativity and collaboration. The proliferation of data-mining software and developments in online education, mobile learning, and learning management systems are coalescing toward learning environments that leverage analytics and visualization software to portray learning data in a multidimensional and portable manner

Redesigning Learning Spaces

upgrading wireless bandwidth and installing large displays that allow for more natural collaboration on digital projects. Some are exploring how mixed-reality technologies can blend 3D holographic content into physical spaces for simulations, such as experiencing Mars by controlling rover vehicles, or how they can enable multifaceted interaction with objects, such as exploring the human body in anatomy labs through detailed visuals. As higher education continues to move away from traditional, lecture-based lessons toward more hands-on activities, classrooms are starting to resemble real-world work and social environments

Authentic Learning Experiences

An increasing number of institutions have begun bridging the gap between academic knowledge and concrete applications by establishing relationships with the broader community; through active partnerships with local organizations

Improving Digital Literacy Solvable Challenge: Those that we understand and know how to solve

Digital literacy transcends gaining discrete technological skills to generating a deeper understanding of the digital environment, enabling intuitive and discerning adaptation to new contexts and cocreation of content.107 Institutions are charged with developing students’ digital citizenship, promoting the responsible and appropriate use of technology, including online communication etiquette and digital rights and responsibilities in blended and online learning settings. This expanded concept of digital competence is influencing curriculum design, professional development, and student-facing services and resources. Due to the multitude of elements of digital literacy, higher education leaders must obtain institution-wide buy-in and provide support for all stakeholders in developing these competencies.

Despite its growing importance, it remains a complex topic that can be challenging to pin down. Vanderbilt University established an ad hoc group of faculty, administrators, and staff that created a working definition of digital literacy on campus and produced a white paper recommending how to implement digital literacy to advance the university’s mission: https://vanderbilt.edu/ed-tech/committees/digital-literacy-committee.php

Adapting Organizational Designs to the Future of Work

Technology, shifting information demands, and evolving faculty roles are forcing institutions to rethink the traditional functional hierarchy. Institutions must adopt more flexible, teambased, matrixed structures to remain innovative and responsive to campus and stakeholder needs.

Attempts to avoid bureaucracy also align with a streamlined workforce and cost elimination. Emphasis has been placed on designing better business models through a stronger focus on return on investment. This involves taking a strategic approach that connects financial practice (such as analyzing cost metrics and resource allocation) with institutional change models and goals.124

Faculty roles have been and continue to be impacted by organizational change, as well as by broader economic movements. Reflective of today’s “gig economy,” twothirds of faculty members are now non-tenure, with half working part-time, often in teaching roles at several institutions. This stands as a stark contrast to 1969, when almost 80 percent of faculty were tenured or tenuretrack; today’s figures are nearly inverted. Their wages are applying pressure to traditional organizational structures.Rethinking tenure programs represents another change to organizational designs that aligns with the future of work.

Organizational structures are continuing to evolve on the administrative side as well. With an emphasis on supporting student success, many institutions are rethinking their student services, which include financial aid, academic advising, and work-study programs. Much of this change is happening within the context of digital transformation, an umbrella term that denotes the transformation of an organization’s core business to better meet customer needs by leveraging technology and data.

+++++++++
added Nov 13, 2018

6 growing trends taking over academic libraries

BY MERIS STANSBURY
March 24th, 2017

Horizon Report details short-and long-term technologies, trends that will impact academic libraries worldwide in the next 5 years.

6 growing trends taking over academic libraries

Short-Term, 1-2 years):

  • Research Data Management: The growing availability of research reports through online library databases is making it easier for students, faculty, and researchers to access and build upon existing ideas and work. “Archiving the observations that lead to new ideas has become a critical part of disseminating reports,” says the report.
  • Valuing the User Experience: Librarians are now favoring more user-centric approaches, leveraging data on patron touchpoints to identify needs and develop high-quality engaging experiences.

(Mid-Term, 3-5 years):

  • Patrons as Creators: Students, faculty, and researchers across disciplines are learning by making and creating rather than by simply consuming content. Creativity, as illustrated by the growth of user-generated videos, maker communities, and crowdfunded projects in the past few years, is increasingly the means for active, hands-on learning. People now look to libraries to assist them and provide tools for skill-building and making.
  • Rethinking Library Spaces: At a time when discovery can happen anywhere, students are relying less on libraries as the sole source for accessing information and more for finding a place to be productive. As a result, institutional leaders are starting to reflect on how the design of library spaces can better facilitate the face-to-face interactions.

(Long-Term, 5 or more years):

  • Cross-Institution Collaboration: Within the current climate of shrinking budgets and increased focus on digital collections, collaborations enable libraries to improve access to scholarly materials and engage in mission-driven cooperative projects.
  • Evolving Nature of the Scholarly Record: Once limited to print-based journals and monographic series, scholarly communications now reside in networked environments and can be accessed through an expansive array of publishing platforms. “As different kinds of scholarly communication are becoming more prevalent on the web, librarians are expected to discern the legitimacy of these innovative approaches and their impact in the greater research community through emerging altmetrics tools,” notes the report.
  • Improving digital literacy: According to the report, digital literacy transcends gaining isolated technological skills to “generate a deeper understanding of the digital environment, enabling intuitive adaptation to new contexts, co-creation of content with others, and an awareness of both the freedom and risks that digital interactions entail. Libraries are positioned to lead efforts to develop students’ digital citizenship, ensuring mastery of responsible and appropriate technology use, including online identity, communication etiquette, and rights and responsibilities.

++++++++++++
more on the NMC Horizon Report in this IMS blog
https://blog.stcloudstate.edu/ims?s=horizon+report

best practices in online proctoring

To catch a cheat: Best practices in online proctoring

As online education expands, students are bringing old-fashioned cheating into the digital age

According to the latest report from Babson Survey Research Group, nearly 6.5 million American undergraduates now take at least one course online

1. Listen to students and faculty. Every college, university, or online-learning provider has a different approach to online learning. At Indiana University, where more than 30 percent of students take at least one online course, the online education team has launched Next.IU, an innovative pilot program to solicit feedback from the campus community before making any major edtech decision. By soliciting direct feedback from students and faculty, institutions can avoid technical difficulties and secure support before rolling out the technology campus-wide.

2. Go mobile. Nine in 10 undergraduates own a smartphone, and the majority of online students complete some coursework on a mobile device. Tapping into the near-ubiquity of mobile computing on campus can help streamline the proctoring and verification process. Rather than having to log onto a desktop, students can use features like fingerprint scan and facial recognition that are already integrated into most smartphones to verify their identity directly from their mobile device.

For a growing number of students, mobile technology is the most accessible way to engage in online coursework, so mobile verification provides not only a set of advanced security tools, but also a way for universities to meet students where they are.

3. Learn from the data. Analytical approaches to online test security are still in the early stages. Schools may be more susceptible to online “heists” if they are of a certain size or administer exams in a certain way, but institutions need data to benchmark against their peers and identify pain points in their approach to proctoring.

In an initial pilot with 325,000 students, for instance, we found that cheating rose and fell with the seasons—falling from 6.62 percent to 5.49 percent from fall to spring, but rising to a new high of 6.65 percent during the summer.

++++++++++++
more on proctoring in this IMS blog
https://blog.stcloudstate.edu/ims?s=proctoring

Innovation, Infrastructure, and Digital Learning

Notes from the webinar:
What is Digital Learning

 

 

 

Technology is a metaphor for change, it is also a metaphor for risk

technology is a means of uncertainly reduction that is made possible by the cause-effect relationship upon which the technology is based.

technology innovation creates a kind of uncertainty in the minds of potential adopters as well as represent an opportunity for reduced uncertainty.

The Diffusion of Innovations: https://en.wikipedia.org/wiki/Diffusion_of_innovations

https://web.stanford.edu/class/symbsys205/Diffusion%20of%20Innovations.htm

diffusion of innovations

 

technology is disruptive

  • issues and impacts | response
  • organizational practice and process |  denial, anger
  • individual behaviors and preferences | bargaining
  • visualization: can I see me/us doing that | depression, acceptance

as per https://www.amazon.com/Death-Dying-Doctors-Nurses-Families/dp/1476775540

The key campus tech issues are no longer about IT (in the past e.g.: MS versus Apple). IT is the “easy part” of technology on campus. The challenges: people, planning policy, programs, priorities, silos, egos, and IT entitlements

How do we make Digital Learning compelling and safe for the faculty? provide evidence of impact, support, recognition and reward for faculty; communicate about effectiveness of and need for IT resources.

technology is not capital cost, it is operational cost. reoccurring.

Visualization:

underlying issues; can i do this? why should i do this? evidence of benefit?

http://www.sonicfoundry.com/wp-content/uploads/2016/01/Green-PlusCaChange-EDUCAUSEReview-Sept2015.pdf

the more things change, the more things stay the same. new equilibrium.

change: from what did you do wrong to how do we do better. Use data as a resources, not as a weapon. there is a fear of trying, because there is no recognition or reward

Machiavelli: 1. concentrate your efforts 2. pick your issues carefully, know when to fight 3. know the history 4. build coalitions 5. set modest goals – and realistic 6. leverage the value of data (use it as resource not weapon) 7. anticipate personnel turnover 8. set deadlines for decisions

Colleagues,

We apologize for the short notice, but wanted to make you aware of the following opportunity: provide

From Ken Graetz at Winona State University:

As part of our Digital Faculty Fellows Program at WSU, Dr. Kenneth C. Green will be speaking this Thursday, March 22nd in Stark 103 Miller Auditorium from 11:30 to 12:30 on “Innovation, Infrastructure, and Digital Learning.” We will be streaming Casey’s talk using Skype Meeting Broadcast and you can join as a guest using the following link: Join the presentation. This will allow you to see and hear his presentation, as well as post moderated questions. By way of a teaser, here is a recent quote from Dr. Green’s blog, DigitalTweed, published by Inside Higher Ed:

“If trustees, presidents, provosts, deans, and department chairs really want to address the fear of trying and foster innovation in instruction, then they have to recognize that infrastructure fosters innovation.  And infrastructure, in the context of technology and instruction, involves more than just computer hardware, software, digital projectors in classrooms, learning management systems, and campus web sites. The technology is actually the easy part. The real challenges involve a commitment to research about the impact of innovation in instruction, and recognition and reward for those faculty who would like to pursue innovation in their instructional activities.”

Dr. Green is the founding director of The Campus Computing Project, the largest continuing study of the role of digital learning and information technology in American colleges and universities. Campus Computing is widely cited as a definitive source for data, information, and insight about IT planning and policy issues affecting higher education. Dr. Green also serves as the director, moderator, and co-producer of TO A DEGREE, the postsecondary success podcast of the Bill & Melinda Gates Foundation. He is the author or editor of some 20 books and published research reports and more than 100 articles and commentaries that have appeared in academic journals and professional publications. In 2002, Dr. Green received the first EDUCAUSE Award for Leadership in Public Policy and Practice. The EDUCAUSE award cites his work in creating The Campus Computing Project and recognizes his, “prominence in the arena of national and international technology agendas, and the linking of higher education to those agendas.”

Casey’s most recent TO A DEGREE podcasts are available now: Presidential Leadership in Challenging Times and Online’s Bottom Line.

Hope to see some of you online and please forward this invitation to anyone who might be interested.

Ken Graetz, PhD, Director of Teaching, Learning, and Technology Services, Winona State University, 507-429-3270

Selecting LMS

A Guide to Picking a Learning Management System: The Right Questions to Ask

By Mary Jo Madda (Columnist)     Feb 14, 2017

https://www.edsurge.com/news/2017-02-14-a-guide-to-learning-management-systems-the-right-questions-to-ask

Over the past 10 years, new learning management systems (LMSs) have sprung on the scene to rival the Blackboards and Moodles of old. On the EdSurge Product Index alone, 56 products self-identify and fall into the LMS category. And with certain established companies like Pearson pulling out of the LMS ranks, where do you start?

As University of Central Florida’s Associate Vice President of Distributed Learning, Tom Cavanagh, wrote in an article for EDUCAUSE, “every institute has a unique set of instructional and infrastructure circumstances to consider when deciding on an LMS,” but at the same time, “all institutions face certain common requirements”—whether a small charter school, a private university or a large public school district.

The LMS Checklist

#1: Is the platform straightforward and user-friendly?

#2: Who do we want to have access to this platform, and can we adjust what they can see?

#3: Can the instructor and student(s) talk to and communicate with each other easily?

“Students and faculty live a significant portion of their daily lives online in social media spaces,” writes University of Central Florida’s Tom Cavanagh in his article on the LMS selection process. “Are your students and faculty interested in these sorts of interplatform connections?”

#5: Does this platform plug in with all of the other platforms we have?

“Given the pace of change and the plethora of options with educational technology, it’s very difficult for any LMS vendor to keep up with stand-alone tools that will always outperform built-in tools,” explains Michael Truong, executive director of innovative teaching and technology at Azusa Pacific University. According to Truong, “no LMS will be able to compete directly with tools like Piazza (discussion forum), Socrative (quizzing), EdPuzzle (video annotation), etc.” 

As a result, Truong says, “The best way to ‘prepare’ for future technological changes is to go with an LMS that plays well with external tools.

#6: Is the price worth the product?

A reality check: There is no perfect LMS.

++++++++++++++++++
more on LMS in this IMS blog
https://blog.stcloudstate.edu/ims?s=learning+management+systems

Collaborative Instructional Technology Support Model

Online Course | Designing a Collaborative Instructional Technology Support Model

Part 1: March 7, 2018 | 1:00–2:30 p.m. ET
Part 2: March 14, 2018 | 1:00–2:30 p.m. ET
Part 3: March 21, 2018 | 1:00–2:30 p.m. ET

Faculty need a variety of instructional technology support—instructional design, content development, technology, training, and assessment—to name a few. They don’t want to go to one place for help, find out they’re in the wrong place, and be sent somewhere else—digitally or physically. Staff don’t want to provide help in silos or duplicate what other units are doing.

So, how can academic service providers collaborate to offer the right instructional technology support services, in the right place, at the right time, in the right way? In this course, instructional technologists, instructional designers, librarians, and instructional technology staff will learn to use a tool called the Service Center Canvas that does just that.

Learning Objectives:

During this course, participants will:

  • Explore the factors that influence how instructional technology support services are offered in higher education
  • Answer critical questions about how your instructional technology support services should be delivered relative to broader trends and institutional goals
  • Experiment with ways to prototype new services and/or new ways of delivering them
  • Identify potential implementation obstacles and ways to address them

NOTE: Participants will be asked to complete assignments in between the course segments that support the learning objectives stated below and will receive feedback and constructive critique from course facilitators on how to improve and shape their work.

Course Facilitators

Elliot FelixElliot Felix, Founder and CEO, brightspot strategy

Felix founded and leads brightspot, a strategy consultancy that reimagines places, rethinks services, and redesigns organizations on university campuses so that people are better connected to a purpose, information, and each other. Felix is accomplished strategist, facilitator, and sense-maker who has helped transform over 70 colleges and universities.


 

Adam GriffAdam Griff, Director, brightspot strategy

Adam Griff is a director at brightspot. He helps universities rethink their space, reinvent their service offerings, and redesign their organization to improve the experiences of their faculty, students, and staff, connecting people and processes to create simple and intuitive answers to complex questions. He has led projects with a wide range of higher education institutions including University of Wisconsin–Madison, University of North Carolina at Chapel Hill, and University of California, Berkeley.

students and etext

Student Engagement with E-Texts: What the Data Tell Us

by Serdar Abaci, Joshua Quick and Anastasia Morrone Monday, October 9, 2017

https://er.educause.edu/articles/2017/10/student-engagement-with-etexts-what-the-data-tell-us

  • This case study of Indiana University’s e-text initiative reports on students’ actual use of and engagement with digital textbooks.
  • In a typical semester, students read more in the first four weeks and less in later weeks except during major assessment times; in a typical week, most reading occurs between 5:00 p.m. and 2:00 a.m. from Monday to Thursday, indicating that students use e-texts mainly as a self-study resource.
  • Highlighting was the markup feature most used by students, whereas use of the other interactive markup features (shared notes, questions, and answers) was minimal, perhaps because of students’ lack of awareness of these features.
  • Research found that higher engagement with e-texts (reading and highlighting) correlated with higher course grades.

Although cost savings is often cited as a key advantage of electronic textbooks (aka, e-textbooks or simply e-texts), e-texts also provide powerful markup and interaction tools. For these tools to improve student learning, however, their adoption is critically important.
Indiana U etext initiative

The Indiana University e-texts program, which began in 2009, has four primary goals:

  1. Drive down the cost of materials for students
  2. Provide high-quality materials of choice
  3. Enable new tools for teaching and learning
  4. Shape the terms of sustainable models that work for students, faculty, and authors

To date, student savings on textbooks amount to $21,673,338. However, we recognize that many students do not pay the full list price for paper textbooks when they purchase online, buy used copies, or recoup some of their costs when they resell their texts after the semester is over.
herefore, we divide the calculated savings by two and report that total as a more accurate representation of student savings. Consequently, we claim that students have saved about $11 million since IU’s e-texts program started in spring 2012.

In addition to printing through the e-text platform, students can purchase a print-on-demand (PoD) copy of an e-text for an additional fee.

One downside of e-texts is that students lease their textbook for a limited time instead of owning it. This lease generally lasts a semester or six months, and students lose their access afterwards. However, with IU’s e-text model, students get access to the textbook before the first day of class and maintain their access until they graduate from Indiana University. That is, students can go back to the e-texts after their course to review or reference the content in the book. This could be especially important if the e-text course is a prerequisite for another course.

 

+++++++++++++++++++
more on etext and ebooks in this IMS blog
https://blog.stcloudstate.edu/ims?s=ebook

ECAR Study of Undergraduate Students and Information Technology, 2017

ECAR Study of Undergraduate Students and Information Technology, 2017

  • Students would like their instructors to use more technology in their classes.Technologies that provide students with something (e.g., lecture capture, early-alert systems, LMS, search tools) are more desired than those that require students to give something (e.g., social media, use of their own devices, in-class polling tools). We speculate that sound pedagogy and technology use tied to specific learning outcomes and goals may improve the desirability of the latter.
  • Students reported that faculty are banning or discouraging the use of laptops, tablets, and (especially) smartphones more often than in previous years. Some students reported using their devices (especially their smartphones) for nonclass activities, which might explain the instructor policies they are experiencing. However, they also reported using their devices for productive classroom activities (e.g., taking notes, researching additional sources of information, and instructor-directed activities).

++++++++++++++
more on ECAR studies in this IMS blog
https://blog.stcloudstate.edu/ims?s=ecar

IT Advisory Council

Minutes from November 29 meeting . (all documents are work in progress)

Consultation groups:

CATT (mixed of collective bargaining and various academic areas), student technology groups, TPR (Technological and Pedagogical Roundtable) – tech issue specific to faculty. not tech admin but broad issues.
Student tech fee commitee, ITS staff, SCSU Divisions (?); Management Team, MN stte system office / CIO; It external review members (?); STCC IT
More on charge of these groups

IT Strategic Planning – Lisa Foss, Phil Thorson, Shelly Mumm, Mike Freer, LaVonne, Joe Ben ueckler

Strategic Planning Team meets in the summer with the Management Team.

System office did the Educause survey w faculty and students. Horizon Report

D2L move to the cloud, domain change.

Lisa Foss; mini swats from SCSU deans . summer shaped a “certain perspectives”

2010 strategic vision for IT (30+ pages) never got off the ground, but the teams are the same. An external 2012 consultant (Koludes COmpany)

IT assessment group (?)

latest discussions: how to consult better campus users (Tom ?)

SCSU Strategic Plan as a template. Using similar/same goals and objectives: 1. engage students. objectives (come from the SCSU plan) a. integrate student learning and support. Strategy and source. This is on the Sharepoint site (Phil Thorson email

SCSU Tech Plan Engaged Students Objectives: what people will be able to do, if the plan is successful.  1.D. change from Engagement to Student Belonging. Analytics and Social Media is in the objectives. the objectives as they are too broad. I understand the need to keep them broad, but as they are they are too broad, which poses the danger of each stakeholder to interpret differently.

training and instruction what is the state and what is the plan. instead of department, can we build a network of people spread across departments. nationally 92% ecar survey https://www.educause.edu/ecar

engaged campus strategic priority. comprehensive technology training (?). the text reads as it is pertaining to IT staff only. Is it? if it is the entire campus, why does not mention it. so it is IT only at this point and needs to be reworded to be clear that included the entire campus. 2010 plan did not think about all different issues of technology in each department. one size fit the entire campus.

Engaged Communities: four campuses – Alnwick, Plymouth, SC and online
technology consortia: how to partner, lead etc
serving community members as community patrons.
what are the tactics comes late. aspirational
what the roadblocks. innovation
efficiencies, automation.

Tom (the faculty from the School of Health and Human Services – telemedicine) Janet Tilstred Communication Disorders

Phil Thorson: how is risk management fit in the complex issues.
Next step: what is this plan mean for COSE, for the other schools?

 

1 2 3 4 5 6 8