Searching for "immersive technologies"

Realities 360 event

2019 Realities360 Conference and Expo
San Jose, USA
25 – 27 June 2019

EXPLORE AR AND VR IN YOUR WORK

Augmented and virtual reality technologies are the latest buzz in the training and education sector. 2019 Realities360 Conference and Expo is the event for you to explore this tech, and get started building and implementing your AR/VR strategy. You won’t want to miss it.

Learn more: http://elgd.co/r19e-conal

SESSIONS TO BUILD YOUR STRATEGY

The 2019 Realities360 program delivers over 50 sessions covering the critical topics that will help you develop new skills, strategies, and expertise within the AR/VR world. Plus, in several sessions you’ll build the knowledge and skills directly with hands-on learning experiences.

Here are some essential sessions you’ll need to attend:
– Better Than the Real Thing: VR Learning Surpassing Real-world Training
– Transforming Learning with Digital Reality
– Designing Instructionally-Effective Virtual Experiences
– Lessons from a Year of Cost-Effective Immersive Strategies in Higher Ed
– Exploring the Efficacy of Virtual Reality for Training Centers of the Future

Explore the entire lineup: http://elgd.co/r19e-sessions

++++++++++++
more on AR in this IMS blog
https://blog.stcloudstate.edu/ims?s=augmented+reality

GBL XR DS for IM 554

Course title: IM 554 Developing Skills for Online Teaching and Learning

Topic for this week: Game-based learning, Virtual Reliability, and Augmented Reality
Audience: IM Graduate students working for K12 schools or in business

March 28, Adobe Connect. http://scsuconnect.stcloudstate.edu/im554_park/

Events worth mentioning (pls share if you would like to discuss details):

1. Where are we now compared to:

2018: https://blog.stcloudstate.edu/ims/2018/03/27/im-554-discussion-on-gbl-2018/

2017: https://blog.stcloudstate.edu/ims/2017/02/22/im554-discussion-gbl/

2. How did GBL change in the past year? Who is the leader in this research (country)? Is K12 the “playground” for GBL and DGBL?

China: Liao, C., Chen, C., & Shih, S. (2019). The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Computers & Education133, 43–55. https://doi.org/10.1016/j.compedu.2019.01.013

Finalnd: Brezovszky, B., Mcmullen, J., Veermans, K., Hannula-Sormunen, M., Rodríguez-Aflecht, G., Pongsakdi, N., … Lehtinen, E. (2019). Effects of a mathematics game-based learning environment on primary school students’ adaptive number knowledge. Computers & Education128, 63–74. https://doi.org/10.1016/j.compedu.2018.09.011

Tunesia: Denden, M., Tlili, A., Essalmi, F., & Jemni, M. (2018). Implicit modeling of learners’ personalities in a game-based learning environment using their gaming behaviors. Smart Learning Environments5(1), 1–19. https://doi.org/10.1186/s40561-018-0078-6

Pitarch, R. (2018). An Approach to Digital Game-based Learning: Video-games Principles and Applications in Foreign Language Learning. Journal of Language Teaching and Research9(6), 1147–1159. https://doi.org/10.17507/jltr.0906.04

3. DGBL vs Serous Games vs Gamification

4. BYOx. Still timely?

5. XR and its relation to ID (instructional design) and the gamification of education:
https://blog.stcloudstate.edu/ims/2018/10/16/eli-2018-key-issues-teaching-learning/

#7 is ID, #13 is emerging technologies.

What is VR, AR, MR. Immersive learning?
examples from SCSU:
https://web.stcloudstate.edu/pmiltenoff/bi/

Examples from other universities as presented at Nercomp 2019 workshop:

https://zoom.us/recording/share/YtDl7AA3Te_whtCnZZdv93EiNZbljU7yyzl7ibOEam-wIumekTziMw?startTime=1552927676000

min 29 from start: University of Connecticut (chapter 1)
min 58 from start: Dan Getz with Penn State (chapter 2)
hour 27 min from start: Randy Rode, Yale (chapter 3)

++++++++++++
last year plan for IM 554 https://blog.stcloudstate.edu/ims/2018/03/27/im-554-discussion-on-gbl-2018/

can XR help students learn

Giving Classroom Experiences (Like VR) More … Dimension

https://www.insidehighered.com/digital-learning/article/2018/11/02/virtual-reality-other-3-d-tools-enhance-classroom-experiences

at a session on the umbrella concept of “mixed reality” (abbreviated XR) here Thursday, attendees had some questions for the panel’s VR/AR/XR evangelists: Can these tools help students learn? Can institutions with limited budgets pull off ambitious projects? Can skeptical faculty members be convinced to experiment with unfamiliar technology?

All four — one each from Florida International UniversityHamilton CollegeSyracuse University and Yale University — have just finished the first year of a joint research project commissioned by Educause and sponsored by Hewlett-Packard to investigate the potential for immersive technology to supplement and even transform classroom experiences.

Campus of the Future” report, written by Jeffrey Pomerantz

Yale has landed on a “hub model” for project development — instructors propose projects and partner with students with technological capabilities to tap into a centralized pool of equipment and funding. (My note: this is what I suggest in my Chapter 2 of Arnheim, Eliot & Rose (2012) Lib Guides)

Several panelists said they had already been getting started on mixed reality initiatives prior to the infusion of support from Educause and HP, which helped them settle on a direction

While 3-D printing might seem to lend itself more naturally to the hard sciences, Yale’s humanities departments have cottoned to the technology as a portal to answering tough philosophical questions.

institutions would be better served forgoing an early investment in hardware and instead gravitating toward free online products like UnityOrganon and You by Sharecare, all of which allow users to create 3-D experiences from their desktop computers.

+++++++++

Campus of the Future” report, written by Jeffrey Pomerantz

https://library.educause.edu/~/media/files/library/2018/8/ers1805.pdf?la=en

XR technologies encompassing 3D simulations, modeling, and production.

This project sought to identify

  • current innovative uses of these 3D technologies,
  • how these uses are currently impacting teaching and learning, and
  • what this information can tell us about possible future uses for these technologies in higher education.

p. 5 Extended reality (XR) technologies, which encompass virtual reality (VR) and augmented reality (AR), are already having a dramatic impact on pedagogy in higher education. XR is a general term that covers a wide range of technologies along a continuum, with the real world at one end and fully immersive simulations at the other.

p. 6The Campus of the Future project was an exploratory evaluation of 3D technologies for instruction and research in higher education: VR, AR, 3D scanning, and 3D printing. The project sought to identify interesting and novel uses of 3D technology

p. 7 HP would provide the hardware, and EDUCAUSE would provide the methodological expertise to conduct an evaluation research project investigating the potential uses of 3D technologies in higher education learning and research.

The institutions that participated in the Campus of the Future project were selected because they were already on the cutting edge of integrating 3D technology into pedagogy. These institutions were therefore not representative, nor were they intended to be representative, of the state of higher education in the United States. These institutions were selected precisely because they already had a set of use cases for 3D technology available for study

p. 9  At some institutions, the group participating in the project was an academic unit (e.g., the Newhouse School of Communications at Syracuse University; the Graduate School of Education at Harvard University). At these institutions, the 3D technology provided by HP was deployed for use more or less exclusively by students and faculty affiliated with the particular academic unit.

p. 10 definitions
there is not universal agreement on the definitions of these
terms or on the scope of these technologies. Also, all of these technologies
currently exist in an active marketplace and, as in many rapidly changing markets, there is a tendency for companies to invent neologisms around 3D technology.

A 3D scanner is not a single device but rather a combination of hardware and
software. There are generally two pieces of hardware: a laser scanner and a digital
camera. The laser scanner bounces laser beams off the surface of an object to
determine its shape and contours.

p. 11 definitions

Virtual reality means that the wearer is completely immersed in a computer
simulation. Several types of VR headsets are currently available, but all involve
a lightweight helmet with a display in front of the eyes (see figure 2). In some
cases, this display may simply be a smartphone (e.g., Google Cardboard); in other
cases, two displays—one for each eye—are integrated into the headset (e.g., HTC
Vive). Most commercially available VR rigs also include handheld controllers
that enable the user to interact with the simulation by moving the controllers
in space and clicking on finger triggers or buttons.

p. 12 definitions

Augmented reality provides an “overlay” of some type over the real world through
the use of a headset or even a smartphone.

In an active technology marketplace, there is a tendency for new terms to be
invented rapidly and for existing terms to be used loosely. This is currently
happening in the VR and AR market space. The HP VR rig and the HTC Vive
unit are marketed as being immersive, meaning that the user is fully immersed in
a simulation—virtual reality. Many currently available AR headsets, however, are
marketed not as AR but rather as MR (mixed reality). These MR headsets have a
display in front of the eyes as well as a pair of front-mounted cameras; they are
therefore capable of supporting both VR and AR functionality.

p. 13 Implementation

Technical difficulties.
Technical issues can generally be divided into two broad categories: hardware
problems and software problems. There is, of course, a common third category:
human error.

p. 15 the technology learning curve

The well-known diffusion of innovations theoretical framework articulates five
adopter categories: innovators, early adopters, early majority, late majority, and
laggards. Everett M. Rogers, Diffusion of Innovations, 5th ed. (New York: Simon and Schuster, 2003).

It is also likely that staff in the campus IT unit or center for teaching and learning already know who (at least some of) these individuals are, since such faculty members are likely to already have had contact with these campus units.
Students may of course also be innovators and early adopters, and in fact
several participating institutions found that some of the most creative uses of 3D technology arose from student projects

p. 30  Zeynep Tufekci, in her book Twitter and Tear Gas

definition: There is no necessary distinction between AR and VR; indeed, much research
on the subject is based on a conception of a “virtuality continuum” from entirely
real to entirely virtual, where AR lies somewhere between those ends of the
spectrum.  Paul Milgram and Fumio Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information Systems, vol. E77-D, no. 12 (1994); Steve Mann, “Through the Glass, Lightly,” IEEE Technology and Society Magazine 31, no. 3 (2012): 10–14.

For the future of 3D technology in higher education to be realized, that
technology must become as much a part of higher education as any technology:
the learning management system (LMS), the projector, the classroom. New
technologies and practices generally enter institutions of higher education as
initiatives. Several active learning classroom initiatives are currently under
way,36 for example, as well as a multi-institution open educational resources
(OER) degree initiative.37

p. 32 Storytelling

Some scholars have argued that all human communication
is based on storytelling;41 certainly advertisers have long recognized that
storytelling makes for effective persuasion,42 and a growing body of research
shows that narrative is effective for teaching even topics that are not generally
thought of as having a natural story, for example, in the sciences.43

p. 33 accessibility

The experience of Gallaudet University highlights one of the most important
areas for development in 3D technology: accessibility for users with disabilities.

p. 34 instructional design

For that to be the case, 3D technologies must be incorporated into the
instructional design process for building and redesigning courses. And for that
to be the case, it is necessary for faculty and instructional designers to be familiar
with the capabilities of 3D technologies. And for that to be the case, it may
not be necessary but would certainly be helpful for instructional designers to
collaborate closely with the staff in campus IT units who support and maintain
this hardware.

Every institution of higher
education has a slightly different organizational structure, of course, but these
two campus units are often siloed. This siloing may lead to considerable friction
in conducting the most basic organizational tasks, such as setting up meetings
and apportioning responsibilities for shared tasks. Nevertheless, IT units and
centers for teaching and learning are almost compelled to collaborate in order
to support faculty who want to integrate 3D technology into their teaching. It
is necessary to bring the instructional design expertise of a center for teaching
and learning to bear on integrating 3D technology into an instructor’s teaching (My note: and where does this place SCSU?) Therefore,
one of the most critical areas in which IT units and centers for teaching and
learning can collaborate is in assisting instructors to develop this integration
and to develop learning objects that use 3D technology. p. 35 For 3D technology to really gain traction in higher education, it will need to be easier for instructors to deploy without such a large support team.

p. 35 Sites such as Thingiverse, Sketchfab, and Google Poly are libraries of freely
available, user-created 3D models.

ClassVR is a tool that enables the simultaneous delivery of a simulation to
multiple headsets, though the simulation itself may still be single-user.

p. 37 data management:

An institutional repository is a collection of an institution’s intellectual output, often consisting of preprint journal articles and conference papers and the data sets behind them.49 An
institutional repository is often maintained by either the library or a partnership
between the library and the campus IT unit. An institutional repository therefore has the advantage of the long-term curatorial approach of librarianship combined with the systematic backup management of the IT unit. (My note: leaves me wonder where does this put SCSU)

Sharing data sets is critical for collaboration and increasingly the default for
scholarship. Data is as much a product of scholarship as publications, and there
is a growing sentiment among scholars that it should therefore be made public.50

++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+definition

ELI Online Event XR

ELI Online Event | eXtended Reality (XR): How AR, VR, and MR Are Extending Learning Opportunities

May 22 and 24, 2018 | 12:00 noon – 3:35 p.m. ET

https://events.educause.edu/eli/focus-sessions/2018/extended-reality-xr-how-ar-vr-and-mr-are-extending-learning-opportunities

https://twitter.com/search?q=%23elifocus #elifocus

https://www.educause.edu/badging

Over the past year, interest in eXtended reality (XR) technologies (such as virtual, augmented, immersive, and mixed reality) has surged. New and more affordable XR technologies, along with voice activation and sophisticated visual display walls, provide promising directions and opportunities to immerse learners in the curriculum, offering deeper and more vivid learning experiences and extending the learning environment. But what’s the curricular reality with respect to these technologies? What is hype and what is substance? Specifically:

  • What practical applications do “XR technologies” have for teaching, learning, and research?
  • How are these technologies being applied to engage learners as consumers and creators of XR experiences?
  • What evidence is there to support XR technologies as effective tools in the learning environment?
  • How can these technologies be integrated into learning spaces?
  • What are the ethical questions we should consider as we explore XR?

Key Issues in Teaching and Learning Survey

The EDUCAUSE Learning Initiative has just launched its 2018 Key Issues in Teaching and Learning Survey, so vote today: http://www.tinyurl.com/ki2018.

Each year, the ELI surveys the teaching and learning community in order to discover the key issues and themes in teaching and learning. These top issues provide the thematic foundation or basis for all of our conversations, courses, and publications for the coming year. Longitudinally they also provide the way to track the evolving discourse in the teaching and learning space. More information about this annual survey can be found at https://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning.

ACADEMIC TRANSFORMATION (Holistic models supporting student success, leadership competencies for academic transformation, partnerships and collaborations across campus, IT transformation, academic transformation that is broad, strategic, and institutional in scope)

ACCESSIBILITY AND UNIVERSAL DESIGN FOR LEARNING (Supporting and educating the academic community in effective practice; intersections with instructional delivery modes; compliance issues)

ADAPTIVE TEACHING AND LEARNING (Digital courseware; adaptive technology; implications for course design and the instructor’s role; adaptive approaches that are not technology-based; integration with LMS; use of data to improve learner outcomes)

COMPETENCY-BASED EDUCATION AND NEW METHODS FOR THE ASSESSMENT OF STUDENT LEARNING (Developing collaborative cultures of assessment that bring together faculty, instructional designers, accreditation coordinators, and technical support personnel, real world experience credit)

DIGITAL AND INFORMATION LITERACIES (Student and faculty literacies; research skills; data discovery, management, and analysis skills; information visualization skills; partnerships for literacy programs; evaluation of student digital competencies; information evaluation)

EVALUATING TECHNOLOGY-BASED INSTRUCTIONAL INNOVATIONS (Tools and methods to gather data; data analysis techniques; qualitative vs. quantitative data; evaluation project design; using findings to change curricular practice; scholarship of teaching and learning; articulating results to stakeholders; just-in-time evaluation of innovations). here is my bibliographical overview on Big Data (scroll down to “Research literature”https://blog.stcloudstate.edu/ims/2017/11/07/irdl-proposal/ )

EVOLUTION OF THE TEACHING AND LEARNING SUPPORT PROFESSION (Professional skills for T&L support; increasing emphasis on instructional design; delineating the skills, knowledge, business acumen, and political savvy for success; role of inter-institutional communities of practices and consortia; career-oriented professional development planning)

FACULTY DEVELOPMENT (Incentivizing faculty innovation; new roles for faculty and those who support them; evidence of impact on student learning/engagement of faculty development programs; faculty development intersections with learning analytics; engagement with student success)

GAMIFICATION OF LEARNING (Gamification designs for course activities; adaptive approaches to gamification; alternate reality games; simulations; technological implementation options for faculty)

INSTRUCTIONAL DESIGN (Skills and competencies for designers; integration of technology into the profession; role of data in design; evolution of the design profession (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/10/04/instructional-design-3/); effective leadership and collaboration with faculty)

INTEGRATED PLANNING AND ADVISING FOR STUDENT SUCCESS (Change management and campus leadership; collaboration across units; integration of technology systems and data; dashboard design; data visualization (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=data+visualization); counseling and coaching advising transformation; student success analytics)

LEARNING ANALYTICS (Leveraging open data standards; privacy and ethics; both faculty and student facing reports; implementing; learning analytics to transform other services; course design implications)

LEARNING SPACE DESIGNS (Makerspaces; funding; faculty development; learning designs across disciplines; supporting integrated campus planning; ROI; accessibility/UDL; rating of classroom designs)

MICRO-CREDENTIALING AND DIGITAL BADGING (Design of badging hierarchies; stackable credentials; certificates; role of open standards; ways to publish digital badges; approaches to meta-data; implications for the transcript; Personalized learning transcripts and blockchain technology (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims?s=blockchain

MOBILE LEARNING (Curricular use of mobile devices (here previous blog postings on this issue:

https://blog.stcloudstate.edu/ims/2015/09/25/mc218-remodel/; innovative curricular apps; approaches to use in the classroom; technology integration into learning spaces; BYOD issues and opportunities)

MULTI-DIMENSIONAL TECHNOLOGIES (Virtual, augmented, mixed, and immersive reality; video walls; integration with learning spaces; scalability, affordability, and accessibility; use of mobile devices; multi-dimensional printing and artifact creation)

NEXT-GENERATION DIGITAL LEARNING ENVIRONMENTS AND LMS SERVICES (Open standards; learning environments architectures (here previous blog postings on this issue: https://blog.stcloudstate.edu/ims/2017/03/28/digital-learning/; social learning environments; customization and personalization; OER integration; intersections with learning modalities such as adaptive, online, etc.; LMS evaluation, integration and support)

ONLINE AND BLENDED TEACHING AND LEARNING (Flipped course models; leveraging MOOCs in online learning; course development models; intersections with analytics; humanization of online courses; student engagement)

OPEN EDUCATION (Resources, textbooks, content; quality and editorial issues; faculty development; intersections with student success/access; analytics; licensing; affordability; business models; accessibility and sustainability)

PRIVACY AND SECURITY (Formulation of policies on privacy and data protection; increased sharing of data via open standards for internal and external purposes; increased use of cloud-based and third party options; education of faculty, students, and administrators)

WORKING WITH EMERGING LEARNING TECHNOLOGY (Scalability and diffusion; effective piloting practices; investments; faculty development; funding; evaluation methods and rubrics; interoperability; data-driven decision-making)

+++++++++++
learning and teaching in this IMS blog
https://blog.stcloudstate.edu/ims?s=teaching+and+learning

VR AR MR in education

7 Things You Should Know About AR/VR/MR

https://library.educause.edu/resources/2017/10/7-things-you-should-know-about-ar-vr-mr 
Augmented reality can be described as experiencing the real world with an overlay of additional computer generated content. In contrast, virtual reality immerses a user in an entirely simulated environment, while mixed or merged reality blends real and virtual worlds in ways through which the physical and the digital can interact. AR, VR, and MR offer new opportunities to create a psychological sense of immersive presence in an environment that feels real enough to be viewed, experienced, explored, and manipulated. These technologies have the potential to democratize learning by giving everyone access to immersive experiences that were once restricted to relatively few learners.
In Grinnell College’s Immersive Experiences Lab http://gciel.sites.grinnell.edu/, teams of faculty, staff, and students collaborate on research projects, then use 3D, VR, and MR technologies as a platform to synthesize and present their findings.
In terms of equity, AR, VR, and MR have the potential to democratize learning by giving all learners access to immersive experiences
downsides :
relatively little research about the most effective ways to use these technologies as instructional tools. Combined, these factors can be disincentives for institutions to invest in the equipment, facilities, and staffing that can be required to support these systems. AR, VR, and MR technologies raise concerns about personal privacy and data security. Further, at least some of these tools and applications currently fail to meet accessibility standards. The user experience in some AR, VR, and MR applications can be intensely emotional and even disturbing (my note: but can be also used for empathy literacy),
immersing users in recreated, remote, or even hypothetical environments as small as a molecule or as large as a universe, allowing learners to experience “reality” from multiple perspectives.

++++++++++++++++
more on VR, AR, MX in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

Large-scale visualization

The future of collaboration: Large-scale visualization

 http://usblogs.pwc.com/emerging-technology/the-future-of-collaboration-large-scale-visualization/

More data doesn’t automatically lead to better decisions. A shortage of skilled data scientists has hindered progress towards translation of information into actionable business insights. In addition, traditionally dense spreadsheets and linear slideshows are ineffective to present discoveries when dealing with Big Data’s dynamic nature. We need to evolve how we capture, analyze and communicate data.

Large-scale visualization platforms have several advantages over traditional presentation methods. They blur the line between the presenter and audience to increase the level of interactivity and collaboration. They also offer simultaneous views of both macro and micro perspectives, multi-user collaboration and real-time data interaction, and a limitless number of visualization possibilities – critical capabilities for rapidly understanding today’s large data sets.

Visualization walls enable presenters to target people’s preferred learning methods, thus creating a more effective communication tool. The human brain has an amazing ability to quickly glean insights from patterns – and great visualizations make for more efficient storytellers.

Grant: Visualizing Digital Scholarship in Libraries and Learning Spaces
Award amount: $40,000
Funder: Andrew W. Mellon Foundation
Lead institution: North Carolina State University Libraries
Due date: 13 August 2017
Notification date: 15 September 2017
Website: https://immersivescholar.org
Contact: immersivescholar@ncsu.edu

Project Description

NC State University, funded by the Andrew W. Mellon Foundation, invites proposals from institutions interested in participating in a new project for Visualizing Digital Scholarship in Libraries and Learning Spaces. The grant aims to 1) build a community of practice of scholars and librarians who work in large-scale multimedia to help visually immersive scholarly work enter the research lifecycle; and 2) overcome technical and resource barriers that limit the number of scholars and libraries who may produce digital scholarship for visualization environments and the impact of generated knowledge. Libraries and museums have made significant strides in pioneering the use of large-scale visualization technologies for research and learning. However, the utilization, scale, and impact of visualization environments and the scholarship created within them have not reached their fullest potential. A logical next step in the provision of technology-rich, visual academic spaces is to develop best practices and collaborative frameworks that can benefit individual institutions by building economies of scale among collaborators.

The project contains four major elements:

  1. An initial meeting and priority setting workshop that brings together librarians, scholars, and technologists working in large-scale, library and museum-based visualization environments.
  2. Scholars-in-residence at NC State over a multi-year period who pursue open source creative projects, working in collaboration with our librarians and faculty, with the potential to address the articulated limitations.
  3. Funding for modest, competitive block grants to other institutions working on similar challenges for creating, disseminating, validating, and preserving digital scholarship created in and for large-scale visual environments.
  4. A culminating symposium that brings together representatives from the scholars-in-residence and block grant recipient institutions to share and assess results, organize ways of preserving and disseminating digital products produced, and build on the methods, templates, and tools developed for future projects.

Work Summary
This call solicits proposals for block grants from library or museum systems that have visualization installations. Block grant recipients can utilize funds for ideas ranging from creating open source scholarly content for visualization environments to developing tools and templates to enhance sharing of visualization work. An advisory panel will select four institutions to receive awards of up to $40,000. Block grant recipients will also participate in the initial priority setting workshop and the culminating symposium. Participating in a block grant proposal does not disqualify an individual from later applying for one of the grant-supported scholar-in-residence appointments.
Applicants will provide a statement of work that describes the contributions that their organization will make toward the goals of the grant. Applicants will also provide a budget and budget justification.
Activities that can be funded through block grants include, but are not limited to:

  • Commissioning work by a visualization expert
  • Hosting a visiting scholar, artist, or technologist residency
  • Software development or adaptation
  • Development of templates and methodologies for sharing and scaling content utilizing open source software
  • Student or staff labor for content or software development or adaptation
  • Curricula and reusable learning objects for digital scholarship and visualization courses
  • Travel (if necessary) to the initial project meeting and culminating workshop
  • User research on universal design for visualization spaces

Funding for operational expenditures, such as equipment, is not allowed for any grant participant.

Application
Send an application to immersivescholar@ncsu.edu by the end of the day on 13 August 2017 that includes the following:

  • Statement of work (no more than 1000 words) of the project idea your organization plans to develop, its relationship to the overall goals of the grant, and the challenges to be addressed.
  • List the names and contact information for each of the participants in the funded project, including a brief description of their current role, background, expertise, interests, and what they can contribute.
  • Project timeline.
  • Budget table with projected expenditures.
  • Budget narrative detailing the proposed expenditures

Selection and Notification Process
An advisory panel made up of scholars, librarians, and technologists with experience and expertise in large-scale visualization and/or visual scholarship will review and rank proposals. The project leaders are especially keen to receive proposals that develop best practices and collaborative frameworks that can benefit individual institutions by building a community of practice and economies of scale among collaborators.

Awardees will be selected based on:

  • the ability of their proposal to successfully address one or both of the identified problems;
  • the creativity of the proposed activities;
  • relevant demonstrated experience partnering with scholars or students on visualization projects;
  • whether the proposal is extensible;
  • feasibility of the work within the proposed time-frame and budget;
  • whether the project work improves or expands access to large-scale visual environments for users; and
  • the participant’s ability to expand content development and sharing among the network of institutions with large-scale visual environments.

Awardees will be required to send a representative to an initial meeting of the project cohort in Fall 2017.

Awardees will be notified by 15 September 2017.

If you have any questions, please contact immersivescholar@ncsu.edu.

–Mike Nutt Director of Visualization Services Digital Library Initiatives, NCSU Libraries
919.513.0651 http://www.lib.ncsu.edu/do/visualization

 

Virtual Augmented Mixed Reality

11 Ed Tech Trends to Watch in 2017
Five higher ed leaders analyze the hottest trends in education technology this year.

http://pdf.101com.com/CampusTech/2017/701921020/CAM_1702DG.pdf

new forms of human-computer interaction (HCI) such as augmented reality (AR),virtual reality (VR) and mixed reality (MR).
p. 21
combining AR/VR/MR with cognitive computing and artificial intelligence (AI) technologies (such as machine learning, deep learning, natural language processing and chatbots).
Some thought-provoking questions include:
  • Will remote workers be able to be seen and interacted with via their holograms (i.e., attending their meetings virtually)? What would this mean for remote learners?
  • Will our smartphones increasingly allow us to see information overlaid on the real world? (Think Pokémon Go, but putting that sort of technology into a vast array of different applications, many of which could be educational in nature)
  • How do/will these new forms of HCI impact how we design our learning spaces?
  • Will students be able to pick their preferred learning setting (i.e., studying by a brook or stream or in a virtual Starbucks-like atmosphere)?
  • Will more devices/platforms be developed that combine the power of AI with VR/AR/MR-related experiences? For example, will students be able to issue a verbal question or command to be able to see and experience walking around ancient Rome?
  • Will there be many new types of learning experiences,like what Microsoft was able to achieve in its collaboration with Case Western Reserve University [OH]? Its HoloLens product transforms the way human anatomy can be taught.

p. 22 Extensive costs for VR design and development drive the need for collaborative efforts.

Case Western Reserve University, demonstrates a collaboration with the Cleveland Clinic and Microsoft to create active multi-dimensional learning using holography.

the development of more affordable high-quality virtual reality solutions.

AR game developed by the Salzburg University of Applied Sciences [Austria] (http://www.fh-salzburg.ac.at/en/) that teaches  about sustainability, the environment and living green.
Whether using AR for a gamified course or to acclimate new students to campus, the trend will continue into 2017.

++++++++++++++++++++++++++++++

15 Tech Tool Favorites From ISTE 2016

list of resources that can help educators find what they need

Google Expeditions
This virtual reality field trip tool works in conjunction with Google Cardboard and has just been officially released. The app allows teachers to guide students through an exploration of 200 (and growing) historical sites and natural resources in an immersive, three-dimensional experience. The app only works on Android devices and is free.

Flippity
This app works in conjunction with Google Sheets and allows teachers to easily make a Jeopardy-style game.

Google Science Journal
This Android app allows users to do science experiments with mobile phones. Students can use sensors in the phone or connect external sensors to collect data, but can also take notes on observations, analyze and annotate within the app.

Google Cast
This simple app solves issues of disparate devices in the classroom. When students download the app, they can project from their devices onto the screen at the front of the room easily. “You don’t have to have specific hardware, you just have to have Wi-Fi,”

Constitute
This site hosts a database of constitutions from around the world. Anything digitally available has been aggregated here. It is searchable by topic and will pull out specific excerpts related to search terms like “freedom of speech.”

YouTube
a database of YouTube Channels by subject to help educators with discoverability (hint subjects are by tab along the bottom of the document).

Zygote Body
This freemium tool has a lot of functionality in the free version, allowing students to view different parts of human anatomy and dig into how various body systems work.
Pixlr
This app has less power than Photoshop, but is free and fairly sophisticated. It works directly with Google accounts, so students can store files there.
uild With Chrome
This extension to the Chrome browser lets kids play with digital blocks like Legos. Based on the computer’s IP address, the software assigns users a plot of land on which to build nearby. There’s a Build Academy to learn how to use the various tools within the program, but then students can make whatever they want.
Google CS First
Built on Scratch’s programming language, this easy tool gives step-by-step instructions to get started and is great for the hesitant teacher who is just beginning to dip a toe into coding.
several posters about Google Apps For Education that are available to anyone for free

+++++++++++++++
More on VR in this IMS bloghttps://blog.stcloudstate.edu/ims?s=virtual+reality

VR in education

5 ways virtual reality is being used in education right now

By Meris Stansbury
1. For new research: using a state-of-the-art “haptic” floor of aeronautic metal that vibrates and moves to stimulate the physical world for research on how VR has the potential to change the way users feel and behave. There may also be implications for confronting racism, sexism, and aiding in empathy and humanitarian efforts, says Bailenson.
2. For coding and 3D design: According to Bob Nilsson, director of Vertical Solutions Marketing for Extreme Networking, the University of Maryland, College Park, now offers a class on virtual reality that gives students the opportunity to design their own interactive world, work with 3D audio and experiment with immersive technology through a combination of hands-on learning and case studies. Also, the University of Georgia is offering similar classes where students design and explore applications for VR. Conrad Tucker, an assistant professor of engineering at Pennsylvania State University, has received funding to build a virtual engineering lab where students hold, rotate, and fit together virtual parts as they would with their real hands.

3. For anatomy and dissection: Said one Extreme Networks survey respondent, “Our students have been developing a VR model of a cow’s anatomy for dissection and study. You have the ability to drill down to the circulatory system, brain, muscle, skeleton, etc. Our applied tech program is using VR in conjunction with Autocad for models of projects they design.”

4. For engagement: A whopping 68 percent of survey respondents said the major benefit of using VR in education is to excite students about the subject matter. 39 percent said it’s great for encouraging creativity.

5. For field trips: Google has eliminated restrictions on Expeditions, their VR field trips program. Google Expeditions was cited in the survey as one of the most popular sources of VR content, but with the complaint that it was a restricted program.

use of VR in education

comment:
Thomas S. McDonald ·

Virtual reality may have its place, but until traditional education moves away from their 20th century teaching methodology and replaces it with educationally innovative, 21st century learning methodology, within a blended and flipped learning environment, virtual reality is currently, much ado about nothing.
Unless any new application is educationally innovative and directly and measurably contributes to effective, efficient, consistent, affordable, relevant advanced student success outcomes for ALL students, future innovations must wait for current innovations to be implemented.
This process of appriate choice and appropriate implemention must start at the top and be beta tested for measured student success before its rolled out system wide.

+++++++++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality

Save

Ethical Considerations For Using Virtual Reality

Five Ethical Considerations For Using Virtual Reality with Children and Adolescents

Five Ethical Considerations For Using Virtual Reality with Children and Adolescents

G+ link https://plus.google.com/+TessPajaron/posts/8YYgjoPrQvq

In an address to the VRX conference in San Francisco, noted game developer and tech wizard, Jesse Schell predicted that over 8 million VR gamer headsets will be sold in 2016. Facebook purchased Oculus Rift, presumably laying the groundwork for a future where friends and family will interact in rich virtual spaces. All the major players, including Microsoft, Sony, Samsung, Google and an HTC and Valve partnership are jostling for the consumer headset market.

Experimenting with VR in his classes as part of a project piloted by Seattle-based foundry10, a privately funded research organization that creates partnerships with educators to implement, research and explore the various intersections of emerging technologies and learning, including VR..

And the technology’s potential for good is vast. It has already been used to help with autism, improve personal financial management, treat PTSD and manage pain. More and more news outlets, including the New York Times, are adopting immersive journalism, where news stories can be experienced through VR.

As an educational tool, VR might prove transformative. Google Expeditions allows students to take over 100 virtual journeys from ancient Rome to the surface of Mars. It might also have a big impact on social emotional learning (SEL), as VR’s unique ability to produce empathy recently led Wired magazine to explore its potential as “the ultimate empathy machine”. Addressing a persistent anxiety, Suter used Samsung Gear’s Public Speaking Simulator to successfully prepare a few nervous students for class presentations, reporting they felt “much more calm” during the live delivery.

Ethical Considerations

In a recently published article, researchers Michael Madary and Thomas K. Metzinger from Johannes Gutenberg University in Germany review a series of ethical considerations when implementing VR. The illusion of embodiment may provide VR’s greatest value to education, but also lies at the heart of its ethical implementation. Madary and Metzinger believe that VR is not just an evolution from television and video game screens, but a revolution that will have an enormous social impact. In their paper, they claim that:

VR technology will eventually change not only our general image of humanity but also our understanding of deeply entrenched notions, such as “conscious experience,” “selfhood,” “authenticity,” or “realness.”

It’s important to remember that many current VR uses in schools, like Google Expeditions, are not interactive VR, but simply 360-degree video experiences. In these cases, students experience immersive 3D pictures or panoramas, but do not deeply interact with the content. The illusion of embodiment is a product of interactive content and motion tracking, where users can alter and affect their environment and engage with others who share their virtual space. Headsets like the Vive and Occulus Rift fall under this latter category, but it won’t be long before most, if not all, consumer oriented VR technology will be completely immersive and interactive.

1. Long-Term Effects and Prolonged Exposure

2. The Impact of Environment on Agency and Behavior

3. Aggravating Preexisting Psychological or Emotional Issues

4. (Un)Reality and Diminished Real World Interactions

5. Privacy and Data Gathering

 

+++++++++++++++++++

more on virtual reality in this IMS blog

https://blog.stcloudstate.edu/ims?s=virtual+reality

1 2 3 4 5