Some 79 percent of U.S. 13- to 18-year-olds surveyed said they have a Snapchat account, more than any other type of social media. Of that age group, 73 percent have an Instagram account and just 57 percent say they are on Facebook.
Respondents had to choose only one social network they could keep if they were “trapped on a deserted island.” This time, 44 percent of teens picked Snapchat, ahead of Instagram (24 percent) and Facebook (14 percent). One year ago, for RBC’s same survey question, the percentage of teens who insisted on keeping Snapchat on a desert island led with 28 percent — suggesting the app is still growing in necessity/popularity among young people.
This case study of Indiana University’s e-text initiative reports on students’ actual use of and engagement with digital textbooks.
In a typical semester, students read more in the first four weeks and less in later weeks except during major assessment times; in a typical week, most reading occurs between 5:00 p.m. and 2:00 a.m. from Monday to Thursday, indicating that students use e-texts mainly as a self-study resource.
Highlighting was the markup feature most used by students, whereas use of the other interactive markup features (shared notes, questions, and answers) was minimal, perhaps because of students’ lack of awareness of these features.
Research found that higher engagement with e-texts (reading and highlighting) correlated with higher course grades.
Although cost savings is often cited as a key advantage of electronic textbooks (aka, e-textbooks or simply e-texts), e-texts also provide powerful markup and interaction tools. For these tools to improve student learning, however, their adoption is critically important.
The Indiana University e-texts program, which began in 2009, has four primary goals:
Drive down the cost of materials for students
Provide high-quality materials of choice
Enable new tools for teaching and learning
Shape the terms of sustainable models that work for students, faculty, and authors
To date, student savings on textbooks amount to $21,673,338. However, we recognize that many students do not pay the full list price for paper textbooks when they purchase online, buy used copies, or recoup some of their costs when they resell their texts after the semester is over.
herefore, we divide the calculated savings by two and report that total as a more accurate representation of student savings. Consequently, we claim that students have saved about $11 million since IU’s e-texts program started in spring 2012.
In addition to printing through the e-text platform, students can purchase a print-on-demand (PoD) copy of an e-text for an additional fee.
One downside of e-texts is that students lease their textbook for a limited time instead of owning it. This lease generally lasts a semester or six months, and students lose their access afterwards. However, with IU’s e-text model, students get access to the textbook before the first day of class and maintain their access until they graduate from Indiana University. That is, students can go back to the e-texts after their course to review or reference the content in the book. This could be especially important if the e-text course is a prerequisite for another course.
2018 Special Focus: Education in a Time of Austerity and Social Turbulence 21–23 June 2018 University of Athens, Athens, Greece http://thelearner.com/2018-conference
Theme 8: Technologies in Learning
Technology and human values: learning through and about technology
Crossing the digital divide: access to learning in, and about, the digital world
New tools for learning: online digitally mediated learning
Virtual worlds, virtual classrooms: interactive, self-paced and autonomous learning
Ubiquitous learning: using the affordances of the new mediaDistance learning: reducing the distance
Theme 9: Literacies Learning
Defining new literacies
Languages of power: literacy’s role in social access
Instructional responses to individual differences in literacy learning
The visual and the verbal: Multiliteracies and multimodal communications
Literacy in learning: language in learning across the subject areas
The changing role of libraries in literacies learning
Languages education and second language learning
Multilingual learning for a multicultural world
The arts and design in multimodal learning
The computer, internet, and digital media: educational challenges and responses
++++++++++
PROPOSAL: Paper presentation in a Themed Session
Title
Virtual Reality and Gamification in the Educational Process: The Experience from an Academic Library
short description
VR, AR and Mixed Reality, as well as gaming and gamification are proposed as sandbox opportunity to transition from a lecture-type instruction to constructivist-based methods.
long description
The NMC New Horizon Report 2017 predicts a rapid application of Video360 in K12. Millennials are leaving college, Gen Z students are our next patrons. Higher Education needs to meet its new students on “their playground.” A collaboration by a librarian and VR specialist is testing the opportunities to apply 360 degree movies and VR in academic library orientation. The team seeks to bank on the inheriting interest of young patrons toward these technologies and their inextricable part of a rapidly becoming traditional gaming environment. A “low-end,” inexpensive and more mobile Google Cardboard solution was preferred to HTC Vive, Microsoft HoloLens or comparable hi-end VR, AR and mixed reality products.
The team relies on the constructivist theory of assisting students in building their knowledge in their own pace and on their own terms, rather than being lectured and/or being guided by a librarian during a traditional library orientation tour. Using inexpensive Google Cardboard goggles, students can explore a realistic set up of the actual library and familiarize themselves with its services. Students were polled on the effectiveness of such approach as well as on their inclination to entertain more comprehensive version of library orientation. Based on the lessons from this experiment, the team intends to pursue also a standardized approach to introducing VR to other campus services, thus bringing down further the cost of VR projects on campus. The project is considered a sandbox for academic instruction across campus. The same concept can be applied for [e.g., Chemistry, Physics, Biology) lab tours; for classes, which anticipate preliminary orientation process.
Following the VR orientation, the traditional students’ library instruction, usually conducted in a room, is replaced by a dynamic gamified library instruction. Students are split in groups of three and conduct a “scavenger hunt”; students use a jQuery-generated Web site on their mobile devices to advance through “hoops” of standard information literacy test. E.g., they need to walk to the Reference Desk, collect specific information and log their findings in the Web site. The idea follows the strong interest in the educational world toward gaming and gamification of the educational process. This library orientation approach applies the three principles for gamification: empowers learners; teaches problem solving and increases understanding.
Similarly to the experience with VR for library orientation, this library instruction process is used as a sandbox and has been successfully replicated by other instructors in their classes.
1. Information security: Developing a risk-based security strategy that keeps pace with security threats and challenges.
2. Student success: Managing the system implementations and integrations that support multiple student success initiatives.
3. Institution-wide IT strategy: Repositioning or reinforcing the role of IT leadership as an integral strategic partner of institutional leadership in achieving institutions missions.
4. Data-enabled institutional culture: Using BI and analytics to inform the broad conversation and answer big questions.
5. Student-centered institution: Understanding and advancing technology’s role in defining the student experience on campus (from applicants to alumni).
6. Higher education affordability: Balancing and rightsizing IT priorities and budget to support IT-enabled institutional efficiencies and innovations in the context if institutional funding realities.
7. IT staffing and organizational models: Ensuring adequate staffing capacity and staff retention in the face of retirements, new sourcing models, growing external competition, rising salaries, and the demands of technology initiatives on both IT and non-IT staff.
8. (tie) Data management and governance: Implementing effective institutional data governance practices.
9. (tie) Digital integrations: Ensuring system interoperability, scalability, and extensibility, as well as data integrity, standards, and governance, across multiple applications and platforms.
10. Change leadership: Helping institutional constituents (including the IT staff) adapt to the increasing pace of technology change.
Lahav, O., Sharkey, P., & Merrick, J. (2014). Virtual and augmented reality environments for people with special needs. International Journal Of Child Health And Human Development, 7(4), 337-338.
Cai, Y., Chiew, R., Nay, Z. T., Indhumathi, C., & Huang, L. (2017). Design and development of VR learning environments for children with ASD. Interactive Learning Environments, 25(8), 1098-1109. doi:10.1080/10494820.2017.1282877
Passig, D. (2011). The Impact of Immersive Virtual Reality on Educators’ Awareness of the Cognitive Experiences of Pupils with Dyslexia. Teachers College Record, 113(1), 181-204.
Ke, F., & Im, T. (2013). Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism. Journal Of Educational Research, 106(6), 441-461. doi:10.1080/00220671.2013.832999
Collins, J., Hoermann, S., & Regenbrecht, H. (2016). Comparing a finger dexterity assessment in virtual, video-mediated, and unmediated reality. International Journal Of Child Health And Human Development, 9(3), 333-341.
Epure, P., Gheorghe, C., Nissen, T., Toader, L. O., Macovei, A. N., Nielsen, S. M., & … Brooks, E. P. (2016). Effect of the Oculus Rift head mounted display on postural stability. International Journal Of Child Health And Human Development, 9(3), 343-350.
Sánchez, J., & Espinoza, M. (2016). Usability and redesign of a university entrance test based on audio for learners who are blind. International Journal Of Child Health And Human Development, 9(3), 379-387.
Rizzo, A. A., Bowerly, T., Shahabi, C., Buckwalter, J. G., Klimchuk, D., & Mitura, R. (2004). Diagnosing Attention Disorders in a Virtual Classroom. Computer (00189162), 37(6), 87-89.
Eden, S. (2008). The effect of 3D virtual reality on sequential time perception among deaf and hard-of-hearing children. European Journal Of Special Needs Education, 23(4), 349-363. doi:10.1080/08856250802387315
Eden, S., & Bezer, M. (2011). Three-dimensions vs. two-dimensions intervention programs: the effect on the mediation level and behavioural aspects of children with intellectual disability. European Journal Of Special Needs Education, 26(3), 337-353. doi:10.1080/08856257.2011.593827
Lorenzo, G., Lledó, A., Roig, R., Lorenzo, A., & Pomares, J. (2016). New Educational Challenges and Innovations: Students with Disability in Immersive Learning Environments. In Virtual Learning. InTech. https://doi.org/10.5772/65219
The proliferation of mobile devices and the adoption of learning applications in higher education simplifies formative assessment. Professors can, for example, quickly create a multi-modal performance that requires students to write, draw, read, and watch video within the same assessment. Other tools allow for automatic grade responses, question-embedded documents, and video-based discussion.
Multi-Modal Assessments – create multiple-choice and open-ended items that are distributed digitally and assessed automatically. Student responses can be viewed instantaneously and downloaded to a spreadsheet for later use.
Formative (http://www.goformative.com) allows professors to upload charts or graphic organizers that students can draw on with a stylus. Formative also allows professors to upload document “worksheets” which can then be augmented with multiple-choice and open-ended questions.
Nearpod (http://www.nearpod.com) allows professors to upload their digital presentations and create digital quizzes to accompany them. Nearpod also allows professors to share three-dimensional field trips and models to help communicate ideas.
Video-Based Assessments – Question-embedded videos are an outstanding way to improve student engagement in blended or flipped instructional contexts. Using these tools allows professors to identify if the videos they use or create are being viewed by students.
Playposit (http://www.playposit.com) are two leaders in this application category. A second type of video-based assessment allows professors to sustain discussion-board like conversation with brief videos.
Flipgrid (http://www.flipgrid.com), for example, allows professors to posit a video question to which students may respond with their own video responses.
Quizzing Assessments – ools that utilize close-ended questions that provide a quick check of student understanding are also available.
Kahoot (http://www.kahoot.com) are relatively quick and convenient to use as a wrap up to instruction or a review of concepts taught.
Integration of technology is aligned to sound formative assessment design. Formative assessment is most valuable when it addresses student understanding, progress toward competencies or standards, and indicates concepts that need further attention for mastery. Additionally, formative assessment provides the instructor with valuable information on gaps in their students’ learning which can imply instructional changes or additional coverage of key concepts. The use of tech tools can make the creation, administration, and grading of formative assessment more efficient and can enhance reliability of assessments when used consistently in the classroom. Selecting one that effectively addresses your assessment needs and enhances your teaching style is critical.
An introduction to digital badges and a brief history
Simply put, a digital badge is an indicator of accomplishment or skill that can be displayed, accessed, and verified online. These badges can be earned in a wide variety of environments, an increasing number of which are online.
The anatomy of digital badges
In addition to the image-based design we think of as a digital badge, badges have meta-data to communicate details of the badge to anyone wishing to verify it, or learn more about the context of the achievement it signifies.
The many functions of digital badges
Just like their real-world counterparts, digital badges serve a wide variety of purposes depending on the issuing body and the individual. For the most part, badges’ functions can be bucketed into one of five categories.
Badges are issued by individual organizations who set criteria for what constitutes earning a badge. They’re most often issued through an online credential or badging platform.
Criticism of digital badges
There are various arguments to be made against the implementation of digital badges, including the common issuance of seemingly “meaningless” badges.
The future of digital badges
With the rise of online education and the increasing availability of high quality massive open online courses, there will be an increasing need for verifiable digital badges and digital credentials.
augmented reality takeover. It’s played out at Snapchat and Facebook, at Google and Apple. Companies are using AR to design cars, sell furniture, make little digital sharks swim around your breakfast table. What if Prezi could apply that same technology to make better presentations?
the product isn’t ready for a public launch yet. Prezi has enlisted a select group of influencers to try out the AR tools and offer feedback before the company releases a beta version.
Students match their preference for hybrid learning with a belief that it is the most effective learning environment for them.
Despite the fact that faculty prefer teaching in a hybrid environment, they remain skeptical of online learning. Nearly half do not agree online 45% learning is effective.
Students asked what technologies they wish their instructors used more, and we asked faculty what technologies they think could make them more effective instructors. Both agree that content and resource-focused technologies should be incorporated more and social media and tablets should be incorporated less.