Searching for "project based"

MLPP community of interest

https://umn.webex.com/umn/j.php?MTID=m27d6b04af0ba722e317240b8a68a6e3d

Minitex. Pressbooks stats: started Oct. 2017 books 120 to 454 and users 162 to

Google Analytics, top books by hits through Google Analytics.

Shane Nacherud, Kendall Larson, Ruth Dukelow, Laurie Probst, Anne Hatinen,

Getting Started

IngraSpark print and ebook publishing service

Adobe Acrobat Pro and Illustrator – final cover production

Canva.com – graphic design for covers

Pressbook – web based platform for book creation

Digital Commons / Digital Repository

create copyright page. custom cover.

Minnesota Library Publishing Project

New Directions in Instructional Design

ELI Online Focus Session

New Directions in Instructional Design: Keeping Pace in a Time of Rapid Change

April 19 & 20, 2017 | Noon–3:30 p.m. (ET)

https://events.educause.edu/eli/focus-sessions/2017/new-directions-in-instructional-design-keeping-pace-in-a-time-of-rapid-change

  • What new organizational models and practices do instructional design teams need to adopt?
  • How can instructional designers best make use of the increasing amount of learning data that is available?
  • What kinds of evidence-based practices make the most sense for instructional designers?
  • What are some professional development approaches that provide structure for instructional designers to share their mutual areas of expertise, while focusing on key areas of professional growth?
  • Learning technologists and instructional designers
  • Campus teaching and learning center directors and staff
  • Faculty members and instructors
  • Senior teaching and learning administrators (e.g., deans, provost office staff)
  • Librarians
  • Presentation Sessions: Sessions designed to provide an overview of specific topic areas and successful emerging approaches related to the focus session theme immediately followed by opportunities to interact one-on-one with session presenters.
  • Project Rounds: A series of institutional cases/examples presented in a sequential, fast-paced format exploring a single project, emerging technology, or campus initiative. Project rounds will be followed by an opportunity for separate discussion with each of the presenters.

+

 

+++++++++++++
more on ID in this IMS post
https://blog.stcloudstate.edu/ims?s=instructional+design

can XR help students learn

Giving Classroom Experiences (Like VR) More … Dimension

https://www.insidehighered.com/digital-learning/article/2018/11/02/virtual-reality-other-3-d-tools-enhance-classroom-experiences

at a session on the umbrella concept of “mixed reality” (abbreviated XR) here Thursday, attendees had some questions for the panel’s VR/AR/XR evangelists: Can these tools help students learn? Can institutions with limited budgets pull off ambitious projects? Can skeptical faculty members be convinced to experiment with unfamiliar technology?

All four — one each from Florida International UniversityHamilton CollegeSyracuse University and Yale University — have just finished the first year of a joint research project commissioned by Educause and sponsored by Hewlett-Packard to investigate the potential for immersive technology to supplement and even transform classroom experiences.

Campus of the Future” report, written by Jeffrey Pomerantz

Yale has landed on a “hub model” for project development — instructors propose projects and partner with students with technological capabilities to tap into a centralized pool of equipment and funding. (My note: this is what I suggest in my Chapter 2 of Arnheim, Eliot & Rose (2012) Lib Guides)

Several panelists said they had already been getting started on mixed reality initiatives prior to the infusion of support from Educause and HP, which helped them settle on a direction

While 3-D printing might seem to lend itself more naturally to the hard sciences, Yale’s humanities departments have cottoned to the technology as a portal to answering tough philosophical questions.

institutions would be better served forgoing an early investment in hardware and instead gravitating toward free online products like UnityOrganon and You by Sharecare, all of which allow users to create 3-D experiences from their desktop computers.

+++++++++

Campus of the Future” report, written by Jeffrey Pomerantz

https://library.educause.edu/~/media/files/library/2018/8/ers1805.pdf?la=en

XR technologies encompassing 3D simulations, modeling, and production.

This project sought to identify

  • current innovative uses of these 3D technologies,
  • how these uses are currently impacting teaching and learning, and
  • what this information can tell us about possible future uses for these technologies in higher education.

p. 5 Extended reality (XR) technologies, which encompass virtual reality (VR) and augmented reality (AR), are already having a dramatic impact on pedagogy in higher education. XR is a general term that covers a wide range of technologies along a continuum, with the real world at one end and fully immersive simulations at the other.

p. 6The Campus of the Future project was an exploratory evaluation of 3D technologies for instruction and research in higher education: VR, AR, 3D scanning, and 3D printing. The project sought to identify interesting and novel uses of 3D technology

p. 7 HP would provide the hardware, and EDUCAUSE would provide the methodological expertise to conduct an evaluation research project investigating the potential uses of 3D technologies in higher education learning and research.

The institutions that participated in the Campus of the Future project were selected because they were already on the cutting edge of integrating 3D technology into pedagogy. These institutions were therefore not representative, nor were they intended to be representative, of the state of higher education in the United States. These institutions were selected precisely because they already had a set of use cases for 3D technology available for study

p. 9  At some institutions, the group participating in the project was an academic unit (e.g., the Newhouse School of Communications at Syracuse University; the Graduate School of Education at Harvard University). At these institutions, the 3D technology provided by HP was deployed for use more or less exclusively by students and faculty affiliated with the particular academic unit.

p. 10 definitions
there is not universal agreement on the definitions of these
terms or on the scope of these technologies. Also, all of these technologies
currently exist in an active marketplace and, as in many rapidly changing markets, there is a tendency for companies to invent neologisms around 3D technology.

A 3D scanner is not a single device but rather a combination of hardware and
software. There are generally two pieces of hardware: a laser scanner and a digital
camera. The laser scanner bounces laser beams off the surface of an object to
determine its shape and contours.

p. 11 definitions

Virtual reality means that the wearer is completely immersed in a computer
simulation. Several types of VR headsets are currently available, but all involve
a lightweight helmet with a display in front of the eyes (see figure 2). In some
cases, this display may simply be a smartphone (e.g., Google Cardboard); in other
cases, two displays—one for each eye—are integrated into the headset (e.g., HTC
Vive). Most commercially available VR rigs also include handheld controllers
that enable the user to interact with the simulation by moving the controllers
in space and clicking on finger triggers or buttons.

p. 12 definitions

Augmented reality provides an “overlay” of some type over the real world through
the use of a headset or even a smartphone.

In an active technology marketplace, there is a tendency for new terms to be
invented rapidly and for existing terms to be used loosely. This is currently
happening in the VR and AR market space. The HP VR rig and the HTC Vive
unit are marketed as being immersive, meaning that the user is fully immersed in
a simulation—virtual reality. Many currently available AR headsets, however, are
marketed not as AR but rather as MR (mixed reality). These MR headsets have a
display in front of the eyes as well as a pair of front-mounted cameras; they are
therefore capable of supporting both VR and AR functionality.

p. 13 Implementation

Technical difficulties.
Technical issues can generally be divided into two broad categories: hardware
problems and software problems. There is, of course, a common third category:
human error.

p. 15 the technology learning curve

The well-known diffusion of innovations theoretical framework articulates five
adopter categories: innovators, early adopters, early majority, late majority, and
laggards. Everett M. Rogers, Diffusion of Innovations, 5th ed. (New York: Simon and Schuster, 2003).

It is also likely that staff in the campus IT unit or center for teaching and learning already know who (at least some of) these individuals are, since such faculty members are likely to already have had contact with these campus units.
Students may of course also be innovators and early adopters, and in fact
several participating institutions found that some of the most creative uses of 3D technology arose from student projects

p. 30  Zeynep Tufekci, in her book Twitter and Tear Gas

definition: There is no necessary distinction between AR and VR; indeed, much research
on the subject is based on a conception of a “virtuality continuum” from entirely
real to entirely virtual, where AR lies somewhere between those ends of the
spectrum.  Paul Milgram and Fumio Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE Transactions on Information Systems, vol. E77-D, no. 12 (1994); Steve Mann, “Through the Glass, Lightly,” IEEE Technology and Society Magazine 31, no. 3 (2012): 10–14.

For the future of 3D technology in higher education to be realized, that
technology must become as much a part of higher education as any technology:
the learning management system (LMS), the projector, the classroom. New
technologies and practices generally enter institutions of higher education as
initiatives. Several active learning classroom initiatives are currently under
way,36 for example, as well as a multi-institution open educational resources
(OER) degree initiative.37

p. 32 Storytelling

Some scholars have argued that all human communication
is based on storytelling;41 certainly advertisers have long recognized that
storytelling makes for effective persuasion,42 and a growing body of research
shows that narrative is effective for teaching even topics that are not generally
thought of as having a natural story, for example, in the sciences.43

p. 33 accessibility

The experience of Gallaudet University highlights one of the most important
areas for development in 3D technology: accessibility for users with disabilities.

p. 34 instructional design

For that to be the case, 3D technologies must be incorporated into the
instructional design process for building and redesigning courses. And for that
to be the case, it is necessary for faculty and instructional designers to be familiar
with the capabilities of 3D technologies. And for that to be the case, it may
not be necessary but would certainly be helpful for instructional designers to
collaborate closely with the staff in campus IT units who support and maintain
this hardware.

Every institution of higher
education has a slightly different organizational structure, of course, but these
two campus units are often siloed. This siloing may lead to considerable friction
in conducting the most basic organizational tasks, such as setting up meetings
and apportioning responsibilities for shared tasks. Nevertheless, IT units and
centers for teaching and learning are almost compelled to collaborate in order
to support faculty who want to integrate 3D technology into their teaching. It
is necessary to bring the instructional design expertise of a center for teaching
and learning to bear on integrating 3D technology into an instructor’s teaching (My note: and where does this place SCSU?) Therefore,
one of the most critical areas in which IT units and centers for teaching and
learning can collaborate is in assisting instructors to develop this integration
and to develop learning objects that use 3D technology. p. 35 For 3D technology to really gain traction in higher education, it will need to be easier for instructors to deploy without such a large support team.

p. 35 Sites such as Thingiverse, Sketchfab, and Google Poly are libraries of freely
available, user-created 3D models.

ClassVR is a tool that enables the simultaneous delivery of a simulation to
multiple headsets, though the simulation itself may still be single-user.

p. 37 data management:

An institutional repository is a collection of an institution’s intellectual output, often consisting of preprint journal articles and conference papers and the data sets behind them.49 An
institutional repository is often maintained by either the library or a partnership
between the library and the campus IT unit. An institutional repository therefore has the advantage of the long-term curatorial approach of librarianship combined with the systematic backup management of the IT unit. (My note: leaves me wonder where does this put SCSU)

Sharing data sets is critical for collaboration and increasingly the default for
scholarship. Data is as much a product of scholarship as publications, and there
is a growing sentiment among scholars that it should therefore be made public.50

++++++++
more on VR in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+definition

Preparing Learners for 21st Century Digital Citizenship

ID2ID webinar (my notes on the bottom)

Digital Fluency: Preparing Learners for 21st Century Digital Citizenship
Eighty-five percent of the jobs available in 2030 do not yet exist.  How does higher education prepare our learners for careers that don’t yet exist?  One opportunity is to provide our students with opportunities to grow their skills in creative problem solving, critical thinking, resiliency, novel thinking, social intelligence, and excellent communication skills.  Instructional designers and faculty can leverage the framework of digital fluency to create opportunities for learners to practice and hone the skills that will prepare them to be 21st-century digital citizens.  In this session, join a discussion about several fluencies that comprise the overarching framework for digital fluency and help to define some of your own.

Please click this URL to join. https://arizona.zoom.us/j/222969448

Dr. Jennifer Sparrow, Senior Director for Teaching and Learning with Technology and Affiliate Assistant Professor of Learning, Design, and Technology at Penn State.    The webinar will take place on Friday, November 9th at 11am EST/4pm UTC (login details below)  

https://arizona.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e15266ee-7368-4378-b63c-a99301274877

My notes:

Jennifer does NOT see phone use for learning as an usage to obstruct. Similarly as with the calculator some 30-40 years ago, it was frowned upon, so now is technology. To this notion, added the fast-changing job market: new jobs created, old disappearing (https://www.nbcnews.com/news/us-news/students-are-being-prepared-jobs-no-longer-exist-here-s-n865096)

how DF is different from DLiteracy? enable students define how new knowledge can be created through technology. Not only read and write, but create poems, stories, if analogous w learning a language. slide 4 in https://www.slideshare.net/aidemoreto/vr-library

communication fluency. be able to choose the correct media. curiosity/failure fluency; creation fluency (makerspace: create without soldering, programming, 3Dprinting. PLA filament-corn-based plastic; Makers-in-residence)

immersive fluency: video 360, VR and AR. enable student to create new knowledge through environments beyond reality. Immersive Experiences Lab (IMEX). Design: physical vs virtual spaces.

Data fluency: b.book. how to create my own textbook

rubrics and sample projects to assess digital fluency.

https://er.educause.edu/articles/2018/3/digital-fluency-preparing-students-to-create-big-bold-problems

https://events.educause.edu/annual-conference/2018/agenda/ethics-and-digital-fluency-in-vr-and-immersive-learning-environments

Literacy Is NOT Enough: 21st Century Fluencies for the Digital Age (The 21st Century Fluency Series)
https://www.amazon.com/Literacy-NOT-Enough-Century-Fluencies/dp/1412987806

What is Instructional Design 2.0 or 3.0? deep knowledge and understanding of faculty development. second, once faculty understands the new technology, how does this translate into rework of curriculum? third, the research piece; how to improve to be ready for the next cycle. a partnership between ID and faculty.

smart classroom

Are ‘Smart’ Classrooms the Future?

Indiana University explores that question by bringing together tech partners and university leaders to share ideas on how to design classrooms that make better use of faculty and student time.

By Julie Johnston 10/31/18 https://campustechnology.com/articles/2018/10/31/are-smart-classrooms-the-future.aspx

  • Untether instructors from the room’s podium, allowing them control from anywhere in the room;
  • Streamline the start of class, including biometric login to the room’s technology, behind-the-scenes routing of course content to room displays, control of lights and automatic attendance taking;
  • Offer whiteboards that can be captured, routed to different displays in the room and saved for future viewing and editing;
  • Provide small-group collaboration displays and the ability to easily route content to and from these displays; and
  • Deliver these features through a simple, user-friendly and reliable room/technology interface.

Key players from CrestronGoogleSonySteelcase and Spectrum met with Indiana University faculty, technologists and architects to generate new ideas related to current and emerging technologies. Activities included collaborative brainstorming focusing on these questions:

  • What else can we do to create the classroom of the future?
  • What current technology exists to solve these problems?
  • What could be developed that doesn’t yet exist?
  • What’s next?

top five findings:

  • Screenless and biometric technology will play an important role in the evolution of classrooms in higher education. We plan to research how voice activation and other Internet of Things technologies can streamline the process for faculty and students.
  • The entire classroom will become a space for student activity and brainstorming; walls, windows, desks and all activities are easily captured to the cloud, allowing conversations to continue outside of class or at the next class meeting.
  • Technology will be leveraged to include advance automation for a variety of tasks, so the faculty member is released from duties to focus on teaching.
  • The technology will become invisible to the process and enhance and customize the experience for the learner.
  • Virtual assistants could play an important role in providing students with a supported experience throughout their entire campus career.

A full report on the summit findings is available here.

Further, this article

Kelly, B. R., & 10/11/17. (n.d.). Faculty Predict Virtual/Augmented/Mixed Reality Will Be Key to Ed Tech in 10 Years -. Retrieved October 31, 2018, from https://campustechnology.com/articles/2017/10/11/faculty-predict-virtual-augmented-mixed-reality-will-be-key-to-ed-tech-in-10-years.aspx

My note:

In September 2015, the back-then library dean (they change every 2-3 years) requested a committee of librarians to meet and discuss the remodeling of Miller Center 2018. By that time the SCSU CIO was asserting the BYOx as a new policy for SCSU. BYOx in essence means the necessity for stronger (wider) WiFI pipe. Based on that assertion, I, Plamen Miltenoff, was insisting to shift the cost of hardware (computers, laptops) to infrastructure (more WiFi nods in the room and around it) and prepare for the upcoming IoT by learning to remodel our syllabi for mobile devices and use those (students) mobile devices, rather squander University money on hardware. At least one faculty member from the committee honestly admitted she has no idea about IoT and respectively the merit of my proposal. Thus, my proposal was completely disregarded by the self-nominated chair of the committee of librarians, who pushed for her idea to replace the desktops with a cart of laptops (a very 2010 idea, which by 2015 was already passe). As per Kelly (2018) (second article above), it is obvious the failure of her proposal to the dean to choose laptops over mobile devices, considering that faculty DO see mobile devices completely replacing desktops and laptops; that faculty DO not see document cameras and overhead projectors as a tool to stay.
Here are the notes from September 2015 https://blog.stcloudstate.edu/ims/2015/09/25/mc218-remodel/
As are result, my IoT proposal as now reflected in the Johnston (2018) (first article above), did not make it even formally to the dean, hence the necessity to make it available through the blog.
The SCSU library thinking regarding physical remodeling of classrooms is behind its times and that costs money for the university, if that room needs to be remodeled again to be with the contemporary times.

ELI 2018 Key Issues Teaching Learning

Key Issues in Teaching and Learning

https://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning

A roster of results since 2011 is here.

ELI 2018 key issues

1. Academic Transformation

2. Accessibility and UDL

3. Faculty Development

4. Privacy and Security

5. Digital and Information Literacies

https://cdn.nmc.org/media/2017-nmc-strategic-brief-digital-literacy-in-higher-education-II.pdf
Three Models of Digital Literacy: Universal, Creative, Literacy Across Disciplines

United States digital literacy frameworks tend to focus on educational policy details and personal empowerment, the latter encouraging learners to become more effective students, better creators, smarter information consumers, and more influential members of their community.

National policies are vitally important in European digital literacy work, unsurprising for a continent well populated with nation-states and struggling to redefine itself, while still trying to grow economies in the wake of the 2008 financial crisis and subsequent financial pressures

African digital literacy is more business-oriented.

Middle Eastern nations offer yet another variation, with a strong focus on media literacy. As with other regions, this can be a response to countries with strong state influence or control over local media. It can also represent a drive to produce more locally-sourced content, as opposed to consuming material from abroad, which may elicit criticism of neocolonialism or religious challenges.

p. 14 Digital literacy for Humanities: What does it mean to be digitally literate in history, literature, or philosophy? Creativity in these disciplines often involves textuality, given the large role writing plays in them, as, for example, in the Folger Shakespeare Library’s instructor’s guide. In the digital realm, this can include web-based writing through social media, along with the creation of multimedia projects through posters, presentations, and video. Information literacy remains a key part of digital literacy in the humanities. The digital humanities movement has not seen much connection with digital literacy, unfortunately, but their alignment seems likely, given the turn toward using digital technologies to explore humanities questions. That development could then foster a spread of other technologies and approaches to the rest of the humanities, including mapping, data visualization, text mining, web-based digital archives, and “distant reading” (working with very large bodies of texts). The digital humanities’ emphasis on making projects may also increase

Digital Literacy for Business: Digital literacy in this world is focused on manipulation of data, from spreadsheets to more advanced modeling software, leading up to degrees in management information systems. Management classes unsurprisingly focus on how to organize people working on and with digital tools.

Digital Literacy for Computer Science: Naturally, coding appears as a central competency within this discipline. Other aspects of the digital world feature prominently, including hardware and network architecture. Some courses housed within the computer science discipline offer a deeper examination of the impact of computing on society and politics, along with how to use digital tools. Media production plays a minor role here, beyond publications (posters, videos), as many institutions assign multimedia to other departments. Looking forward to a future when automation has become both more widespread and powerful, developing artificial intelligence projects will potentially play a role in computer science literacy.

6. Integrated Planning and Advising Systems for Student Success (iPASS)

7. Instructional Design

8. Online and Blended Learning

In traditional instruction, students’ first contact with new ideas happens in class, usually through direct instruction from the professor; after exposure to the basics, students are turned out of the classroom to tackle the most difficult tasks in learning — those that involve application, analysis, synthesis, and creativity — in their individual spaces. Flipped learning reverses this, by moving first contact with new concepts to the individual space and using the newly-expanded time in class for students to pursue difficult, higher-level tasks together, with the instructor as a guide.

Let’s take a look at some of the myths about flipped learning and try to find the facts.

Myth: Flipped learning is predicated on recording videos for students to watch before class.

Fact: Flipped learning does not require video. Although many real-life implementations of flipped learning use video, there’s nothing that says video must be used. In fact, one of the earliest instances of flipped learning — Eric Mazur’s peer instruction concept, used in Harvard physics classes — uses no video but rather an online text outfitted with social annotation software. And one of the most successful public instances of flipped learning, an edX course on numerical methods designed by Lorena Barba of George Washington University, uses precisely one video. Video is simply not necessary for flipped learning, and many alternatives to video can lead to effective flipped learning environments [http://rtalbert.org/flipped-learning-without-video/].

Myth: Flipped learning replaces face-to-face teaching.

Fact: Flipped learning optimizes face-to-face teaching. Flipped learning may (but does not always) replace lectures in class, but this is not to say that it replaces teaching. Teaching and “telling” are not the same thing.

Myth: Flipped learning has no evidence to back up its effectiveness.

Fact: Flipped learning research is growing at an exponential pace and has been since at least 2014. That research — 131 peer-reviewed articles in the first half of 2017 alone — includes results from primary, secondary, and postsecondary education in nearly every discipline, most showing significant improvements in student learning, motivation, and critical thinking skills.

Myth: Flipped learning is a fad.

Fact: Flipped learning has been with us in the form defined here for nearly 20 years.

Myth: People have been doing flipped learning for centuries.

Fact: Flipped learning is not just a rebranding of old techniques. The basic concept of students doing individually active work to encounter new ideas that are then built upon in class is almost as old as the university itself. So flipped learning is, in a real sense, a modern means of returning higher education to its roots. Even so, flipped learning is different from these time-honored techniques.

Myth: Students and professors prefer lecture over flipped learning.

Fact: Students and professors embrace flipped learning once they understand the benefits. It’s true that professors often enjoy their lectures, and students often enjoy being lectured to. But the question is not who “enjoys” what, but rather what helps students learn the best.They know what the research says about the effectiveness of active learning

Assertion: Flipped learning provides a platform for implementing active learning in a way that works powerfully for students.

9. Evaluating Technology-based Instructional Innovations

Transitioning to an ROI lens requires three fundamental shifts
What is the total cost of my innovation, including both new spending and the use of existing resources?

What’s the unit I should measure that connects cost with a change in performance?

How might the expected change in student performance also support a more sustainable financial model?

The Exposure Approach: we don’t provide a way for participants to determine if they learned anything new or now have the confidence or competence to apply what they learned.

The Exemplar Approach: from ‘show and tell’ for adults to show, tell, do and learn.

The Tutorial Approach: Getting a group that can meet at the same time and place can be challenging. That is why many faculty report a preference for self-paced professional development.build in simple self-assessment checks. We can add prompts that invite people to engage in some sort of follow up activity with a colleague. We can also add an elective option for faculty in a tutorial to actually create or do something with what they learned and then submit it for direct or narrative feedback.

The Course Approach: a non-credit format, these have the benefits of a more structured and lengthy learning experience, even if they are just three to five-week short courses that meet online or in-person once every week or two.involve badges, portfolios, peer assessment, self-assessment, or one-on-one feedback from a facilitator

The Academy Approach: like the course approach, is one that tends to be a deeper and more extended experience. People might gather in a cohort over a year or longer.Assessment through coaching and mentoring, the use of portfolios, peer feedback and much more can be easily incorporated to add a rich assessment element to such longer-term professional development programs.

The Mentoring Approach: The mentors often don’t set specific learning goals with the mentee. Instead, it is often a set of structured meetings, but also someone to whom mentees can turn with questions and tips along the way.

The Coaching Approach: A mentor tends to be a broader type of relationship with a person.A coaching relationship tends to be more focused upon specific goals, tasks or outcomes.

The Peer Approach:This can be done on a 1:1 basis or in small groups, where those who are teaching the same courses are able to compare notes on curricula and teaching models. They might give each other feedback on how to teach certain concepts, how to write syllabi, how to handle certain teaching and learning challenges, and much more. Faculty might sit in on each other’s courses, observe, and give feedback afterward.

The Self-Directed Approach:a self-assessment strategy such as setting goals and creating simple checklists and rubrics to monitor our progress. Or, we invite feedback from colleagues, often in a narrative and/or informal format. We might also create a portfolio of our work, or engage in some sort of learning journal that documents our thoughts, experiments, experiences, and learning along the way.

The Buffet Approach:

10. Open Education

Figure 1. A Model for Networked Education (Credit: Image by Catherine Cronin, building on
Interpretations of
Balancing Privacy and Openness (Credit: Image by Catherine Cronin. CC BY-SA)

11. Learning Analytics

12. Adaptive Teaching and Learning

13. Working with Emerging Technology

In 2014, administrators at Central Piedmont Community College (CPCC) in Charlotte, North Carolina, began talks with members of the North Carolina State Board of Community Colleges and North Carolina Community College System (NCCCS) leadership about starting a CBE program.

Building on an existing project at CPCC for identifying the elements of a digital learning environment (DLE), which was itself influenced by the EDUCAUSE publication The Next Generation Digital Learning Environment: A Report on Research,1 the committee reached consensus on a DLE concept and a shared lexicon: the “Digital Learning Environment Operational Definitions,

Figure 1. NC-CBE Digital Learning Environment

platforms for badges

Bryan and Special Guest Nate Otto,
Director of the Badgr Platform at Concentric Sky
An interactive discussion on badges and micro-credentials
Bryan Alexander, special guest Nate Otto, and the Future Trends Forum Community will discuss badges and micro-credentials at present, their future and the challenges they face.
Nate is the Director of Open Badges Projects at Concentric Sky, where he leads development of the Badgr platform for issuing and managing verifiable digital credentials.
Nate’s background in political sciences also informs his work on open standards with a focus on building and maintaining tech ecosystems resistant to monopolies.

notes from the webinar

Nate Otto Concentration Sky @ottonomy https://badgr.com/

A Beginner’s Guide To Open Badges, https://elearningindustry.com/guide-to-open-badges-beginners

Mozilla discontinue and switch to Badgr platform. free accounts to Badgr. current integration of Mozilla backpack with other platforms such as Moddle will be preserved. Backpack solution, or issue badges.

Steve Taylor: Moodle is one of the platforms integrated with Backpack.

Xapi infrastructure. super messaging protocol https://xapi.com/ . Ryan Harrell question. Nate response, great fit for badging. Badgr Pathways https://badgr.com/en-us/badgr-pathway.html

Ryan Harrell
This is an extremely useful conversation. We’re working on building a dedicated micro-credentialing platform at our University specifically to provide continuing education material based on the material we are already creating in our various programs.
Open badges extensions for education test course. Two extensions: one describes assessment which goes to a particular badge. Second extension allows the issues to describe. Published extensions. Badgr implemented the assessment extensions: the Digital Promise project – https://digitalpromise.org/.
hurdles to prevent adoption of badges: 1. still not easy enough to start issuing badges, design principles. get ambitious what to do with badges but no ability to start the assessment process. how badges will be awarded. starting small is the way, simple tools, google forms, to help decide what to do. 2. how do we understand the achievements of badges
next week: https://www.twitterandteargas.org/

multi-user reference support experiences

https://www.emeraldinsight.com/eprint/AU2Q4SJGYQG5YTQ5A9RU/full

Hahn, J. (2018). Virtual reality learning environments | Development of multi-user reference support experiences | Information and Learning Science | Ahead of Print. EmeraldInsight. Retrieved from https://www.emeraldinsight.com/eprint/AU2Q4SJGYQG5YTQ5A9RU/full
case study: an undergraduate senior projects computer science course collaboration whose aim was to develop textual browsing experiences, among other library reference functionality, within the HTC Vive virtual reality (VR) headset. In this case study, readers are introduced to applied uses of VR in service to library-based learning through the research and development of a VR reading room app with multi-user support. Within the VR reading room prototype, users are able to collaboratively explore the digital collections of HathiTrust, highlight text for further searching and discovery and receive consultative research support from a reference specialist through VR.
Library staff met with the project team weekly over the 16 weeks of both semesters to first scope out the functionality of the system and vet requirements.
The library research team further hypothesized that incorporating reference-like support in the VR environment can support library learning. There is ample evidence in the library literature which underscores the importance of reference interactions as learning and instructional experiences for university students
Educational benefits to immersive worlds include offering a deeper presence in engagement with rare or non-accessible artifacts. Sequeira and Morgado (2013, p. 2) describe their Virtual Archeology project as using “a blend of techniques and methods employed by historians and archaeologists using computer models for visualizing cultural artefacts and heritage sites”.
The higher-end graphics cards include devices such as the NVIDIA GeForceTM GTX 1060 or AMD RadeonTM RX 480, equivalent or better. The desktop system that was built for this project used the GeForce GTX 1070, which was slightly above the required minimum specifications.

Collaboration: Library as client.

Specific to this course collaboration, computer science students in their final year of study are given the option of several client projects on which to work. The Undergraduate Library has been a collaborator with senior computer science course projects for several years, beginning in 2012-2013 with mobile application design and chat reference software re-engineering (Hahn, 2015). (My note: Mark Gill, this is where and how Mehdi Mekni, you and I can collaborate)

The hurdles the students had the most trouble with was code integration – e.g. combining various individual software parts towards the end of the semester. The students also were challenged by the public HathiTrust APIs, as the system was developed to call the HathiTrust APIs from within the Unity programming environment and developing API calls in C#. This was a novel use of the HathiTrust search APIs for the students and a new area for the research team as well.

There are alternatives to Unity C# programming, notably WebVR, an open source specification for VR programming on the open web.

A-Frame has seen maturation as a platform agnostic and device agnostic software programming environment. The WebVR webpage notes that the specification supports HTC Vive, Oculus Rift, Samsung Gear VR, Google Daydream and Google Cardboard (WebVR Rocks, 2018). Open web platforms are consistent with library values and educational goals of sharing work that can be foundational in implementing VR learning experience both in VR environments and shareable on the web, too.

++++++++++++++
more on VR in libraries in this IMS blog
https://blog.stcloudstate.edu/ims?s=virtual+reality+library

Social Media to organize info

Rethinking Social Media to Organize Information and Communities eCourse

https://www.alastore.ala.org/content/rethinking-social-media-organize-information-and-communities-ecourse

Tired of hearing all the reasons why you should be using Twitter, Facebook, LinkedIn, and other popular social media tools? Perhaps it’s time to explore social media tools in a supportive and engaging environment with a keen eye toward using those tools more effectively in your work.

Join us and social media guru and innovator Paul Signorelli in this four-week, highly-interactive eCourse as he explores a variety of social media tools in terms of how they can be used to organize information and communities. Together, you will survey and use a variety of social media tools, such as Delicious, Diigo, Facebook, Goodreads, Google Hangouts, LibraryThing, Pinterest, Twitter, and more! You will also explore how social media tools can be used to organize and disseminate information and how they can be used to foster and sustain communities of learning.

After participating in this eCourse, you will have an:

  • Awareness of how social media tools can be used to support the work you do with colleagues and other community stakeholders in fostering engagement through onsite and online communities
  • Increased ability to identify, explore, and foster the use of social media tools that support you and those you serve
  • Increased ability to use a variety of social media tools effectively in your day-to-day work

Part 1: Using Social Media Tools to Organize and Provide Access to Information
Delicious, Diigo, Goodreads, LibraryThing, and other tagging sites

Part 2: Organizing, Marketing, and Running Programs
Facebook, Pinterest, and other tools for engagement

Part 3: Expanding and Analyzing Community Impact
Twitter, Storify, and other microblogging resources

Part 4: Sustaining Engagement with Community Partners
Coordinating your presence and interactions across a variety of social media tools

trainer-instructional designer-presenter-consultant. Much of his work involves fostering community and collaboration face-to-face and online through libraries, other learning organizations, and large-scale community-based projects including San Francisco’s Hidden Garden Steps project, which has its origins in a conversation that took place within a local branch library. He remains active on New Media Consortium Horizon Report advisory boards/expert panels, in the Association for Talent Development (ATD–formerly the American Society for Training & Development), and with the American Library Association; adores blended learning; and remains a firm advocate of developing sustainable onsite and online community partnerships that meet all partners’ needs. He is co-author of Workplace Learning & Leadership with Lori Reed and author of the upcoming Change the World Using Social Media (Rowman & Littlefield, Autumn 2018).

++++++++++++
more on social media in libraries
https://blog.stcloudstate.edu/ims?s=social+media+library

 

blockchain and refugees

blockchain for refugees

As Norwegian Refugee Council research found, 70 percent of Syrian refugees lack basic identification and documents showing ownership of property.

The global passport

Host nations certainly has a share in the damage, as they face problems concerning the accessibility of vital information about the newcomers — dealing with the undocumented refugee, the immigration service can’t gain the information about his/her health status, family ties or criminal record, or verify any other vital data that helps them make a decision. Needless to say, this may lead to the designation of refugee status being exploited by economic migrants, fugitives or even the war criminals that caused the mass displacement to begin with.

Another important issue is data security. Refugees’ personal identities are carefully re-established with the support of clever biometric systems set up by the U.N. Agency for Refugees (UNHCR). UNHCR registers millions of refugees and maintains those records in a database. But the evidence suggests that centralized systems like this could be prone to attacks. As a report on UNCHR’s site notes, Aadhaar — India’s massive biometric database and the largest national database of people in the world — has suffered serious breaches, and last year, allegations were made that access was for sale on the internet for as little as $8

Finland, a country with a population of 5.5 million, cannot boast huge numbers of refugees. For 2018, it set a quota of 750 people, mainly flying from Syria and the Democratic Republic of Congo. That’s way less than neighboring Sweden, which promised to take in 3,400. Nevertheless, the country sets a global example of the use of effective technology in immigration policy: It’s using blockchain to help the newcomers get on their feet faster.

The system, developed by the Helsinki-based startup MONI, maintains a full analogue of a bank account for every one of its participants.

Speaking at the World Economic Forum in Davos in January 2018, the billionaire investor and philanthropist George Soros revealed that his structures already use a blockchain in immigration policies

In 2017, Accenture and Microsoft Corp. teamed up to build a digital ID network using blockchain technology, as part of a U.N.-supported project to provide legal identification to 1.1 billion people worldwide with no official documents.

a Memorandum of Understanding (MOU) with blockchain platform IOTA to explore how the technology could increase efficiency.

++++++++++
more on blockchain in this IMS blog
https://blog.stcloudstate.edu/ims?s=blockchain

1 7 8 9 10 11 21